diff --git a/base/special/gamma.jl b/base/special/gamma.jl index 48f925885c428..c9208ddb4594b 100644 --- a/base/special/gamma.jl +++ b/base/special/gamma.jl @@ -1,4 +1,5 @@ # This file is a part of Julia. License is MIT: http://julialang.org/license +typealias ComplexOrReal{T} Union{T,Complex{T}} gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm), Float64, (Float64,), x), x) gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm), Float32, (Float32,), x), x) @@ -72,7 +73,8 @@ function lgamma(z::Complex{Float64}) else return Complex(NaN, NaN) end - elseif x > 7 || yabs > 7 # use the Stirling asymptotic series for sufficiently large x or |y| + elseif x > 7 || yabs > 7 + # use the Stirling asymptotic series for sufficiently large x or |y| return lgamma_asymptotic(z) elseif x < 0.1 # use reflection formula to transform to x > 0 if x == 0 && y == 0 # return Inf with the correct imaginary part for z == 0 @@ -106,7 +108,8 @@ function lgamma(z::Complex{Float64}) -2.2315475845357937976132853e-04,9.9457512781808533714662972e-05, -4.4926236738133141700224489e-05,2.0507212775670691553131246e-05) end - # use recurrence relation lgamma(z) = lgamma(z+1) - log(z) to shift to x > 7 for asymptotic series + # use recurrence relation lgamma(z) = lgamma(z+1) - log(z) + # to shift to x > 7 for asymptotic series shiftprod = Complex(x,yabs) x += 1 sb = false # == signbit(imag(shiftprod)) == signbit(yabs) @@ -147,7 +150,7 @@ gamma(z::Complex) = exp(lgamma(z)) Compute the digamma function of `x` (the logarithmic derivative of [`gamma(x)`](@ref)). """ -function digamma(z::Union{Float64,Complex{Float64}}) +function digamma(z::ComplexOrReal{Float64}) # Based on eq. (12), without looking at the accompanying source # code, of: K. S. Kölbig, "Programs for computing the logarithm of # the gamma function, and the digamma function, for complex @@ -181,7 +184,7 @@ end Compute the trigamma function of `x` (the logarithmic second derivative of [`gamma(x)`](@ref)). """ -function trigamma(z::Union{Float64,Complex{Float64}}) +function trigamma(z::ComplexOrReal{Float64}) # via the derivative of the Kölbig digamma formulation x = real(z) if x <= 0 # reflection formula @@ -341,10 +344,7 @@ this definition is equivalent to the Hurwitz zeta function ``\\sum_{k=0}^\\infty (k+z)^{-s}``. For ``z=1``, it yields the Riemann zeta function ``\\zeta(s)``. """ -zeta(s,z) - -function zeta(s::Union{Int,Float64,Complex{Float64}}, - z::Union{Float64,Complex{Float64}}) +function zeta(s::ComplexOrReal{Float64}, z::ComplexOrReal{Float64}) ζ = zero(promote_type(typeof(s), typeof(z))) (z == 1 || z == 0) && return oftype(ζ, zeta(s)) @@ -393,7 +393,8 @@ function zeta(s::Union{Int,Float64,Complex{Float64}}, minus_z = -z ζ += pow_oftype(ζ, minus_z, minus_s) # ν = 0 term if xf != z - ζ += pow_oftype(ζ, z - nx, minus_s) # real(z - nx) > 0, so use correct branch cut + ζ += pow_oftype(ζ, z - nx, minus_s) + # real(z - nx) > 0, so use correct branch cut # otherwise, if xf==z, then the definition skips this term end # do loop in different order, depending on the sign of s, @@ -446,10 +447,10 @@ end """ polygamma(m, x) -Compute the polygamma function of order `m` of argument `x` (the `(m+1)th` derivative of the +Compute the polygamma function of order `m` of argument `x` (the `(m+1)`th derivative of the logarithm of [`gamma(x)`](@ref)) """ -function polygamma(m::Integer, z::Union{Float64,Complex{Float64}}) +function polygamma(m::Integer, z::ComplexOrReal{Float64}) m == 0 && return digamma(z) m == 1 && return trigamma(z) @@ -467,7 +468,9 @@ function polygamma(m::Integer, z::Union{Float64,Complex{Float64}}) # constants. We throw a DomainError() since the definition is unclear. real(m) < 0 && throw(DomainError()) - s = m+1 + s = Float64(m+1) + # It is safe to convert any integer (including `BigInt`) to a float here + # as underflow occurs before precision issues. if real(z) <= 0 # reflection formula (zeta(s, 1-z) + signflip(m, cotderiv(m,z))) * (-gamma(s)) else @@ -475,40 +478,16 @@ function polygamma(m::Integer, z::Union{Float64,Complex{Float64}}) end end -# TODO: better way to do this -f64(x::Real) = Float64(x) -f64(z::Complex) = Complex128(z) -f32(x::Real) = Float32(x) -f32(z::Complex) = Complex64(z) -f16(x::Real) = Float16(x) -f16(z::Complex) = Complex32(z) -# If we really cared about single precision, we could make a faster -# Float32 version by truncating the Stirling series at a smaller cutoff. -for (f,T) in ((:f32,Float32),(:f16,Float16)) - @eval begin - zeta(s::Integer, z::Union{$T,Complex{$T}}) = $f(zeta(Int(s), f64(z))) - zeta(s::Union{Float64,Complex128}, z::Union{$T,Complex{$T}}) = zeta(s, f64(z)) - zeta(s::Number, z::Union{$T,Complex{$T}}) = $f(zeta(f64(s), f64(z))) - polygamma(m::Integer, z::Union{$T,Complex{$T}}) = $f(polygamma(Int(m), f64(z))) - digamma(z::Union{$T,Complex{$T}}) = $f(digamma(f64(z))) - trigamma(z::Union{$T,Complex{$T}}) = $f(trigamma(f64(z))) - end -end - -zeta(s::Integer, z::Number) = zeta(Int(s), f64(z)) -zeta(s::Number, z::Number) = zeta(f64(s), f64(z)) -for f in (:digamma, :trigamma) - @eval begin - $f(z::Number) = $f(f64(z)) - end -end -polygamma(m::Integer, z::Number) = polygamma(m, f64(z)) +""" + invdigamma(x) -# Inverse digamma function: -# Implementation of fixed point algorithm described in -# "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000 +Compute the inverse [`digamma`](:func:`digamma`) function of `x`. +""" function invdigamma(y::Float64) + # Implementation of fixed point algorithm described in + # "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000 + # Closed form initial estimates if y >= -2.22 x_old = exp(y) + 0.5 @@ -530,19 +509,13 @@ function invdigamma(y::Float64) return x_new end -invdigamma(x::Float32) = Float32(invdigamma(Float64(x))) -""" - invdigamma(x) - -Compute the inverse [`digamma`](@ref) function of `x`. -""" -invdigamma(x::Real) = invdigamma(Float64(x)) """ beta(x, y) -Euler integral of the first kind ``\\operatorname{B}(x,y) = \\Gamma(x)\\Gamma(y)/\\Gamma(x+y)``. +Euler integral of the first kind +``\\operatorname{B}(x,y) = \\Gamma(x)\\Gamma(y)/\\Gamma(x+y)``. """ function beta(x::Number, w::Number) yx, sx = lgamma_r(x) @@ -559,9 +532,16 @@ function ``\\log(|\\operatorname{B}(x,y)|)``. """ lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w) -# Riemann zeta function; algorithm is based on specializing the Hurwitz -# zeta function above for z==1. -function zeta(s::Union{Float64,Complex{Float64}}) + +""" + zeta(s) + +Riemann zeta function ``\\zeta(s)``. +""" +function zeta(s::ComplexOrReal{Float64}) + # Riemann zeta function; algorithm is based on specializing the Hurwitz + # zeta function above for z==1. + # blows up to ±Inf, but get correct sign of imaginary zero s == 1 && return NaN + zero(s) * imag(s) @@ -606,17 +586,14 @@ function zeta(s::Union{Float64,Complex{Float64}}) return ζ end -zeta(x::Integer) = zeta(Float64(x)) -zeta(x::Real) = oftype(float(x),zeta(Float64(x))) -""" - zeta(s) -Riemann zeta function ``\\zeta(s)``. """ -zeta(z::Complex) = oftype(float(z),zeta(Complex128(z))) + eta(x) -function eta(z::Union{Float64,Complex{Float64}}) +Dirichlet eta function ``\\eta(s) = \\sum^\\infty_{n=1}(-1)^{n-1}/n^{s}``. +""" +function eta(z::ComplexOrReal{Float64}) δz = 1 - z if abs(real(δz)) + abs(imag(δz)) < 7e-3 # Taylor expand around z==1 return 0.6931471805599453094172321214581765 * @@ -630,12 +607,78 @@ function eta(z::Union{Float64,Complex{Float64}}) return -zeta(z) * expm1(0.6931471805599453094172321214581765*δz) end end -eta(x::Integer) = eta(Float64(x)) -eta(x::Real) = oftype(float(x),eta(Float64(x))) -""" - eta(x) -Dirichlet eta function ``\\eta(s) = \\sum^\\infty_{n=1}(-1)^{n-1}/n^{s}``. -""" -eta(z::Complex) = oftype(float(z),eta(Complex128(z))) +# Converting types that we can convert, and not ones we can not +# Float16, and Float32 and their Complex equivalents can be converted to Float64 +# and results converted back. +# Otherwise, we need to make things use their own `float` converting methods +# and in those cases, we do not convert back either as we assume +# they also implement their own versions of the functions, with the correct return types. +# This is the case for BitIntegers (which become `Float64` when `float`ed). +# Otherwise, if they do not implement their version of the functions we +# manually throw a `MethodError`. +# This case occurs, when calling `float` on a type does not change its type, +# as it is already a `float`, and would have hit own method, if one had existed. + + +# If we really cared about single precision, we could make a faster +# Float32 version by truncating the Stirling series at a smaller cutoff. +# and if we really cared about half precision, we could make a faster +# Float16 version, by using a precomputed table look-up. + + +for T in (Float16, Float32, Float64) + @eval f64(x::Complex{$T}) = Complex128(x) + @eval f64(x::$T) = Float64(x) +end + + +for f in (:digamma, :trigamma, :zeta, :eta, :invdigamma) + @eval begin + function $f(z::Union{ComplexOrReal{Float16}, ComplexOrReal{Float32}}) + oftype(z, $f(f64(z))) + end + + function $f(z::Number) + x = float(z) + typeof(x) === typeof(z) && throw(MethodError($f, (z,))) + # There is nothing to fallback to, as this didn't change the argument types + $f(x) + end + end +end + + +for T1 in (Float16, Float32, Float64), T2 in (Float16, Float32, Float64) + (T1 == T2 == Float64) && continue # Avoid redefining base definition + + @eval function zeta(s::ComplexOrReal{$T1}, z::ComplexOrReal{$T2}) + ζ = zeta(f64(s), f64(z)) + convert(promote_type(typeof(s), typeof(z)), ζ) + end +end + + +function zeta(s::Number, z::Number) + t = float(s) + x = float(z) + if typeof(t) === typeof(s) && typeof(x) === typeof(z) + # There is nothing to fallback to, since this didn't work + throw(MethodError(zeta,(s,z))) + end + zeta(t, x) +end + + +function polygamma(m::Integer, z::Union{ComplexOrReal{Float16}, ComplexOrReal{Float32}}) + oftype(z, polygamma(m, f64(z))) +end + + +function polygamma(m::Integer, z::Number) + x = float(z) + typeof(x) === typeof(z) && throw(MethodError(polygamma, (m,z))) + # There is nothing to fallback to, since this didn't work + polygamma(m, x) +end diff --git a/test/math.jl b/test/math.jl index b83a2bdba876c..e12bf9f75d976 100644 --- a/test/math.jl +++ b/test/math.jl @@ -242,6 +242,8 @@ end @test hypot(T(Inf), T(x)) === T(Inf) @test hypot(T(Inf), T(NaN)) === T(Inf) @test isnan(hypot(T(x), T(NaN))) + + @test invoke(cbrt, Tuple{AbstractFloat}, -1.0) == -1.0 # no domain error is thrown for negative values end end end @@ -996,11 +998,37 @@ end end end -@test Base.Math.f32(complex(1.0,1.0)) == complex(Float32(1.),Float32(1.)) -@test Base.Math.f16(complex(1.0,1.0)) == complex(Float16(1.),Float16(1.)) - -# no domain error is thrown for negative values -@test invoke(cbrt, Tuple{AbstractFloat}, -1.0) == -1.0 +@testset "issue #17474" begin + @test Base.Math.f64(complex(1f0,1f0)) == complex(1.0, 1.0) + @test Base.Math.f64(1f0) == 1.0 + + @test typeof(eta(big"2")) == BigFloat + @test typeof(zeta(big"2")) == BigFloat + @test typeof(digamma(big"2")) == BigFloat + + @test_throws MethodError trigamma(big"2") + @test_throws MethodError trigamma(big"2.0") + @test_throws MethodError invdigamma(big"2") + @test_throws MethodError invdigamma(big"2.0") + + @test_throws MethodError eta(Complex(big"2")) + @test_throws MethodError eta(Complex(big"2.0")) + @test_throws MethodError zeta(Complex(big"2")) + @test_throws MethodError zeta(Complex(big"2.0")) + @test_throws MethodError zeta(1.0,big"2") + @test_throws MethodError zeta(1.0,big"2.0") + @test_throws MethodError zeta(big"1.0",2.0) + @test_throws MethodError zeta(big"1",2.0) + + + @test typeof(polygamma(3, 0x2)) == Float64 + @test typeof(polygamma(big"3", 2f0)) == Float32 + @test typeof(zeta(1, 2.0)) == Float64 + @test typeof(zeta(1, 2f0)) == Float64 # BitIntegers result in Float64 returns + @test typeof(zeta(2f0, complex(2f0,0f0))) == Complex{Float32} + @test typeof(zeta(complex(1,1), 2f0)) == Complex{Float64} + @test typeof(zeta(complex(1), 2.0)) == Complex{Float64} +end @testset "promote Float16 irrational #15359" begin @test typeof(Float16(.5) * pi) == Float16