From 616db5d62ee6fdeb39e488c20644a879293c8c60 Mon Sep 17 00:00:00 2001 From: Ronny Bergmann Date: Sat, 11 Sep 2021 10:39:47 +0200 Subject: [PATCH] Fix a few typos in docs. --- src/manifolds/MetricManifold.jl | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/manifolds/MetricManifold.jl b/src/manifolds/MetricManifold.jl index 3a8ef7a72a..eeb82718d7 100644 --- a/src/manifolds/MetricManifold.jl +++ b/src/manifolds/MetricManifold.jl @@ -56,10 +56,10 @@ abstract type RiemannianMetric <: AbstractMetric end Convert the gradint `X` at `p` on the[`AbstractManifold`](@ref) `M` from one metric to another. -Assume that for a real-valued function ``f: \mathcal M \to \mathcal M`` we are given the Riesz representer of the differential with respect to the metric ``g_2`` i.e. +Assume that for a real-valued function ``f: \mathcal M \to ℝ`` we are given the Riesz representer of the differential with respect to the metric ``g_2`` i.e. ```math - g_2(X,Y) = Df(p)[Y] \quad \text{for all} Y ∈ T_p\mathcal M. + g_2(X,Y) = Df(p)[Y] \quad \text{for all } Y ∈ T_p\mathcal M. ``` In order to convert this into the gradient with respect to the (implicitly given) metric ``g_1`` of `M`, @@ -74,7 +74,7 @@ representations ``G_1`` and ``G_2`` and ``x,y`` are the local coordinates with r the same basis of the tangent space, the equation reads ```math - x^*G_2y = c(x)^*G_1 y \quad \text{for all} y \in ℝ^d, + x^*G_2y = c(x)^*G_1 y \quad \text{for all } y \in ℝ^d, ``` where `\cdot^*`` denotes the conjugate transpose. @@ -86,7 +86,7 @@ and we obtain `c(x) = (G_1\backslask G_2)^*x ` Since the metric in ``T_p\mathbb S^2`` is the Euclidean metric from the embedding restricted to ``T_p\mathbb S^2``, this just returns `X` - change_gradient(SymmetricPOsitiveDefinite(3), EuclideanMetric, p, X) + change_gradient(SymmetricPOsitiveDefinite(3), EuclideanMetric(), p, X) Here, the default metric in `\mathcal P(3)` is the [`LinearAffineMetric`](@ref) and the transformation can be computed as ``pXp`` """ @@ -119,10 +119,10 @@ end On the [`AbstractManifold`](@ref) `M` with implicitly given metric ``g_1`` and a second [`AbstractMetric`](@ref) ``g_2`` this method performs a change of metric in the -sense that it returns the tangent vector ``Z=BX`` such that the linear map ``B``fulfills +sense that it returns the tangent vector ``Z=BX`` such that the linear map ``B`` fulfills ````math -g_2(Y_1,Y_2) = g_1(BY_1,BY_2) \quad \text{for all} Y_1,\Y_2 ∈ T_p\mathcal M. +g_2(Y_1,Y_2) = g_1(BY_1,BY_2) \quad \text{for all } Y_1, Y_2 ∈ T_p\mathcal M. ```` holds.