From 01262c7bbb1571503c9b7a24107d0de40d016bb6 Mon Sep 17 00:00:00 2001 From: schillic Date: Sun, 14 Oct 2018 08:34:57 +0200 Subject: [PATCH 1/2] fix variable name --- src/Intersection.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/Intersection.jl b/src/Intersection.jl index 3bb0d39620..3397f9821f 100644 --- a/src/Intersection.jl +++ b/src/Intersection.jl @@ -243,7 +243,7 @@ function ρ(d::AbstractVector{N}, end # symmetric method -function ρ(ℓ::AbstractVector{N}, +function ρ(d::AbstractVector{N}, cap::Intersection{N, <:Union{HalfSpace{N}, Hyperplane{N}, Line{N}}, <:LazySet{N}}; From beeb847db2624d559c9e1a53ca3ebe744393ab90 Mon Sep 17 00:00:00 2001 From: schillic Date: Sun, 14 Oct 2018 08:55:04 +0200 Subject: [PATCH 2/2] add unit test for bug --- test/unit_Intersection.jl | 24 +++++++++++++++++------- 1 file changed, 17 insertions(+), 7 deletions(-) diff --git a/test/unit_Intersection.jl b/test/unit_Intersection.jl index f29209e94b..ff3e45de19 100644 --- a/test/unit_Intersection.jl +++ b/test/unit_Intersection.jl @@ -1,3 +1,5 @@ +using Optim + for N in [Float64, Rational{Int}, Float32] B = BallInf(ones(N, 2), N(3)) H = Hyperrectangle(ones(N, 2), ones(N, 2)) @@ -58,23 +60,31 @@ end # Tests for Float64 only # ====================== -# Half-space - Ball1 intersection +# HalfSpace vs. Ball1 intersection X = Ball1(zeros(2), 1.0); -H = HalfSpace([-1.0, 0.0], -1.0); # x >= 0 d = normalize([1.0, 0.0]) -# line search using Optim -using Optim +# flat intersection at x = 1 +H = HalfSpace([-1.0, 0.0], -1.0); # x >= 1 + +# default algorithm @test ρ(d, X ∩ H) == ρ(d, H ∩ X) == 1.0 -# Ball1 vs HalfSpace intersection using default algorithm -H = HalfSpace([1.0, 0.0], 0.0); # x = 0 +# intersection at x = 0 +H = HalfSpace([1.0, 0.0], 0.0); # x <= 0 + +# default algorithm @test ρ(d, X ∩ H) < 1e-6 && ρ(d, H ∩ X) < 1e-6 + # specify line search algorithm @test ρ(d, X ∩ H, algorithm="line_search") < 1e-6 && ρ(d, H ∩ X, algorithm="line_search") < 1e-6 -# Ball1 vs Hyperplane intersection +# HalfSpace vs. Ball2 intersection +B2 = Ball2(zeros(2), 1.0); +@test ρ(d, B2 ∩ H) < 1e-6 && ρ(d, H ∩ B2) < 1e-6 + +# Ball1 vs. Hyperplane intersection H = Hyperplane([1.0, 0.0], 0.5); # x = 0.5 @test isapprox(ρ(d, X ∩ H, algorithm="line_search"), 0.5, atol=1e-6) # For the projection algorithm, if the linear map is taken lazily we can use Ball1