diff --git a/src/manifolds/MetricManifold.jl b/src/manifolds/MetricManifold.jl index e7d484a9f3..8291f1e462 100644 --- a/src/manifolds/MetricManifold.jl +++ b/src/manifolds/MetricManifold.jl @@ -54,7 +54,7 @@ abstract type RiemannianMetric <: AbstractMetric end @doc raw""" change_gradient(M::AbstractManifold, G2::AbstractMetric, p, X) -Convert the gradint `X` at `p` on the[`AbstractManifold`](@ref) `M` from one metric to another. +Convert the gradient `X` at `p` on the[`AbstractManifold`](@ref) `M` from one metric to another. Assume that for a real-valued function ``f: \mathcal M \to ℝ`` the input `X` is the gradient or in other words the [Riesz representer](https://en.wikipedia.org/wiki/Riesz_representation_theorem#Riesz_representation_theorem) of the differential ``Df(p)``` with respect to the metric ``g_2`` i.e. @@ -81,7 +81,7 @@ the same basis of the tangent space, the equation reads ``` where `\cdot^{\mathrm{H}}`` denotes the conjugate transpose. -and we obtain `c(x) = (G_1\backslask G_2)^{\mathrm{H}}x ` +and we obtain ``c(X) = (G_1\backslash G_2)^{\mathrm{H}X`` # Examples @@ -93,7 +93,7 @@ Since the metric in ``T_p\mathbb S^2`` is the Euclidean metric from the embeddin Here, the default metric in `\mathcal P(3)` is the [`LinearAffineMetric`](@ref) and the transformation can be computed as ``pXp`` """ -change_tangent(::AbstractManifold, ::AbstractMetric, ::Any, ::Any) +change_gradient(::AbstractManifold, ::AbstractMetric, ::Any, ::Any) function change_tangent(M::AbstractManifold, G::AbstractMetric, p, X) if is_default_metric(M, G) @@ -109,11 +109,11 @@ function change_tangent(M::AbstractManifold, G::AbstractMetric, p, X) end function change_metric( - ::MetricManifold{<:M,<:G}, + ::MetricManifold{𝔽,M,G}, ::G, p, X, -) where {M<:AbstractManifold,G<:AbstractMetric} +) where {𝔽,M<:AbstractManifold{𝔽},G<:AbstractMetric} return X end