diff --git a/src/eigen.jl b/src/eigen.jl index 14a36dd..739dba6 100644 --- a/src/eigen.jl +++ b/src/eigen.jl @@ -44,6 +44,10 @@ function _eigvals_toeplitz(T) return vals end +_eigvec_eltype(A::Union{SymTridiagonal, + Symmetric{<:Any,<:Tridiagonal}}) = float(eltype(A)) +_eigvec_eltype(A) = complex(float(eltype(A))) + _eigvec_prefactor(A, cm1, c1, m) = sqrt(complex(cm1/c1))^m _eigvec_prefactor(A::Union{SymTridiagonal, Symmetric{<:Any, <:Tridiagonal}}, cm1, c1, m) = oneunit(_eigvec_eltype(A)) @@ -54,9 +58,6 @@ end _eigvec_prefactors(A::Union{SymTridiagonal, Symmetric{<:Any, <:Tridiagonal}}, cm1, c1) = Fill(_eigvec_prefactor(A, cm1, c1, 1), size(A,1)) -_eigvec_eltype(A::SymTridiagonal) = float(eltype(A)) -_eigvec_eltype(A) = complex(float(eltype(A))) - @static if !isdefined(Base, :eachcol) eachcol(A) = (view(A,:,i) for i in axes(A,2)) end @@ -79,9 +80,9 @@ function _eigvecs_toeplitz(T) c1 = T[1,2] # superdiagonal prefactors = _eigvec_prefactors(T, cm1, c1) for q in axes(M,2) - qrev = n+1-q # match the default eigenvalue sorting for j in 1:cld(n,2) - M[j, q] = prefactors[j] * sinpi(j*qrev/(n+1)) + jphase = 2isodd(j) - 1 + M[j, q] = prefactors[j] * jphase * sinpi(j * q/(n+1)) end phase = iseven(n+q) ? 1 : -1 for j in cld(n,2)+1:n @@ -92,6 +93,48 @@ function _eigvecs_toeplitz(T) return M end +function _eigvecs_toeplitz(T::Union{SymTridiagonal, Symmetric{<:Any,<:Tridiagonal}}) + require_one_based_indexing(T) + n = checksquare(T) + M = Matrix{_eigvec_eltype(T)}(undef, n, n) + n == 0 && return M + n == 1 && return fill!(M, oneunit(eltype(M))) + for q in 1:cld(n,2) + for j in 1:q + jphase = 2isodd(j) - 1 + M[j, q] = jphase * sinpi(j * q/(n+1)) + end + end + for q in 1:cld(n,2) + for j in q+1:cld(n,2) + qphase = 2isodd(q) - 1 + jphase = 2isodd(j) - 1 + phase = qphase * jphase + M[j, q] = phase * M[q, j] + end + end + for q in 1:cld(n,2) + phase = iseven(n+q) ? 1 : -1 + for j in cld(n,2)+1:n + M[j, q] = phase * M[n+1-j,q] + end + end + for q in cld(n,2)+1:n + for j in 1:cld(n,2) + qphase = 2isodd(q) - 1 + jphase = 2isodd(j) - 1 + phase = qphase * jphase + M[j, q] = phase * M[q, j] + end + phase = iseven(n+q) ? 1 : -1 + for j in cld(n,2)+1:n + M[j, q] = phase * M[n+1-j,q] + end + end + _normalizecols!(M, T) + return M +end + function _eigvecs(A) n = size(A,1) if n <= 2 # repeated roots possible diff --git a/test/runtests.jl b/test/runtests.jl index 27ec70f..fd8e49d 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -584,7 +584,7 @@ end @testset "eigen" begin sortby = x -> (real(x), imag(x)) @testset "Tridiagonal Toeplitz" begin - _sizes = (1, 2, 6, 10) + _sizes = (1, 2, 5, 6, 10, 15) sizes = VERSION >= v"1.6" ? (0, _sizes...) : _sizes @testset for n in sizes @testset "Tridiagonal" begin