-
Notifications
You must be signed in to change notification settings - Fork 56
/
Symmetric.jl
248 lines (206 loc) · 7.22 KB
/
Symmetric.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
@doc raw"""
SymmetricMatrices{n,𝔽} <: AbstractDecoratorManifold{𝔽}
The [`AbstractManifold`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/types.html#ManifoldsBase.AbstractManifold) $ \operatorname{Sym}(n)$ consisting of the real- or complex-valued
symmetric matrices of size $n × n$, i.e. the set
````math
\operatorname{Sym}(n) = \bigl\{p ∈ 𝔽^{n × n}\ \big|\ p^{\mathrm{H}} = p \bigr\},
````
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transpose,
and the field $𝔽 ∈ \{ ℝ, ℂ\}$.
Though it is slightly redundant, usually the matrices are stored as $n × n$ arrays.
Note that in this representation, the complex valued case has to have a real-valued diagonal,
which is also reflected in the [`manifold_dimension`](@ref manifold_dimension(::SymmetricMatrices{N,𝔽}) where {N,𝔽}).
# Constructor
SymmetricMatrices(n::Int, field::AbstractNumbers=ℝ)
Generate the manifold of $n × n$ symmetric matrices.
"""
struct SymmetricMatrices{n,𝔽} <: AbstractDecoratorManifold{𝔽} end
function SymmetricMatrices(n::Int, field::AbstractNumbers=ℝ)
return SymmetricMatrices{n,field}()
end
function active_traits(f, ::SymmetricMatrices, args...)
return merge_traits(IsEmbeddedSubmanifold())
end
function allocation_promotion_function(
M::SymmetricMatrices{<:Any,ℂ},
::typeof(get_vector),
args::Tuple,
)
return complex
end
@doc raw"""
check_point(M::SymmetricMatrices{n,𝔽}, p; kwargs...)
Check whether `p` is a valid manifold point on the [`SymmetricMatrices`](@ref) `M`, i.e.
whether `p` is a symmetric matrix of size `(n,n)` with values from the corresponding
[`AbstractNumbers`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/types.html#number-system) `𝔽`.
The tolerance for the symmetry of `p` can be set using `kwargs...`.
"""
function check_point(M::SymmetricMatrices{n,𝔽}, p; kwargs...) where {n,𝔽}
if !isapprox(norm(p - p'), 0.0; kwargs...)
return DomainError(
norm(p - p'),
"The point $(p) does not lie on $M, since it is not symmetric.",
)
end
return nothing
end
"""
check_vector(M::SymmetricMatrices{n,𝔽}, p, X; kwargs... )
Check whether `X` is a tangent vector to manifold point `p` on the
[`SymmetricMatrices`](@ref) `M`, i.e. `X` has to be a symmetric matrix of size `(n,n)`
and its values have to be from the correct [`AbstractNumbers`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/types.html#number-system).
The tolerance for the symmetry of `X` can be set using `kwargs...`.
"""
function check_vector(M::SymmetricMatrices{n,𝔽}, p, X; kwargs...) where {n,𝔽}
if !isapprox(norm(X - X'), 0.0; kwargs...)
return DomainError(
norm(X - X'),
"The vector $(X) is not a tangent vector to $(p) on $(M), since it is not symmetric.",
)
end
return nothing
end
embed(::SymmetricMatrices, p) = p
embed(::SymmetricMatrices, p, X) = X
function get_basis(M::SymmetricMatrices, p, B::DiagonalizingOrthonormalBasis)
Ξ = get_basis(M, p, DefaultOrthonormalBasis()).data
κ = zeros(real(eltype(p)), manifold_dimension(M))
return CachedBasis(B, κ, Ξ)
end
function get_coordinates_orthonormal!(
M::SymmetricMatrices{N,ℝ},
Y,
p,
X,
::RealNumbers,
) where {N}
dim = manifold_dimension(M)
@assert size(Y) == (dim,)
@assert size(X) == (N, N)
@assert dim == div(N * (N + 1), 2)
k = 1
for i in 1:N, j in i:N
scale = ifelse(i == j, 1, sqrt(2))
@inbounds Y[k] = X[i, j] * scale
k += 1
end
return Y
end
function get_coordinates_orthonormal!(
M::SymmetricMatrices{N,ℂ},
Y,
p,
X,
::ComplexNumbers,
) where {N}
dim = manifold_dimension(M)
@assert size(Y) == (dim,)
@assert size(X) == (N, N)
@assert dim == N * N
k = 1
for i in 1:N, j in i:N
scale = ifelse(i == j, 1, sqrt(2))
@inbounds Y[k] = real(X[i, j]) * scale
k += 1
if i != j # imag zero on the diagonal
@inbounds Y[k] = imag(X[i, j]) * scale
k += 1
end
end
return Y
end
get_embedding(::SymmetricMatrices{N,𝔽}) where {N,𝔽} = Euclidean(N, N; field=𝔽)
function get_vector_orthonormal!(
M::SymmetricMatrices{N,ℝ},
Y,
p,
X,
::RealNumbers,
) where {N}
dim = manifold_dimension(M)
@assert size(X) == (dim,)
@assert size(Y) == (N, N)
k = 1
for i in 1:N, j in i:N
scale = ifelse(i == j, 1, 1 / sqrt(2))
@inbounds Y[i, j] = X[k] * scale
@inbounds Y[j, i] = X[k] * scale
k += 1
end
return Y
end
function get_vector_orthonormal!(
M::SymmetricMatrices{N,ℂ},
Y,
p,
X,
::ComplexNumbers,
) where {N}
dim = manifold_dimension(M)
@assert size(X) == (dim,)
@assert size(Y) == (N, N)
k = 1
for i in 1:N, j in i:N
scale = ifelse(i == j, 1, 1 / sqrt(2))
@inbounds Y[i, j] = (X[k] + (i == j ? 0 : X[k + 1] * 1im)) * scale
@inbounds Y[j, i] = Y[i, j]
k += (i == j ? 1 : 2)
end
return Y
end
## unify within bases later.
"""
is_flat(::SymmetricMatrices)
Return true. [`SymmetricMatrices`](@ref) is a flat manifold.
"""
is_flat(M::SymmetricMatrices) = true
@doc raw"""
manifold_dimension(M::SymmetricMatrices{n,𝔽})
Return the dimension of the [`SymmetricMatrices`](@ref) matrix `M` over the number system
`𝔽`, i.e.
````math
\begin{aligned}
\dim \mathrm{Sym}(n,ℝ) &= \frac{n(n+1)}{2},\\
\dim \mathrm{Sym}(n,ℂ) &= 2\frac{n(n+1)}{2} - n = n^2,
\end{aligned}
````
where the last $-n$ is due to the zero imaginary part for Hermitian matrices
"""
function manifold_dimension(::SymmetricMatrices{N,𝔽}) where {N,𝔽}
return div(N * (N + 1), 2) * real_dimension(𝔽) - (𝔽 === ℂ ? N : 0)
end
@doc raw"""
project(M::SymmetricMatrices, p)
Projects `p` from the embedding onto the [`SymmetricMatrices`](@ref) `M`, i.e.
````math
\operatorname{proj}_{\operatorname{Sym}(n)}(p) = \frac{1}{2} \bigl( p + p^{\mathrm{H}} \bigr),
````
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
"""
project(::SymmetricMatrices, ::Any)
function project!(M::SymmetricMatrices, q, p)
q .= (p .+ p') ./ 2
return q
end
@doc raw"""
project(M::SymmetricMatrices, p, X)
Project the matrix `X` onto the tangent space at `p` on the [`SymmetricMatrices`](@ref) `M`,
````math
\operatorname{proj}_p(X) = \frac{1}{2} \bigl( X + X^{\mathrm{H}} \bigr),
````
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
"""
project(::SymmetricMatrices, ::Any, ::Any)
project!(M::SymmetricMatrices, Y, p, X) = (Y .= (X .+ transpose(X)) ./ 2)
function Base.show(io::IO, ::SymmetricMatrices{n,F}) where {n,F}
return print(io, "SymmetricMatrices($(n), $(F))")
end
@doc raw"""
Y = Weingarten(M::SymmetricMatrices, p, X, V)
Weingarten!(M::SymmetricMatrices, Y, p, X, V)
Compute the Weingarten map ``\mathcal W_p`` at `p` on the [`SymmetricMatrices`](@ref) `M` with respect to the
tangent vector ``X \in T_p\mathcal M`` and the normal vector ``V \in N_p\mathcal M``.
Since this a flat space by itself, the result is always the zero tangent vector.
"""
Weingarten(::SymmetricMatrices, p, X, V)
Weingarten!(::SymmetricMatrices, Y, p, X, V) = fill!(Y, 0)