-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreach_blocks.jl
386 lines (344 loc) · 12.6 KB
/
reach_blocks.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#=
reach_blocks!(ϕ, Xhat0, U, n, b, termination, overapproximate, blocks, res)
Reachability computation of a given number of two-dimensional blocks of an
affine system with undeterministic inputs.
The variants have the following structure:
### Input
- `ϕ` -- sparse matrix of a discrete affine system
- `Xhat0` -- initial set as a cartesian product over 2d blocks
- `U` -- input set of undeterministic inputs
- `n` -- ambient dimension
- `termination` -- termination check
- `overapproximate` -- function for overapproximation
- `blocks` -- the block indices to be computed
- `partition` -- the partition into blocks
- `res` -- storage space for the result, a linear array of CartesianProductArray
### Output
The index at which the computation has stopped.
### Notes
The reach sets are stored in `res`, an array of the cartesian product for the
given block indices.
=#
# helper functions
@inline proj(bi::UnitRange{Int}, n::Int) =
sparse(1:length(bi), bi, ones(length(bi)), length(bi), n)
@inline proj(bi::Int, n::Int) = sparse([1], [bi], ones(1), 1, n)
@inline row(ϕpowerk::AbstractMatrix, bi::UnitRange{Int}) = ϕpowerk[bi, :]
@inline row(ϕpowerk::AbstractMatrix, bi::Int) = ϕpowerk[[bi], :]
@inline row(ϕpowerk::SparseMatrixExp, bi::UnitRange{Int}) = get_rows(ϕpowerk, bi)
@inline row(ϕpowerk::SparseMatrixExp, bi::Int) = Matrix(get_row(ϕpowerk, bi))
@inline block(ϕpowerk_πbi::AbstractMatrix, bj::UnitRange{Int}) = ϕpowerk_πbi[:, bj]
@inline block(ϕpowerk_πbi::AbstractMatrix, bj::Int) = ϕpowerk_πbi[:, [bj]]
@inline store!(res, k, X, t0, t1, N) = (res[k] = ReachSet(X, t0, t1))
# sparse
function reach_blocks!(ϕ::SparseMatrixCSC{NUM, Int},
Xhat0::Vector{<:LazySet{NUM}},
U::Union{ConstantInput, Nothing},
overapproximate::Function,
overapproximate_inputs::Function,
n::Int,
N::Int,
output_function::Union{Function, Nothing},
blocks::AbstractVector{Int},
partition::AbstractVector{<:Union{AbstractVector{Int}, Int}},
δ::NUM,
termination::Function,
res::Vector{<:ReachSet}
)::Tuple{Int, Bool} where {NUM}
array = CartesianProductArray(Xhat0[blocks])
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = zero(δ)
t1 = δ
store!(res, 1, X_store, t0, t1, NUM)
terminate, skip = termination(1, X_store, t0)
if terminate
return 1, skip
end
b = length(blocks)
Xhatk = Vector{LazySet{NUM}}(undef, b)
ϕpowerk = copy(ϕ)
if U != nothing
Whatk = Vector{LazySet{NUM}}(undef, b)
inputs = next_set(U)
@inbounds for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(1, blocks[i], proj(bi, n) * inputs)
end
end
k = 2
p = Progress(N, 1, "Computing successors ")
@inbounds while true
update!(p, k)
for i in 1:b
bi = partition[blocks[i]]
Xhatk_bi = ZeroSet(length(bi))
for (j, bj) in enumerate(partition)
block = ϕpowerk[bi, bj]
if !iszero(block)
Xhatk_bi = Xhatk_bi + block * Xhat0[j]
end
end
Xhatk_bi_lazy = (U == nothing ? Xhatk_bi : Xhatk_bi + Whatk[i])
Xhatk[i] = (output_function == nothing) ?
overapproximate(blocks[i], Xhatk_bi_lazy) :
Xhatk_bi_lazy
end
array = CartesianProductArray(copy(Xhatk))
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = t1
t1 += δ
store!(res, k, X_store, t0, t1, NUM)
terminate, skip = termination(k, X_store, t0)
if terminate
break
end
if U != nothing
for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(k, blocks[i],
Whatk[i] + row(ϕpowerk, bi) * inputs)
end
end
ϕpowerk = ϕpowerk * ϕ
k += 1
end
return k, skip
end
# dense
function reach_blocks!(ϕ::AbstractMatrix{NUM},
Xhat0::Vector{<:LazySet{NUM}},
U::Union{ConstantInput, Nothing},
overapproximate::Function,
overapproximate_inputs::Function,
n::Int,
N::Int,
output_function::Union{Function, Nothing},
blocks::AbstractVector{Int},
partition::AbstractVector{<:Union{AbstractVector{Int}, Int}},
δ::NUM,
termination::Function,
res::Vector{<:ReachSet}
)::Tuple{Int, Bool} where {NUM}
array = CartesianProductArray(Xhat0[blocks])
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = zero(δ)
t1 = δ
store!(res, 1, X_store, t0, t1, NUM)
terminate, skip = termination(1, X_store, t0)
if terminate
return 1, skip
end
b = length(blocks)
Xhatk = Vector{LazySet{NUM}}(undef, b)
ϕpowerk = copy(ϕ)
ϕpowerk_cache = similar(ϕ)
if U != nothing
Whatk = Vector{LazySet{NUM}}(undef, b)
inputs = next_set(U)
@inbounds for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(1, blocks[i], proj(bi, n) * inputs)
end
end
arr_length = (U == nothing) ? length(partition) : length(partition) + 1
arr = Vector{LazySet{NUM}}(undef, arr_length)
k = 2
p = Progress(N, 1, "Computing successors ")
@inbounds while true
update!(p, k)
for i in 1:b
bi = partition[blocks[i]]
for (j, bj) in enumerate(partition)
arr[j] = ϕpowerk[bi, bj] * Xhat0[j]
end
if U != nothing
arr[arr_length] = Whatk[i]
end
Xhatk[i] = (output_function == nothing) ?
overapproximate(blocks[i], MinkowskiSumArray(arr)) :
MinkowskiSumArray(copy(arr))
end
array = CartesianProductArray(copy(Xhatk))
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = t1
t1 += δ
store!(res, k, X_store, t0, t1, NUM)
terminate, skip = termination(k, X_store, t0)
if terminate
break
end
if U != nothing
for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(k, blocks[i],
Whatk[i] + row(ϕpowerk, bi) * inputs)
end
end
_A_mul_B!(ϕpowerk_cache, ϕpowerk, ϕ)
copyto!(ϕpowerk, ϕpowerk_cache)
k += 1
end
return k, skip
end
# lazy_expm sparse
function reach_blocks!(ϕ::SparseMatrixExp{NUM},
assume_sparse::Val{true},
Xhat0::Vector{<:LazySet{NUM}},
U::Union{ConstantInput, Nothing},
overapproximate::Function,
overapproximate_inputs::Function,
n::Int,
N::Int,
output_function::Union{Function, Nothing},
blocks::AbstractVector{Int},
partition::AbstractVector{<:Union{AbstractVector{Int}, Int}},
δ::NUM,
termination::Function,
res::Vector{<:ReachSet}
)::Tuple{Int, Bool} where {NUM}
array = CartesianProductArray(Xhat0[blocks])
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = zero(δ)
t1 = δ
store!(res, 1, X_store, t0, t1, NUM)
terminate, skip = termination(1, X_store, t0)
if terminate
return 1, skip
end
b = length(blocks)
Xhatk = Vector{LazySet{NUM}}(undef, b)
ϕpowerk = SparseMatrixExp(copy(ϕ.M))
if U != nothing
Whatk = Vector{LazySet{NUM}}(undef, b)
inputs = next_set(U)
@inbounds for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(1, blocks[i], proj(bi, n) * inputs)
end
end
k = 2
p = Progress(N, 1, "Computing successors ")
@inbounds while true
update!(p, k)
for i in 1:b
bi = partition[blocks[i]]
ϕpowerk_πbi = row(ϕpowerk, bi)
Xhatk_bi = ZeroSet(length(bi))
for (j, bj) in enumerate(partition)
πbi = block(ϕpowerk_πbi, bj)
if !iszero(πbi)
Xhatk_bi = Xhatk_bi + πbi * Xhat0[j]
end
end
Xhatk_bi_lazy = (U == nothing ? Xhatk_bi : Xhatk_bi + Whatk[i])
Xhatk[i] = (output_function == nothing) ?
overapproximate(blocks[i], Xhatk_bi_lazy) :
Xhatk_bi_lazy
if U != nothing
Whatk[i] = overapproximate_inputs(k, blocks[i],
Whatk[i] + ϕpowerk_πbi * inputs)
end
end
array = CartesianProductArray(copy(Xhatk))
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = t1
t1 += δ
store!(res, k, X_store, t0, t1, NUM)
terminate, skip = termination(k, X_store, t0)
if terminate
break
end
ϕpowerk.M .= ϕpowerk.M + ϕ.M
k += 1
end
return k, skip
end
# lazy_expm dense
function reach_blocks!(ϕ::SparseMatrixExp{NUM},
assume_sparse::Val{false},
Xhat0::Vector{<:LazySet{NUM}},
U::Union{ConstantInput, Nothing},
overapproximate::Function,
overapproximate_inputs::Function,
n::Int,
N::Int,
output_function::Union{Function, Nothing},
blocks::AbstractVector{Int},
partition::AbstractVector{<:Union{AbstractVector{Int}, Int}},
δ::NUM,
termination::Function,
res::Vector{<:ReachSet}
)::Tuple{Int, Bool} where {NUM}
array = CartesianProductArray(Xhat0[blocks])
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = zero(δ)
t1 = δ
store!(res, 1, X_store, t0, t1, NUM)
terminate, skip = termination(1, X_store, t0)
if terminate
return 1, skip
end
b = length(blocks)
Xhatk = Vector{LazySet{NUM}}(undef, b)
ϕpowerk = SparseMatrixExp(copy(ϕ.M))
if U != nothing
Whatk = Vector{LazySet{NUM}}(undef, b)
inputs = next_set(U)
@inbounds for i in 1:b
bi = partition[blocks[i]]
Whatk[i] = overapproximate_inputs(1, blocks[i], proj(bi, n) * inputs)
end
end
arr_length = (U == nothing) ? length(partition) : length(partition) + 1
arr = Vector{LazySet{NUM}}(undef, arr_length)
k = 2
p = Progress(N, 1, "Computing successors ")
@inbounds while true
update!(p, k)
for i in 1:b
bi = partition[blocks[i]]
ϕpowerk_πbi = row(ϕpowerk, bi)
for (j, bj) in enumerate(partition)
arr[j] = block(ϕpowerk_πbi, bj) * Xhat0[j]
end
if U != nothing
arr[arr_length] = Whatk[i]
end
Xhatk[i] = (output_function == nothing) ?
overapproximate(blocks[i], MinkowskiSumArray(arr)) :
MinkowskiSumArray(copy(arr))
if U != nothing
Whatk[i] = overapproximate_inputs(k, blocks[i],
Whatk[i] + ϕpowerk_πbi * inputs)
end
end
array = CartesianProductArray(copy(Xhatk))
X_store = (output_function == nothing) ?
array :
box_approximation(output_function(array))
t0 = t1
t1 += δ
store!(res, k, X_store, t0, t1, NUM)
terminate, skip = termination(k, X_store, t0)
if terminate
break
end
ϕpowerk.M .= ϕpowerk.M + ϕ.M
k += 1
end
return k, skip
end