-
Notifications
You must be signed in to change notification settings - Fork 56
/
ProjectiveSpace.jl
546 lines (459 loc) · 20.6 KB
/
ProjectiveSpace.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
"""
AbstractProjectiveSpace{𝔽} <: AbstractDecoratorManifold{𝔽}
An abstract type to represent a projective space over `𝔽` that is represented isometrically
in the embedding.
"""
abstract type AbstractProjectiveSpace{𝔽} <: AbstractDecoratorManifold{𝔽} end
@doc raw"""
ProjectiveSpace{n,𝔽} <: AbstractProjectiveSpace{𝔽}
The projective space $𝔽ℙ^n$ is the manifold of all lines in $𝔽^{n+1}$.
The default representation is in the embedding, i.e. as unit norm vectors in
$𝔽^{n+1}$:
````math
𝔽ℙ^n := \bigl\{ [p] ⊂ 𝔽^{n+1} \ \big|\ \lVert p \rVert = 1, λ ∈ 𝔽, |λ| = 1, p ∼ p λ \bigr\},
````
where $[p]$ is an equivalence class of points $p$, and $∼$ indicates equivalence.
For example, the real projective space $ℝℙ^n$ is represented as the unit sphere $𝕊^n$, where
antipodal points are considered equivalent.
The tangent space at point $p$ is given by
````math
T_p 𝔽ℙ^{n} := \bigl\{ X ∈ 𝔽^{n+1}\ \big|\ ⟨p,X⟩ = 0 \bigr \},
````
where $⟨⋅,⋅⟩$ denotes the inner product in the embedding $𝔽^{n+1}$.
When $𝔽 = ℍ$, this implementation of $ℍℙ^n$ is the right-quaternionic projective
space.
# Constructor
ProjectiveSpace(n[, field=ℝ])
Generate the projective space $𝔽ℙ^{n} ⊂ 𝔽^{n+1}$, defaulting to the real projective space
$ℝℙ^n$, where `field` can also be used to generate the complex- and right-quaternionic
projective spaces.
"""
struct ProjectiveSpace{N,𝔽} <: AbstractProjectiveSpace{𝔽} end
ProjectiveSpace(n::Int, field::AbstractNumbers=ℝ) = ProjectiveSpace{n,field}()
function active_traits(f, ::AbstractProjectiveSpace, args...)
return merge_traits(IsIsometricEmbeddedManifold())
end
@doc raw"""
ArrayProjectiveSpace{T<:Tuple,𝔽} <: AbstractProjectiveSpace{𝔽}
The projective space $𝔽ℙ^{n₁,n₂,…,nᵢ}$ is the manifold of all lines in $𝔽^{n₁,n₂,…,nᵢ}$.
The default representation is in the embedding, i.e. as unit (Frobenius) norm matrices in
$𝔽^{n₁,n₂,…,nᵢ}$:
````math
𝔽ℙ^{n_1, n_2, …, n_i} := \bigl\{ [p] ⊂ 𝔽^{n_1, n_2, …, n_i} \ \big|\ \lVert p \rVert_{\mathrm{F}} = 1, λ ∈ 𝔽, |λ| = 1, p ∼ p λ \bigr\}.
````
where $[p]$ is an equivalence class of points $p$, $\sim$ indicates equivalence, and
$\lVert ⋅ \rVert_{\mathrm{F}}$ is the Frobenius norm.
Note that unlike [`ProjectiveSpace`](@ref), the argument for `ArrayProjectiveSpace`
is given by the size of the embedding.
This means that [`ProjectiveSpace(2)`](@ref) and `ArrayProjectiveSpace(3)` are the same
manifold.
Additionally, `ArrayProjectiveSpace(n,1;field=𝔽)` and [`Grassmann(n,1;field=𝔽)`](@ref) are
the same.
The tangent space at point $p$ is given by
````math
T_p 𝔽ℙ^{n_1, n_2, …, n_i} := \bigl\{ X ∈ 𝔽^{n_1, n_2, …, n_i}\ |\ ⟨p,X⟩_{\mathrm{F}} = 0 \bigr \},
````
where $⟨⋅,⋅⟩_{\mathrm{F}}$ denotes the (Frobenius) inner product in the embedding
$𝔽^{n_1, n_2, …, n_i}$.
# Constructor
ArrayProjectiveSpace(n₁,n₂,...,nᵢ; field=ℝ)
Generate the projective space $𝔽ℙ^{n_1, n_2, …, n_i}$, defaulting to the real projective
space, where `field` can also be used to generate the complex- and right-quaternionic
projective spaces.
"""
struct ArrayProjectiveSpace{N,𝔽} <: AbstractProjectiveSpace{𝔽} where {N<:Tuple} end
function ArrayProjectiveSpace(n::Vararg{Int,I}; field::AbstractNumbers=ℝ) where {I}
return ArrayProjectiveSpace{Tuple{n...},field}()
end
function allocation_promotion_function(::AbstractProjectiveSpace{ℂ}, f, args::Tuple)
return complex
end
@doc raw"""
check_point(M::AbstractProjectiveSpace, p; kwargs...)
Check whether `p` is a valid point on the [`AbstractProjectiveSpace`](@ref) `M`, i.e.
that it has the same size as elements of the embedding and has unit Frobenius norm.
The tolerance for the norm check can be set using the `kwargs...`.
"""
function check_point(M::AbstractProjectiveSpace, p; kwargs...)
if !isapprox(norm(p), 1; kwargs...)
return DomainError(
norm(p),
"The point $(p) does not lie on the $(M) since its norm is not 1.",
)
end
return nothing
end
@doc raw"""
check_vector(M::AbstractProjectiveSpace, p, X; kwargs... )
Check whether `X` is a tangent vector in the tangent space of `p` on the
[`AbstractProjectiveSpace`](@ref) `M`, i.e. that `X` has the same size as elements of the
tangent space of the embedding and that the Frobenius inner product
$⟨p, X⟩_{\mathrm{F}} = 0$.
"""
function check_vector(M::AbstractProjectiveSpace, p, X; kwargs...)
if !isapprox(dot(p, X), 0; kwargs...)
return DomainError(
dot(p, X),
"The vector $(X) is not a tangent vector to $(p) on $(M), since it is not" *
" orthogonal in the embedding.",
)
end
return nothing
end
function decorated_manifold(M::AbstractProjectiveSpace{𝔽}) where {𝔽}
return Euclidean(representation_size(M)...; field=𝔽)
end
get_embedding(M::AbstractProjectiveSpace) = decorated_manifold(M)
embed(::AbstractProjectiveSpace, p) = p
embed(::AbstractProjectiveSpace, p, X) = X
@doc raw"""
distance(M::AbstractProjectiveSpace, p, q)
Compute the Riemannian distance on [`AbstractProjectiveSpace`](@ref) `M`$=𝔽ℙ^n$ between
points `p` and `q`, i.e.
````math
d_{𝔽ℙ^n}(p, q) = \arccos\bigl| ⟨p, q⟩_{\mathrm{F}} \bigr|.
````
Note that this definition is similar to that of the [`AbstractSphere`](@ref).
However, the absolute value ensures that all equivalent `p` and `q` have the same pairwise
distance.
"""
function distance(::AbstractProjectiveSpace, p, q)
z = dot(p, q)
cosθ = abs(z)
T = float(real(Base.promote_eltype(p, q)))
# abs and relative error of acos is less than sqrt(eps(T))
cosθ < 1 - sqrt(eps(T)) / 8 && return acos(cosθ)
# improved accuracy for q close to p or -p
λ = sign(z)
return 2 * abs(atan(norm(p .* λ .- q), norm(p .* λ .+ q)))
end
function exp!(M::AbstractProjectiveSpace, q, p, X)
θ = norm(M, p, X)
q .= cos(θ) .* p .+ usinc(θ) .* X
return q
end
function get_basis(::ProjectiveSpace{n,ℝ}, p, B::DiagonalizingOrthonormalBasis{ℝ}) where {n}
return get_basis(Sphere{n,ℝ}(), p, B)
end
@doc raw"""
get_coordinates(M::AbstractProjectiveSpace, p, X, B::DefaultOrthonormalBasis{ℝ})
Represent the tangent vector $X$ at point $p$ from the [`AbstractProjectiveSpace`](@ref)
$M = 𝔽ℙ^n$ in an orthonormal basis by unitarily transforming the hyperplane containing $X$,
whose normal is $p$, to the hyperplane whose normal is the $x$-axis.
Given $q = p \overline{λ} + x$, where
$λ = \frac{⟨x, p⟩_{\mathrm{F}}}{|⟨x, p⟩_{\mathrm{F}}|}$, $⟨⋅, ⋅⟩_{\mathrm{F}}$ denotes the
Frobenius inner product, and $\overline{⋅}$ denotes complex or quaternionic conjugation, the
formula for $Y$ is
````math
\begin{pmatrix}0 \\ Y\end{pmatrix} = \left(X - q\frac{2 ⟨q, X⟩_{\mathrm{F}}}{⟨q, q⟩_{\mathrm{F}}}\right)\overline{λ}.
````
"""
get_coordinates(::AbstractProjectiveSpace{ℝ}, p, X, ::DefaultOrthonormalBasis)
function get_coordinates_orthonormal!(
M::AbstractProjectiveSpace{𝔽},
Y,
p,
X,
::RealNumbers,
) where {𝔽}
n = div(manifold_dimension(M), real_dimension(𝔽))
z = p[1]
cosθ = abs(z)
λ = nzsign(z, cosθ)
pend, Xend = view(p, 2:(n + 1)), view(X, 2:(n + 1))
factor = λ' * X[1] / (1 + cosθ)
Y .= (Xend .- pend .* factor) .* λ'
return Y
end
@doc raw"""
get_vector(M::AbstractProjectiveSpace, p, X, B::DefaultOrthonormalBasis{ℝ})
Convert a one-dimensional vector of coefficients $X$ in the basis `B` of the tangent space
at $p$ on the [`AbstractProjectiveSpace`](@ref) $M=𝔽ℙ^n$ to a tangent vector $Y$ at $p$ by
unitarily transforming the hyperplane containing $X$, whose normal is the $x$-axis, to the
hyperplane whose normal is $p$.
Given $q = p \overline{λ} + x$, where
$λ = \frac{⟨x, p⟩_{\mathrm{F}}}{|⟨x, p⟩_{\mathrm{F}}|}$, $⟨⋅, ⋅⟩_{\mathrm{F}}$ denotes the
Frobenius inner product, and $\overline{⋅}$ denotes complex or quaternionic conjugation, the
formula for $Y$ is
````math
Y = \left(X - q\frac{2 \left\langle q, \begin{pmatrix}0 \\ X\end{pmatrix}\right\rangle_{\mathrm{F}}}{⟨q, q⟩_{\mathrm{F}}}\right) λ.
````
"""
get_vector(::AbstractProjectiveSpace, p, X, ::DefaultOrthonormalBasis{ℝ})
function get_vector_orthonormal!(
M::AbstractProjectiveSpace{𝔽},
Y,
p,
X,
::RealNumbers,
) where {𝔽}
n = div(manifold_dimension(M), real_dimension(𝔽))
z = p[1]
cosθ = abs(z)
λ = nzsign(z, cosθ)
pend = view(p, 2:(n + 1))
pX = dot(pend, X)
Y[1] = -λ * pX * λ
Y[2:(n + 1)] .= (X .- pend .* (pX / (1 + cosθ))) .* λ
return Y
end
injectivity_radius(::AbstractProjectiveSpace) = π / 2
injectivity_radius(::AbstractProjectiveSpace, p) = π / 2
injectivity_radius(::AbstractProjectiveSpace, ::AbstractRetractionMethod) = π / 2
injectivity_radius(::AbstractProjectiveSpace, p, ::AbstractRetractionMethod) = π / 2
@doc raw"""
inverse_retract(M::AbstractProjectiveSpace, p, q, method::ProjectionInverseRetraction)
inverse_retract(M::AbstractProjectiveSpace, p, q, method::PolarInverseRetraction)
inverse_retract(M::AbstractProjectiveSpace, p, q, method::QRInverseRetraction)
Compute the equivalent inverse retraction [`ProjectionInverseRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.ProjectionInverseRetraction),
[`PolarInverseRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.PolarInverseRetraction), and [`QRInverseRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.QRInverseRetraction) on the
[`AbstractProjectiveSpace`](@ref) manifold `M`$=𝔽ℙ^n$, i.e.
````math
\operatorname{retr}_p^{-1} q = q \frac{1}{⟨p, q⟩_{\mathrm{F}}} - p,
````
where $⟨⋅, ⋅⟩_{\mathrm{F}}$ is the Frobenius inner product.
Note that this inverse retraction is equivalent to the three corresponding inverse
retractions on [`Grassmann(n+1,1,𝔽)`](@ref), where the three inverse retractions in this
case coincide.
For $ℝℙ^n$, it is the same as the `ProjectionInverseRetraction` on the real
[`Sphere`](@ref).
"""
inverse_retract(
::AbstractProjectiveSpace,
p,
q,
::Union{ProjectionInverseRetraction,PolarInverseRetraction,QRInverseRetraction},
)
function inverse_retract_qr!(::AbstractProjectiveSpace, X, p, q)
X .= q ./ dot(p, q) .- p
return X
end
function inverse_retract_polar!(::AbstractProjectiveSpace, X, p, q)
X .= q ./ dot(p, q) .- p
return X
end
function inverse_retract_project!(::AbstractProjectiveSpace, X, p, q)
X .= q ./ dot(p, q) .- p
return X
end
@doc raw"""
isapprox(M::AbstractProjectiveSpace, p, q; kwargs...)
Check that points `p` and `q` on the [`AbstractProjectiveSpace`](@ref) `M`$=𝔽ℙ^n$ are
members of the same equivalence class, i.e. that $p = q λ$ for some element $λ ∈ 𝔽$ with
unit absolute value, that is, $|λ| = 1$.
This is equivalent to the Riemannian
[`distance`](@ref distance(::AbstractProjectiveSpace, p, q)) being 0.
"""
function _isapprox(::AbstractProjectiveSpace, p, q; kwargs...)
return isapprox(abs(dot(p, q)), 1; kwargs...)
end
"""
is_flat(M::AbstractProjectiveSpace)
Return true if [`AbstractProjectiveSpace`](@ref) is of dimension 1 and false otherwise.
"""
is_flat(M::AbstractProjectiveSpace) = manifold_dimension(M) == 1
@doc raw"""
log(M::AbstractProjectiveSpace, p, q)
Compute the logarithmic map on [`AbstractProjectiveSpace`](@ref) `M`$ = 𝔽ℙ^n$,
i.e. the tangent vector whose corresponding [`geodesic`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/functions.html#ManifoldsBase.geodesic-Tuple{AbstractManifold,%20Any,%20Any}) starting from `p`
reaches `q` after time 1 on `M`. The formula reads
````math
\log_p q = (q λ - \cos θ p) \frac{θ}{\sin θ},
````
where $θ = \arccos|⟨q, p⟩_{\mathrm{F}}|$ is the
[`distance`](@ref distance(::AbstractProjectiveSpace, p, q)) between $p$ and $q$,
$⟨⋅, ⋅⟩_{\mathrm{F}}$ is the Frobenius inner product, and
$λ = \frac{⟨q, p⟩_{\mathrm{F}}}{|⟨q, p⟩_{\mathrm{F}}|} ∈ 𝔽$ is the unit scalar that
minimizes $d_{𝔽^{n+1}}(p - q λ)$.
That is, $q λ$ is the member of the equivalence class $[q]$ that is closest to $p$ in the
embedding.
As a result, $\exp_p \circ \log_p \colon q ↦ q λ$.
The logarithmic maps for the real [`AbstractSphere`](@ref) $𝕊^n$ and the real projective
space $ℝℙ^n$ are identical when $p$ and $q$ are in the same hemisphere.
"""
log(::AbstractProjectiveSpace, p, q)
function log!(M::AbstractProjectiveSpace, X, p, q)
z = dot(q, p)
cosθ = abs(z)
λ = nzsign(z, cosθ)
X .= (q .* λ .- cosθ .* p) ./ usinc_from_cos(cosθ)
return project!(M, X, p, X)
end
@doc raw"""
manifold_dimension(M::AbstractProjectiveSpace{𝔽}) where {𝔽}
Return the real dimension of the [`AbstractProjectiveSpace`](@ref) `M`, respectively i.e.
the real dimension of the embedding minus the real dimension of the field `𝔽`.
"""
function manifold_dimension(M::AbstractProjectiveSpace{𝔽}) where {𝔽}
return manifold_dimension(get_embedding(M)) - real_dimension(𝔽)
end
@doc raw"""
manifold_volume(M::AbstractProjectiveSpace{ℝ})
Volume of the ``n``-dimensional [`AbstractProjectiveSpace`](@ref) `M`. The formula reads:
````math
\frac{\pi^{(n+1)/2}}{Γ((n+1)/2)},
````
where ``Γ`` denotes the [Gamma function](https://en.wikipedia.org/wiki/Gamma_function).
For details see [BoyaSudarshanTilma:2003](@cite).
"""
function manifold_volume(M::AbstractProjectiveSpace{ℝ})
n = manifold_dimension(M) + 1
return pi^(n / 2) / gamma(n / 2)
end
"""
mean(
M::AbstractProjectiveSpace,
x::AbstractVector,
[w::AbstractWeights,]
method = GeodesicInterpolationWithinRadius(π/4);
kwargs...,
)
Compute the Riemannian [`mean`](@ref mean(M::AbstractManifold, args...)) of points in vector `x`
using [`GeodesicInterpolationWithinRadius`](@ref).
"""
mean(::AbstractProjectiveSpace, ::Any...)
function default_estimation_method(::AbstractProjectiveSpace, ::typeof(mean))
return GeodesicInterpolationWithinRadius(π / 4)
end
function mid_point!(M::ProjectiveSpace, q, p1, p2)
z = dot(p2, p1)
λ = nzsign(z)
q .= p1 .+ p2 .* λ
project!(M, q, q)
return q
end
@doc raw"""
project(M::AbstractProjectiveSpace, p)
Orthogonally project the point `p` from the embedding onto the
[`AbstractProjectiveSpace`](@ref) `M`:
````math
\operatorname{proj}(p) = \frac{p}{\lVert p \rVert}_{\mathrm{F}},
````
where $\lVert ⋅ \rVert_{\mathrm{F}}$ denotes the Frobenius norm.
This is identical to projection onto the [`AbstractSphere`](@ref).
"""
project(::AbstractProjectiveSpace, ::Any)
project!(::AbstractProjectiveSpace, q, p) = (q .= p ./ norm(p))
@doc raw"""
project(M::AbstractProjectiveSpace, p, X)
Orthogonally project the point `X` onto the tangent space at `p` on the
[`AbstractProjectiveSpace`](@ref) `M`:
````math
\operatorname{proj}_p (X) = X - p⟨p, X⟩_{\mathrm{F}},
````
where $⟨⋅, ⋅⟩_{\mathrm{F}}$ denotes the Frobenius inner product.
For the real [`AbstractSphere`](@ref) and `AbstractProjectiveSpace`, this projection is the
same.
"""
project(::AbstractProjectiveSpace, ::Any, ::Any)
project!(::AbstractProjectiveSpace, Y, p, X) = (Y .= X .- p .* dot(p, X))
@doc raw"""
representation_size(M::AbstractProjectiveSpace)
Return the size points on the [`AbstractProjectiveSpace`](@ref) `M` are represented as,
i.e., the representation size of the embedding.
"""
@generated representation_size(::ArrayProjectiveSpace{N}) where {N} = size_to_tuple(N)
@generated representation_size(::ProjectiveSpace{N}) where {N} = (N + 1,)
@doc raw"""
retract(M::AbstractProjectiveSpace, p, X, method::ProjectionRetraction)
retract(M::AbstractProjectiveSpace, p, X, method::PolarRetraction)
retract(M::AbstractProjectiveSpace, p, X, method::QRRetraction)
Compute the equivalent retraction [`ProjectionRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.ProjectionRetraction), [`PolarRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.PolarRetraction),
and [`QRRetraction`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions.html#ManifoldsBase.QRRetraction) on the [`AbstractProjectiveSpace`](@ref) manifold `M`$=𝔽ℙ^n$,
i.e.
````math
\operatorname{retr}_p X = \operatorname{proj}_p(p + X).
````
Note that this retraction is equivalent to the three corresponding retractions on
[`Grassmann(n+1,1,𝔽)`](@ref), where in this case they coincide.
For $ℝℙ^n$, it is the same as the `ProjectionRetraction` on the real [`Sphere`](@ref).
"""
retract(
::AbstractProjectiveSpace,
p,
X,
::Union{ProjectionRetraction,PolarRetraction,QRRetraction},
)
function retract_polar!(M::AbstractProjectiveSpace, q, p, X, t::Number)
q .= p .+ t .* X
return project!(M, q, q)
end
function retract_project!(M::AbstractProjectiveSpace, q, p, X, t::Number)
q .= p .+ t .* X
return project!(M, q, q)
end
function retract_qr!(M::AbstractProjectiveSpace, q, p, X, t::Number)
q .= p .+ t .* X
return project!(M, q, q)
end
function Base.show(io::IO, ::ProjectiveSpace{n,𝔽}) where {n,𝔽}
return print(io, "ProjectiveSpace($(n), $(𝔽))")
end
function Base.show(io::IO, ::ArrayProjectiveSpace{N,𝔽}) where {N,𝔽}
return print(io, "ArrayProjectiveSpace($(join(N.parameters, ", ")); field = $(𝔽))")
end
"""
uniform_distribution(M::ProjectiveSpace{n,ℝ}, p) where {n}
Uniform distribution on given [`ProjectiveSpace`](@ref) `M`. Generated points will be of
similar type as `p`.
"""
function uniform_distribution(M::ProjectiveSpace{n,ℝ}, p) where {n}
d = Distributions.MvNormal(zero(p), 1.0)
return ProjectedPointDistribution(M, d, project!, p)
end
@doc raw"""
parallel_transport_to(M::AbstractProjectiveSpace, p, X, q)
Parallel transport a vector `X` from the tangent space at a point `p` on the
[`AbstractProjectiveSpace`](@ref) `M`$=𝔽ℙ^n$ to the tangent space at another point `q`.
This implementation proceeds by transporting $X$ to $T_{q λ} M$ using the same approach as
[`parallel_transport_direction`](@ref parallel_transport_direction(::AbstractProjectiveSpace, p, X, d)),
where $λ = \frac{⟨q, p⟩_{\mathrm{F}}}{|⟨q, p⟩_{\mathrm{F}}|} ∈ 𝔽$ is the unit scalar that
takes $q$ to the member $q λ$ of its equivalence class $[q]$ closest to $p$ in the
embedding.
It then maps the transported vector from $T_{q λ} M$ to $T_{q} M$.
The resulting transport to $T_{q} M$ is
````math
\mathcal{P}_{q ← p}(X) = \left(X - \left(p \frac{\sin θ}{θ} + d \frac{1 - \cos θ}{θ^2}\right) ⟨d, X⟩_p\right) \overline{λ},
````
where $d = \log_p q$ is the direction of the transport, $θ = \lVert d \rVert_p$ is the
[`distance`](@ref distance(::AbstractProjectiveSpace, p, q)) between $p$ and $q$, and
$\overline{⋅}$ denotes complex or quaternionic conjugation.
"""
parallel_transport_to(::AbstractProjectiveSpace, ::Any, ::Any, ::Any)
function parallel_transport_to!(::AbstractProjectiveSpace, Y, p, X, q)
z = dot(q, p)
λ = nzsign(z)
m = p .+ q .* λ # un-normalized midpoint
mnorm2 = real(dot(m, m))
factor = λ' * dot(q, X) * (2 / mnorm2) # λ' * dot(q, X) ≡ dot(q * λ, X)
# multiply by λ' to bring from T_{\exp_p(\log_p q)} M to T_q M
# this ensures that subsequent functions like `exp(M, q, Y)` do the right thing
Y .= (X .- m .* factor) .* λ'
return Y
end
function vector_transport_to_project!(M::AbstractProjectiveSpace, Y, p, X, q)
project!(M, Y, q, X)
return Y
end
@doc raw"""
parallel_transport_direction(M::AbstractProjectiveSpace, p, X, d)
Parallel transport a vector `X` from the tangent space at a point `p` on the
[`AbstractProjectiveSpace`](@ref) `M` along the [`geodesic`](https://juliamanifolds.github.io/ManifoldsBase.jl/stable/functions.html#ManifoldsBase.geodesic-Tuple{AbstractManifold,%20Any,%20Any}) in the direction
indicated by the tangent vector `d`, i.e.
````math
\mathcal{P}_{\exp_p (d) ← p}(X) = X - \left(p \frac{\sin θ}{θ} + d \frac{1 - \cos θ}{θ^2}\right) ⟨d, X⟩_p,
````
where $θ = \lVert d \rVert$, and $⟨⋅, ⋅⟩_p$ is the [`inner`](@ref) product at the point $p$.
For the real projective space, this is equivalent to the same vector transport on the real
[`AbstractSphere`](@ref).
"""
parallel_transport_direction(::AbstractProjectiveSpace, ::Any, ::Any, ::Any)
function parallel_transport_direction!(M::AbstractProjectiveSpace, Y, p, X, d)
θ = norm(M, p, d)
cosθ = cos(θ)
dX = inner(M, p, d, X)
α = usinc(θ) * dX
β = ifelse(iszero(θ), zero(cosθ), (1 - cosθ) / θ^2) * dX
Y .= X .- p .* α .- d .* β
return Y
end