You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Passing a value of missing, a first class type in Julia Base, to matplotlib should simply not the plot missing data. It should handle missing just like it presently does NaN.
However, passing a missing to matplotlib results in long and unhelpful errors from PyPlot and matplotlib:
plot([0,missing,2])
ERROR: PyError ($(Expr(:escape, :(ccall(#= ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:43 =# @pysym(:PyObject_Call), PyPtr, (PyPtr, PyPtr, PyPtr), o, pyargsptr, kw))))) <class 'TypeError'>
TypeError("float() argument must be a string or a real number, not 'PyCall.jlwrap'")
File "mypath/python3.12/site-packages/matplotlib/pyplot.py", line 3794, in plot
return gca().plot(
^^^^^^^^^^^
File "/mypath/python3.12/site-packages/matplotlib/axes/_axes.py", line 1781, in plot
self.add_line(line)
File "/mypath/python3.12/site-packages/matplotlib/axes/_base.py", line 2339, in add_line
self._update_line_limits(line)
File "/mypath/python3.12/site-packages/matplotlib/axes/_base.py", line 2362, in _update_line_limits
path = line.get_path()
^^^^^^^^^^^^^^^
File "/mypath/python3.12/site-packages/matplotlib/lines.py", line 1037, in get_path
self.recache()
File "/mypath/python3.12/site-packages/matplotlib/lines.py", line 679, in recache
y = _to_unmasked_float_array(yconv).ravel()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/mypath/python3.12/site-packages/matplotlib/cbook.py", line 1398, in _to_unmasked_float_array
return np.asarray(x, float)
^^^^^^^^^^^^^^^^^^^^
Stacktrace:
[1] pyerr_check
@ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:75 [inlined]
[2] pyerr_check
@ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:79 [inlined]
[3] _handle_error(msg::String)
@ PyCall ~/.julia/packages/PyCall/1gn3u/src/exception.jl:96
[4] macro expansion
@ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:110 [inlined]
[5] #107
@ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:43 [inlined]
[6] disable_sigint
@ ./c.jl:473 [inlined]
[7] __pycall!
@ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:42 [inlined]
[8] _pycall!(ret::PyObject, o::PyObject, args::Tuple{Vector{Union{Missing, Int64}}}, nargs::Int64, kw::Ptr{Nothing})
@ PyCall ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:29
[9] _pycall!
@ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:11 [inlined]
[10] pycall
@ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:83 [inlined]
[11] plot(args::Vector{Union{Missing, Int64}}; kws::@Kwargs{})
@ PyPlot ~/.julia/packages/PyPlot/rWSdf/src/PyPlot.jl:194
[12] plot(args::Vector{Union{Missing, Int64}})
@ PyPlot ~/.julia/packages/PyPlot/rWSdf/src/PyPlot.jl:190
[13] top-level scope
@ REPL[56]:1
For years I have wrapped my inputs to matplotlib in the helper function
m2n(x) = ismissing(x) ? NaN : x
It is awkward.
I propose then, that
missing values are simply (not) plotted, just like NaNs.
a brief warning catch and warn the user of missings in the data.
The proposed change will make PyPlot more compatible with Julia and Plots.jl, cf. JuliaPlots/Plots.jl#1706
I expect this will not break most cases, because missing is just a newer use pattern than NaN for missing data.
The text was updated successfully, but these errors were encountered:
Passing a value of
missing
, a first class type in Julia Base, to matplotlib should simply not the plotmissing
data. It should handlemissing
just like it presently does NaN.However, passing a
missing
to matplotlib results in long and unhelpful errors from PyPlot and matplotlib:For years I have wrapped my inputs to matplotlib in the helper function
It is awkward.
I propose then, that
missing
values are simply (not) plotted, just like NaNs.missing
s in the data.The proposed change will make PyPlot more compatible with Julia and Plots.jl, cf.
JuliaPlots/Plots.jl#1706
I expect this will not break most cases, because
missing
is just a newer use pattern than NaN for missing data.The text was updated successfully, but these errors were encountered: