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Our data: We know who was infected with which 
pathogen and sequence and when they were sampled
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Phylogenetics allows us to infer the shared ancestral 
history of the different pathogens
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Phylogenetic trees are formed by population processes 
and contain information about them

Constant Exponential Structured

present

past



Bayesian phylogenetics allows us to jointly infer the 
phylogenetic trees, evolutionary and Demographics 

models 

L. Du Plessis, T. Stadler “Getting to the root of epidemic spread with 
phylodynamic analysis of genomic data” Trends in Microbiology, 2015
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Bayesian phylogenetics allows us to jointly infer the 
phylogenetic trees, evolutionary and Demographics 

models 

Tree generating models

Model of sequence evolution

L. Du Plessis, T. Stadler “Getting to the root of epidemic spread with 
phylodynamic analysis of genomic data” Trends in Microbiology, 2015



Exploring the posterior probability distribution using 
Markov chain Monte Carlo (MCMC)

Slide from Paul Lewis
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Different processes to “mix” genetic 
materials from two parent lineages exist 



The combined genetic material may 
represent a network and not a tree



Genetic recombination processes lead to 
different parts of a genome coding for 
different histories

Tree 1 Tree 2 Joint history



Ways to deal with recombination
• Only use small parts of the genome that code for the same tree 

(e.g. only use one segment of influenza).

• Consider different parts of a genome to be independent (Bad if 
they are not).

• Just ignore recombination (bad if there is).

• Infer networks instead of trees. (Best case, but potentially slow)



Only use small parts of the genome that 
code for the same tree.



Population dynamics can be inferred from 
individual influenza segments

Bedford et al., 2015, Nature



Using only part of pathogen genomes 
reduces time resolution

Dudas et al., 2019, BMC Eco. Evo.



Consider different parts of a genome to 
be independent. (Sometimes correct)



Species tree inferences typically assume 
individual parts of the genome to be 
independent observations of a speciation 
process

present

past
difference 
between 

speciation and 
coalescence timeincomplete 

lineage sorting

gene 
flow

Species Tree
Gene Tree



Just ignore recombination. (Always 
wrong)



QUESTIONS?



To perform inference of phylogenetic networks, we have 
to introduce a new inference approach



• A way to explore the posterior probability 

To infer phylogenetic networks, we need the following



• A way to explore the posterior probability 

• The network likelihood         can be expressed as a product 
of tree likelihoods on the different nucleotide positions

To infer phylogenetic networks, we need the following



• A way to explore the posterior probability 

• The network likelihood         can be expressed as a product 
of tree likelihoods on the different nucleotide positions

• The network prior          requires a network generating model, such 
as a coalescent process

To infer phylogenetic networks, we need the following



To explore        of phylogenetic networks, 
we need to “operate” on the networks

Add a possion random 
number of empty edges to 
the network.

Perform joint operation on 
network and segment trees 
and divert changed seg-
ments up the network.

Remove all remaining 
empty edges in the 
network.

A) B) C) D)

Müller et al. (2020), PNAS



    can be expressed as the product of tree 
likelihoods

• The probability of observing each position in this alignment only 
requires knowing the tree at this position.

• Therefore    =   ∏!"#$!



models as a coalescent and 
reassortment/recombination/plasmid transfer process
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The genome of Influenza in organized in several 
separated segments

Mackay, I. M.. Influenza virus. (2018). 
doi:10.6084/m9.figshare.6817112.v1



Reassortment leads to a reshuffling of segments from 
different ancestral lineages
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Reassortment between subtypes can create 
progenitors with segments that originate from 

different parents

Smith, G., Vijaykrishna, D., Bahl, J. et al “Origins and evolutionary 
genomics of the 2009 swine-origin H1N1 influenza A epidemic” 
Nature, 2009



present

past

Three samples of a hypothetical influenza virus with three 
segments



present

past

Going back in time, two lineages can share a common 
ancestor at a rate inverse proportional to Ne



present

past

A lineage can reassort at a rate given by the reassortment rate 
with each segment having originated from one parental lineage



present

past

More lineage share a common ancestor



present

past

Until all lineage coalescence at the root of the 
phylogenetic network



• Coalescent events between any n coexisting network lineages happen at:

𝑛 𝑛 − 1
2𝑁𝑒

• Reassortment events that leave a genetic footprint on lineage i happen at 
a rate of:

𝜌(1 − 2 ∗ 0.5!!)

The coalescent with reassortment models a joint 
coalescent and reassortment process



• The reassortment rate is a function of:

• The probability that co-infection occurs

• The probability of reassortment in a co-infected individual

• The success/selection of reassortants

The reassortment rate is a backwards in time rate of 
observing reassortment events



Reassortment networks

The embedding of segment trees in those networks

The parameters of evolution of the different segments

Demographic parameters and rates of reassortment

Bayesian inference allows us to infer the posterior 
distributions of:
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Reassortment networks

The embedding of segment trees in those networks

The parameters of evolution of the different segments

Demographic parameters and rates of reassortment

Bayesian inference allows us to infer the posterior 
distributions of:



CoalRe allows inferring reassortment 
networks, reassortment rates etc. jointly

Müller et al. (2020), PNAS
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Correctly modelling the reassortment process 
impact precision and reduces bias

Müller et al. (2020), PNAS
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Explicitly modeling when and where reassortment events 
occurred allows us to investigate whether there are patterns

Müller et al. (2020), PNAS
69
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CoalRe to track the movement and evolution of orthomyxoviruses

Dudas et al. (2020), J Virol
70



Reassortment and population structure can be reconstructed 
jointly

71
Stolz et al. (2021), Mol. Biol. Evol.



The structured coalescent with reassortment can be used to 
reconstruct where and when reassortment occurred.

72
Stolz et al. (2021), Mol. Biol. Evol.
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Different parts of the genome of SARS-like viruses code for 
different ”trees”

74
Boni et al. (2020), Nat. Mic.



To switch to networks, we conceptually 
just replace the tree terms with networks



The complex recombination process can be simplified and 
modeled as a joint coalescence and recombination process.

Müller et al. (2022), Nat. Comm.
76



Recombination events can be inferred well, but getting actual 
posterior support values is hard
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Recombination events shaped the evolutionary history of SARS-
like viruses.

78
Müller et al. (2022), Nat. Comm.



Evidence for a few recombination events in the recent history of 
SARS-CoV-2 before entering the human population

79

ORF1bORF1a spike2020

1995

1970

1945

1920

Müller et al. (2022), Nat. Comm.



Recombination events shaped the evolutionary history of SARS-
like viruses.
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The analyzed SARS-like dataset contains about 300 
recombination events, meaning the average number of 

consecutive basepairs that code for the same tree is 100
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RmYN02 is the closest common ancestor to SARS-CoV-2 on 
most parts of the genome.
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Recombination rates vary with rates of adaptation across the 
genomes of seasonal coronaviruses
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models as a coalescent and 
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Ancestral recombination graphs for the 
coalescent with gene conversion can be 
inferred in BEAST2 using Bacter
• Allows to estimate tree based 

networks that have a base tree and 
edges that detach and re-attach 
directly to that base tree

• Requires the assumption that only a 
small part of the genome is subject to 
recombination

Vaughan et al. (2017), Genetics



Plasmids encode virulence and antibiotic resistance 
factors in Shigella

Torraca, Vincenzo, Kathryn Holt, and Serge Mostowy. "Shigella 
sonnei." Trends in microbiology 28.8 (2020): 696-697.



XDR Shigella is increasing in prevalence in the US

https://emergency.cdc.gov/han/2023/han00486.asp



Plasmids can move between different bacterial lineages 
through, for example, conjugation

Baker, K.S., Dallman, T.J., Field, N. et al. Horizontal antimicrobial 
resistance transfer drives epidemics of multiple Shigella species. Nat 
Commun



The transmission history of bacteria including co-infection 
can be described by a transmission network

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022
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We can reconstruct part of that transmission network 
from the chromosomal DNA

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022
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Discordance between the plasmid and chromosomal tree 
imply plasmids to have moved between lineages

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022
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That shared history of chromosome and plasmid can be 
denoted by a phylogenetic network

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022
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The transfer of plasmids between bacterial lineages can be 
inferred using phylogenetic networks
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The transfer of plasmids between bacterial lineages can 
be inferred using phylogenetic networks

Müller et al. (2023), BioRxiv



spA is transferred between lineages more often than 
other plasmids with unknown function (spB, spC)
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This is reflected in a higher rate of the spA moving 
between lineages
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The transfer of plasmids between bacterial lineages can 
be inferred using phylogenetic networks
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The transfer of plasmids between bacterial lineages can 
be inferred using phylogenetic networks

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022



Chromosome tree provides calibration points for plasmid 
tree

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022

Calibration Point



The evolutionary rates of plasmids can be estimated 
despite them not “measurably evolving” by themselves

N. F. Müller, Sebastián Duchêne, Deborah A. Williamson, Benjamin 
Howden, Danielle J Ingle “Tracking the horizontal transfer of plasmids 
in Shigella sonnei and Shigella flexneri using phylogenetics” BioRxiv, 
2022
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The ancestral history of pKSR100  
shows multiple jumps between 

bacterial lineages of S. sonnei and 
S. flexneri.

pKSR100 (in orange) confers 
resistance to azithromycin and jumped 
repeatedly between S. sonnei and S. 

flexneri 
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We can map these jumps 
of pKSR100 between 

species onto the plasmid 
tree and learn when these 

jumps occured

Müller et al. (2023), BioRxiv



Expansion of the number of bacterial lineages carrying 
pKSR100 over the last decade
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QUESTIONS?



Some reading material 
• Coalescent with recombination: https://doi.org/10.1016/0040-

5809(83)90013-8 
• Coalescent with gene conversion: 

https://www.genetics.org/content/155/1/451.short
• ARG’s for bacteria: https://www.genetics.org/content/205/2/857
• Coalescent with reassortment: 

https://www.pnas.org/content/early/2020/07/02/1918304117
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