From 1e9da054869cadf57c9624e0b9b100ac6a72b4c2 Mon Sep 17 00:00:00 2001 From: Ronny Bergmann Date: Sat, 20 Jan 2024 14:06:09 +0100 Subject: [PATCH] Fix doc strings. --- src/manifolds/SymplecticGrassmann.jl | 4 ++-- src/manifolds/SymplecticGrassmannStiefel.jl | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/manifolds/SymplecticGrassmann.jl b/src/manifolds/SymplecticGrassmann.jl index 80bb9c243a..51c864c265 100644 --- a/src/manifolds/SymplecticGrassmann.jl +++ b/src/manifolds/SymplecticGrassmann.jl @@ -81,8 +81,8 @@ is a point on the [`SymplecticStiefel`](@ref) manifold and ``X,Y \in \mathrm{Hor are horizontal tangent vectors. The formula reads according to Proposition Lemma 4.8 [BendokatZimmermann:2021](@cite). ```math -g^{\mathrm{SpGr}_p(X,Y) = \operatorname{tr}\bigl( - (p^{\mathrm{T}p)^{-1}X^{\mathrm{T}}(I_{2n} - pp^+)Y +g^{\mathrm{SpGr}}_p(X,Y) = \operatorname{tr}\bigl( + (p^{\mathrm{T}}p)^{-1}X^{\mathrm{T}}(I_{2n} - pp^+)Y \bigr), ``` where ``I_{2n}`` denotes the identity matrix and ``(⋅)^+`` the [`symplectic_inverse`](@ref). diff --git a/src/manifolds/SymplecticGrassmannStiefel.jl b/src/manifolds/SymplecticGrassmannStiefel.jl index f141ca31d9..83148b716b 100644 --- a/src/manifolds/SymplecticGrassmannStiefel.jl +++ b/src/manifolds/SymplecticGrassmannStiefel.jl @@ -91,8 +91,8 @@ Then the Riemannian gradient ``X = \operatorname{grad} f(p)`` is given by X = J_{2n}^THJ_{2k}p^{\mathrm{T}}p - J_{2n}^TpJ_{2k}H^{\mathrm{T}}p, ``` -where ``J_{2n}`` denotes the [`SymplecticElement`)(@ref), and -``H = (I_{2n} - pp^+)J_{2n}^{\mathrm{T}YJ``. +where ``J_{2n}`` denotes the [`SymplecticElement`](@ref), and +``H = (I_{2n} - pp^+)J_{2n}^{\mathrm{T}}YJ``. """ function riemannian_gradient(::SymplecticGrassmann, p, Y; kwargs...) n, k = get_parameter(M.size)