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Our data: We know who was infected with which
pathogen and sequence and when they were sampled



Phylogenetics allows us to infer the shared ancestral
history of the different pathogens



Bayesian phylogenetics allows us to jointly infer the
phylogenetic trees, evolutionary and Demographics
models
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L. Du Plessis, T. Stadler “Getting to the root of epidemic spread with
phylodynamic analysis of genomic data” Trends in Microbiology, 2015



Bayesian phylogenetics allows us to jointly infer the
phylogenetic trees, evolutionary and Demographics
models

Tree generating models CE:) — r__[
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Bayesian phylogenetics allows us to jointly infer the
phylogenetic trees, evolutionary and Demographics

models
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phylodynamic analysis of genomic data” Trends in Microbiology, 2015
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° Site models describe the relative change across nucleotides
and positions in the alignment and consist of several parts.

« Substitution models describe how fast/slow the change from one to
another nucleotide happens compared to others

« Gamma rate heterogeneity + invariant site models describe how
faﬁt/slow some sites in an alignment change bases compared to
others

« Codon positions models allow for some codon positions to evolve
faster/slower than others



Substitution models describe how fast/slow the change from
one to another nucleotide happens compared to others
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Gamma rate heterogeneity + invariant site models describe

how fast/slow some sites in an alignment change bases
compared to others
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Substitution models allow to account for differences in
nucleotide substitution rates.

Rate Matrix  Equilibrium Base Frequencies
A—"-G

IM}C Th+ T+ T+ T =1

(slide from Sebastian Duchene)
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Substitution models allow to account for differences in
nucleotide substitution rates.

Rate Matrix  Equilibrium Base Frequencies

b
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(slide from Sebastian Duchene)
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Some site in the alignment might be more flexible and
therefore evolve less quickly.

CTAT-- AClccA CCCATCCAT—-.T
CTAAl-- AAICCACCCCATACAT-C.CT
CTATI-T ANAICCA CCCAT CAT- CT

ATATI T CALICCAL ————— CATACCT

AT%E T _F%JCCA CCCATCCATACLT

Medium Slow Fast

(slide from Sebastian Duchene)
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Proportion of invariable sites account for sites that do not
change (e.g., HKY+l).

1'F)inv

Proportion of sites

I:>inv

Rate (slide from Sebastian Duchene)



Gamma rate heterogeneity + invariant site models describe

how fast/slow some sites in an alignment change bases
compared to others
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Gamma rate heterogeneity models account for rate
differences across sites (e.g. HKY+G,).

alpha=0.5 alpha=100

Proportion of sites

(slide from Sebastian Duchene)



Gamma rate heterogeneity + invariant site models describe

how fast/slow some sites in an alignment change bases
compared to others
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Changes in the third
codon position are far
more likely to not affect
the amino acid

« Splitting up the alignment
into different codon positions
and allow each having its
own site model allows
accounting for these
differences
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https://www.genomenon.com/codon-chart/
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CTA (Leucine)

First position:
ATA (Isoleucine)
GTA (Valine)
TTA (Leucine)

Second position:

CCA (Proline)
CAA (Glutamine)
CGA (Arginine)

Third position:
CTC (Leucine)
CTG (Leucine)
CTT (Leucine)

Genetic Code

GENOMIC SEARCH ENGINE

Arg
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Sign up for Mastermind Basic Edition

http://bit.ly/mastermind-codon
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Codon positions models allow for some codon positions
to evolve faster/slower than others

Partitions (2 | Tip Dates Site Model Clock Model Priors MCMC

Name File Taxa Sites Data Type Site Model Clock Mo
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Practical considerations

» Everything affects everything in Bayesian phylogenetics. Wrong
evolutionary models lead to wrong trees, which leads to wrong
population parameters.

« Overparameterization is better than under-parameterization. In
doubt, use the more complex site model, such as a GTR+
model (Abadi et al., 2019, Nat. comm.)

* Never forget to account for rate heterogeneity (experience).
Also, the JC69 model is hardly ever appropriate.



The molecular clock



@ Using site models, we can get from alignments to
divergence trees

X
Altb/186D
A1b/94NAT/137F¢ x
A1b/197 %
Adb/133R
A1INISAIS5K
N

nextstrain.com



Sequences that are further apart in time are more
diverged

Phylogeny
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Molecular clocks bring us from divergence trees to time
trees
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: Evolutionary models can be used to estimate common
ancestor times
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@ Different organisms have vastly different rates of

evolution
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@ The time resolution is dependent on the size of the
genome and the rate of evolution

evolutionary rate (subs site lyear™1)
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What is my clock rate? (from Holmes et al. 2016

« Mutation rate (short term, faster): Error rate in replication.

« Substitution rate (long term, slower): Long term rate of
evolution.

- Evolutionary rate (=clock rate): Measured rate of change.

Result of mutation rate and population processes, such as
selection. Typically sits between the mutation and substitution

rate ()The notation in BEAST is confusing with regards to what is
what).



Rates of evolution can vary due to different hosts

Worobey et al. (2014), Nature

T seqol”



@ Rates of evolution can vary in the short term and long
term
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@ Mathematically clock models are functions that have
divergence as input and time as output

« Strict clock models assume that evolution happens equally
fast on each branch of a tree. Strict clocks are mostly used to
study pathogens over rather short times (a few years)

 Random clock models allow different branches of a
phylogenetic tree to have different rates (speed) of evolution.
These are more prevalent when analyzing datasets that were
sampled over longer time periods



Random clock models can be separated into two classes

* Local random clock models. Clock rates change on a few
branches in the tree only. Once they change, all the descendent
branches will inherit the same rate

* Uncorrelated clock models. Clock rates can vary on each
branch (completely uncorrelated). Each branch has a clock rate
that is considered a random draw from some distribution
(typically Exponential or lognormal).
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@ Where does the time information come from to inform the
molecular clock?

» Calibrations -> Knowing something about when two lineages
shared a common ancestor.

« Sampling through time of “measurably evolving pathogens”.

* Just “knowing” the rate, that is from the prior.



@ The time information should be in the same order of
magnitude as the evolutionary history
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@ Is there enough signal to estimate evolutionary rates? Tip

Randomization
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In the posterior probability, modelling the evolution of sequences feeds
into the tree likelihood.
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Some reading material

» Accounting for codon positions:
https://doi.org/10.1093/molbev/msj021

 QOverfitting site models is ok:
https://www.nature.com/articles/s41467-019-08822-w

 Posterior predictive simulations to evaluate clock signal:
https://academic.oup.com/mbe/article/32/11/2986/981260

* Time randomization to evaluate clock signal:
nttps://academic.oup.com/mbe/article/32/7/1895/1016979

« Rates of evolution in EBOV:
nttps://www.nature.com/articles/nature19790
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