diff --git a/base/inference.jl b/base/inference.jl index c65579288cdd1a..56336bd11f8788 100644 --- a/base/inference.jl +++ b/base/inference.jl @@ -34,10 +34,18 @@ typealias VarTable Array{Any,1} type VarState typ undef::Bool + function VarState(typ::ANY, undef::Bool) + if isa(typ, DataType) && isdefined(typ, :instance) + # replace singleton types with their equivalent Const object + typ = Const(typ.instance) + end + return new(typ, undef) + end end immutable Const val + Const(v::ANY) = new(v) end type InferenceState diff --git a/base/irrationals.jl b/base/irrationals.jl index 2ecf1f59dacaf9..590ec1e3e768d1 100644 --- a/base/irrationals.jl +++ b/base/irrationals.jl @@ -57,27 +57,44 @@ end x < big(y) end -<=(x::Irrational,y::AbstractFloat) = x < y -<=(x::AbstractFloat,y::Irrational) = x < y +<=(x::Irrational, y::AbstractFloat) = x < y +<=(x::AbstractFloat, y::Irrational) = x < y # Irrational vs Rational -@generated function <{T}(x::Irrational, y::Rational{T}) - bx = big(x()) - bx < 0 && T <: Unsigned && return true - rx = rationalize(T,bx,tol=0) - rx < bx ? :($rx < y) : :($rx <= y) +@pure function rationalize{T<:Integer}(::Type{T}, x::Irrational; tol::Real=0) + return rationalize(T, big(x), tol=tol) end -@generated function <{T}(x::Rational{T}, y::Irrational) - by = big(y()) - by < 0 && T <: Unsigned && return false - ry = rationalize(T,by,tol=0) - ry < by ? :(x <= $ry) : :(x < $ry) +@pure function rationalize{T<:Integer}(::Type{T}, x::Irrational) + return rationalize(T, big(x), tol=0) +end +@pure function lessrational{T<:Integer}(rx::Rational{T}, x::Irrational) + # an @pure version of `<` for determining if the rationalization of + # an irrational number required rounding up or down + return rx < big(x) +end +function <{T}(x::Irrational, y::Rational{T}) + T <: Unsigned && x < 0.0 && return true + rx = rationalize(T, x) + if lessrational(rx, x) + return rx < y + else + return rx <= y + end +end +function <{T}(x::Rational{T}, y::Irrational) + T <: Unsigned && y < 0.0 && return false + ry = rationalize(T, y) + if lessrational(ry, y) + return x <= ry + else + return x < ry + end end <(x::Irrational, y::Rational{BigInt}) = big(x) < y <(x::Rational{BigInt}, y::Irrational) = x < big(y) -<=(x::Irrational,y::Rational) = x < y -<=(x::Rational,y::Irrational) = x < y +<=(x::Irrational, y::Rational) = x < y +<=(x::Rational, y::Irrational) = x < y isfinite(::Irrational) = true