diff --git a/base/statistics.jl b/base/statistics.jl index 5094e43762ad0..f5aaac4ce0da0 100644 --- a/base/statistics.jl +++ b/base/statistics.jl @@ -119,10 +119,10 @@ function var(iterable; corrected::Bool=true, mean=nothing) end end -centralizedabs2fun(m::Number) = x -> abs2(x - m) -centralize_sumabs2(A::AbstractArray, m::Number) = +centralizedabs2fun(m) = x -> abs2.(x - m) +centralize_sumabs2(A::AbstractArray, m) = mapreduce(centralizedabs2fun(m), +, A) -centralize_sumabs2(A::AbstractArray, m::Number, ifirst::Int, ilast::Int) = +centralize_sumabs2(A::AbstractArray, m, ifirst::Int, ilast::Int) = mapreduce_impl(centralizedabs2fun(m), +, A, ifirst, ilast) function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::AbstractArray) where S @@ -164,7 +164,7 @@ function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::Abstr return R end -function varm(A::AbstractArray{T}, m::Number; corrected::Bool=true) where T +function varm(A::AbstractArray{T}, m; corrected::Bool=true) where T n = _length(A) n == 0 && return typeof((abs2(zero(T)) + abs2(zero(T)))/2)(NaN) return centralize_sumabs2(A, m) / (n - Int(corrected)) @@ -219,12 +219,12 @@ The mean `mean` over the region may be provided. var(A::AbstractArray, region; corrected::Bool=true, mean=nothing) = varm(A, mean === nothing ? Base.mean(A, region) : mean, region; corrected=corrected) -varm(iterable, m::Number; corrected::Bool=true) = +varm(iterable, m; corrected::Bool=true) = var(iterable, corrected=corrected, mean=m) ## variances over ranges -function varm(v::AbstractRange, m::Number) +function varm(v::AbstractRange, m) f = first(v) - m s = step(v) l = length(v) @@ -255,11 +255,11 @@ function sqrt!(A::AbstractArray) A end -stdm(A::AbstractArray, m::Number; corrected::Bool=true) = - sqrt(varm(A, m; corrected=corrected)) +stdm(A::AbstractArray, m; corrected::Bool=true) = + sqrt.(varm(A, m; corrected=corrected)) std(A::AbstractArray; corrected::Bool=true, mean=nothing) = - sqrt(var(A; corrected=corrected, mean=mean)) + sqrt.(var(A; corrected=corrected, mean=mean)) """ std(v[, region]; corrected::Bool=true, mean=nothing) @@ -284,7 +284,7 @@ std(iterable; corrected::Bool=true, mean=nothing) = sqrt(var(iterable, corrected=corrected, mean=mean)) """ - stdm(v, m::Number; corrected::Bool=true) + stdm(v, m; corrected::Bool=true) Compute the sample standard deviation of a vector `v` with known mean `m`. If `corrected` is `true`, @@ -296,7 +296,7 @@ scaled with `n` if `corrected` is `false` where `n = length(x)`. applications requiring the handling of missing data, the `DataArrays.jl` package is recommended. """ -stdm(iterable, m::Number; corrected::Bool=true) = +stdm(iterable, m; corrected::Bool=true) = std(iterable, corrected=corrected, mean=m) @@ -321,7 +321,8 @@ _vmean(x::AbstractMatrix, vardim::Int) = mean(x, vardim) # core functions -unscaled_covzm(x::AbstractVector) = sum(abs2, x) +unscaled_covzm(x::AbstractVector{<:Number}) = sum(abs2, x) +unscaled_covzm(x::AbstractVector) = sum(t -> t*t', x) unscaled_covzm(x::AbstractMatrix, vardim::Int) = (vardim == 1 ? _conj(x'x) : x * x') unscaled_covzm(x::AbstractVector, y::AbstractVector) = dot(y, x) @@ -349,13 +350,14 @@ function covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1; correcte end # covm (with provided mean) - +## Use map(t -> t - xmean, x) instead of x .- xmean to allow for Vector{Vector} +## which can't be handled by broadcast covm(x::AbstractVector, xmean; corrected::Bool=true) = - covzm(x .- xmean; corrected=corrected) + covzm(map(t -> t - xmean, x); corrected=corrected) covm(x::AbstractMatrix, xmean, vardim::Int=1; corrected::Bool=true) = covzm(x .- xmean, vardim; corrected=corrected) covm(x::AbstractVector, xmean, y::AbstractVector, ymean; corrected::Bool=true) = - covzm(x .- xmean, y .- ymean; corrected=corrected) + covzm(map(t -> t - xmean, x), map(t -> t - ymean, y); corrected=corrected) covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1; corrected::Bool=true) = covzm(x .- xmean, y .- ymean, vardim; corrected=corrected) @@ -425,7 +427,7 @@ function cov2cor!(C::AbstractMatrix{T}, xsd::AbstractArray) where T end return C end -function cov2cor!(C::AbstractMatrix, xsd::Number, ysd::AbstractArray) +function cov2cor!(C::AbstractMatrix, xsd, ysd::AbstractArray) nx, ny = size(C) length(ysd) == ny || throw(DimensionMismatch("inconsistent dimensions")) for (j, y) in enumerate(ysd) # fixme (iter): here and in all `cov2cor!` we assume that `C` is efficiently indexed by integers @@ -435,7 +437,7 @@ function cov2cor!(C::AbstractMatrix, xsd::Number, ysd::AbstractArray) end return C end -function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::Number) +function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd) nx, ny = size(C) length(xsd) == nx || throw(DimensionMismatch("inconsistent dimensions")) for j in 1:ny @@ -475,7 +477,7 @@ corzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int=1) = corm(x::AbstractVector{T}, xmean) where {T} = one(real(T)) corm(x::AbstractMatrix, xmean, vardim::Int=1) = corzm(x .- xmean, vardim) -function corm(x::AbstractVector, mx::Number, y::AbstractVector, my::Number) +function corm(x::AbstractVector, mx, y::AbstractVector, my) n = length(x) length(y) == n || throw(DimensionMismatch("inconsistent lengths")) n > 0 || throw(ArgumentError("correlation only defined for non-empty vectors")) diff --git a/test/statistics.jl b/test/statistics.jl index 6d1f95297dd59..61744de658e2b 100644 --- a/test/statistics.jl +++ b/test/statistics.jl @@ -454,3 +454,10 @@ end @test isequal(mean(a01, 1) , fill(NaN, 1, 1)) @test isequal(mean(a10, 2) , fill(NaN, 1, 1)) end + +@testset "cov/var/std of Vector{Vector}" begin + x = [[2,4,6],[4,6,8]] + @test var(x) ≈ vec(var([x[1] x[2]], 2)) + @test std(x) ≈ vec(std([x[1] x[2]], 2)) + @test cov(x) ≈ cov([x[1] x[2]], 2) +end