diff --git a/base/array.jl b/base/array.jl index 91e9f800f8cb47..b8ebcb909ec914 100644 --- a/base/array.jl +++ b/base/array.jl @@ -218,33 +218,6 @@ original. """ copy(a::T) where {T<:Array} = ccall(:jl_array_copy, Ref{T}, (Any,), a) -function reinterpret(::Type{T}, a::Array{S,1}) where T where S - nel = Int(div(length(a) * sizeof(S), sizeof(T))) - # TODO: maybe check that remainder is zero? - return reinterpret(T, a, (nel,)) -end - -function reinterpret(::Type{T}, a::Array{S}) where T where S - if sizeof(S) != sizeof(T) - throw(ArgumentError("result shape not specified")) - end - reinterpret(T, a, size(a)) -end - -function reinterpret(::Type{T}, a::Array{S}, dims::NTuple{N,Int}) where T where S where N - function throwbits(::Type{S}, ::Type{T}, ::Type{U}) where {S,T,U} - @_noinline_meta - throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(U) is not a bits type")) - end - isbits(T) || throwbits(S, T, T) - isbits(S) || throwbits(S, T, S) - nel = div(length(a) * sizeof(S), sizeof(T)) - if prod(dims) != nel - _throw_dmrsa(dims, nel) - end - ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims) -end - # reshaping to same # of dimensions function reshape(a::Array{T,N}, dims::NTuple{N,Int}) where T where N if prod(dims) != length(a) diff --git a/base/essentials.jl b/base/essentials.jl index 450058d81322c8..d58bdf5a9c87c9 100644 --- a/base/essentials.jl +++ b/base/essentials.jl @@ -321,20 +321,12 @@ unsafe_convert(::Type{P}, x::Ptr) where {P<:Ptr} = convert(P, x) reinterpret(type, A) Change the type-interpretation of a block of memory. -For arrays, this constructs an array with the same binary data as the given +For arrays, this constructs a view of the array with the same binary data as the given array, but with the specified element type. For example, `reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a [`Float32`](@ref). -!!! warning - - It is not allowed to `reinterpret` an array to an element type with a larger alignment then - the alignment of the array. For a normal `Array`, this is the alignment of its element type. - For a reinterpreted array, this is the alignment of the `Array` it was reinterpreted from. - For example, `reinterpret(UInt32, UInt8[0, 0, 0, 0])` is not allowed but - `reinterpret(UInt32, reinterpret(UInt8, Float32[1.0]))` is allowed. - # Examples ```jldoctest julia> reinterpret(Float32, UInt32(7)) diff --git a/base/io.jl b/base/io.jl index 4b3a74e30e2648..cfb65ff25fcb68 100644 --- a/base/io.jl +++ b/base/io.jl @@ -267,15 +267,16 @@ readlines(s=STDIN; chomp::Bool=true) = collect(eachline(s, chomp=chomp)) ## byte-order mark, ntoh & hton ## -let endian_boms = reinterpret(UInt8, UInt32[0x01020304]) +a = UInt32[0x01020304] +let endian_bom = unsafe_load(convert(Ptr{UInt8}, pointer(a))) global ntoh, hton, ltoh, htol - if endian_boms == UInt8[1:4;] + if endian_bom == 0x01 ntoh(x) = x hton(x) = x ltoh(x) = bswap(x) htol(x) = bswap(x) const global ENDIAN_BOM = 0x01020304 - elseif endian_boms == UInt8[4:-1:1;] + elseif endian_bom == 0x04 ntoh(x) = bswap(x) hton(x) = bswap(x) ltoh(x) = x diff --git a/base/linalg/factorization.jl b/base/linalg/factorization.jl index 9acaef101ccaac..6ab24cfc42fa99 100644 --- a/base/linalg/factorization.jl +++ b/base/linalg/factorization.jl @@ -56,9 +56,9 @@ Base.isequal(F::T, G::T) where {T<:Factorization} = all(f -> isequal(getfield(F, # With a real lhs and complex rhs with the same precision, we can reinterpret # the complex rhs as a real rhs with twice the number of columns function (\)(F::Factorization{T}, B::VecOrMat{Complex{T}}) where T<:BlasReal - c2r = reshape(transpose(reinterpret(T, B, (2, length(B)))), size(B, 1), 2*size(B, 2)) + c2r = reshape(transpose(reinterpret(T, reshape(B, (1, length(B))))), size(B, 1), 2*size(B, 2)) x = A_ldiv_B!(F, c2r) - return reinterpret(Complex{T}, transpose(reshape(x, div(length(x), 2), 2)), _ret_size(F, B)) + return reshape(collect(reinterpret(Complex{T}, transpose(reshape(x, div(length(x), 2), 2)))), _ret_size(F, B)) end for (f1, f2) in ((:\, :A_ldiv_B!), diff --git a/base/linalg/lq.jl b/base/linalg/lq.jl index b878468617cf8a..356b3e99b92288 100644 --- a/base/linalg/lq.jl +++ b/base/linalg/lq.jl @@ -267,10 +267,10 @@ end # With a real lhs and complex rhs with the same precision, we can reinterpret # the complex rhs as a real rhs with twice the number of columns function (\)(F::LQ{T}, B::VecOrMat{Complex{T}}) where T<:BlasReal - c2r = reshape(transpose(reinterpret(T, B, (2, length(B)))), size(B, 1), 2*size(B, 2)) + c2r = reshape(transpose(reinterpret(T, reshape(B, (1, length(B))))), size(B, 1), 2*size(B, 2)) x = A_ldiv_B!(F, c2r) - return reinterpret(Complex{T}, transpose(reshape(x, div(length(x), 2), 2)), - isa(B, AbstractVector) ? (size(F,2),) : (size(F,2), size(B,2))) + return reshape(collect(reinterpret(Complex{T}, transpose(reshape(x, div(length(x), 2), 2)))), + isa(B, AbstractVector) ? (size(F,2),) : (size(F,2), size(B,2))) end diff --git a/base/linalg/matmul.jl b/base/linalg/matmul.jl index 0ca518a58fb41d..88885be32dcf54 100644 --- a/base/linalg/matmul.jl +++ b/base/linalg/matmul.jl @@ -90,7 +90,7 @@ A_mul_B!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T}) where for elty in (Float32,Float64) @eval begin function A_mul_B!(y::StridedVector{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, x::StridedVector{$elty}) - Afl = reinterpret($elty,A,(2size(A,1),size(A,2))) + Afl = reinterpret($elty,A) yfl = reinterpret($elty,y) gemv!(yfl,'N',Afl,x) return y @@ -148,8 +148,8 @@ A_mul_B!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) wher for elty in (Float32,Float64) @eval begin function A_mul_B!(C::StridedMatrix{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, B::StridedVecOrMat{$elty}) - Afl = reinterpret($elty, A, (2size(A,1), size(A,2))) - Cfl = reinterpret($elty, C, (2size(C,1), size(C,2))) + Afl = reinterpret($elty, A) + Cfl = reinterpret($elty, C) gemm_wrapper!(Cfl, 'N', 'N', Afl, B) return C end @@ -190,8 +190,8 @@ A_mul_Bt!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) whe for elty in (Float32,Float64) @eval begin function A_mul_Bt!(C::StridedMatrix{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, B::StridedVecOrMat{$elty}) - Afl = reinterpret($elty, A, (2size(A,1), size(A,2))) - Cfl = reinterpret($elty, C, (2size(C,1), size(C,2))) + Afl = reinterpret($elty, A) + Cfl = reinterpret($elty, C) gemm_wrapper!(Cfl, 'N', 'T', Afl, B) return C end diff --git a/base/linalg/qr.jl b/base/linalg/qr.jl index 859ccd659bed97..0090880dbe0278 100644 --- a/base/linalg/qr.jl +++ b/base/linalg/qr.jl @@ -923,7 +923,7 @@ function (\)(A::Union{QR{T},QRCompactWY{T},QRPivoted{T}}, BIn::VecOrMat{Complex{ # |z2|z4| -> |y1|y2|y3|y4| -> |x2|y2| -> |x2|y2|x4|y4| # |x3|y3| # |x4|y4| - B = reshape(transpose(reinterpret(T, BIn, (2, length(BIn)))), size(BIn, 1), 2*size(BIn, 2)) + B = reshape(transpose(reinterpret(T, reshape(BIn, (1, length(BIn))))), size(BIn, 1), 2*size(BIn, 2)) X = A_ldiv_B!(A, _append_zeros(B, T, n)) @@ -931,7 +931,7 @@ function (\)(A::Union{QR{T},QRCompactWY{T},QRPivoted{T}}, BIn::VecOrMat{Complex{ # |z2|z4| <- |y1|y2|y3|y4| <- |x2|y2| <- |x2|y2|x4|y4| # |x3|y3| # |x4|y4| - XX = reinterpret(Complex{T}, transpose(reshape(X, div(length(X), 2), 2)), _ret_size(A, BIn)) + XX = reshape(collect(reinterpret(Complex{T}, transpose(reshape(X, div(length(X), 2), 2)))), _ret_size(A, BIn)) return _cut_B(XX, 1:n) end diff --git a/base/random/dSFMT.jl b/base/random/dSFMT.jl index 2061cc54f97412..d4ae974dbe9fc9 100644 --- a/base/random/dSFMT.jl +++ b/base/random/dSFMT.jl @@ -104,7 +104,8 @@ function dsfmt_jump(s::DSFMT_state, jp::AbstractString) val = s.val nval = length(val) index = val[nval - 1] - work = zeros(UInt64, JN32 >> 1) + work = zeros(Int32, JN32) + rwork = reinterpret(UInt64, work) dsfmt = Vector{UInt64}(nval >> 1) ccall(:memcpy, Ptr{Void}, (Ptr{UInt64}, Ptr{Int32}, Csize_t), dsfmt, val, (nval - 1) * sizeof(Int32)) @@ -113,17 +114,17 @@ function dsfmt_jump(s::DSFMT_state, jp::AbstractString) for c in jp bits = parse(UInt8,c,16) for j in 1:4 - (bits & 0x01) != 0x00 && dsfmt_jump_add!(work, dsfmt) + (bits & 0x01) != 0x00 && dsfmt_jump_add!(rwork, dsfmt) bits = bits >> 0x01 dsfmt_jump_next_state!(dsfmt) end end - work[end] = index - return DSFMT_state(reinterpret(Int32, work)) + rwork[end] = index + return DSFMT_state(work) end -function dsfmt_jump_add!(dest::Vector{UInt64}, src::Vector{UInt64}) +function dsfmt_jump_add!(dest::AbstractVector{UInt64}, src::Vector{UInt64}) dp = dest[end] >> 1 sp = src[end] >> 1 diff = ((sp - dp + N) % N) diff --git a/base/reinterpretarray.jl b/base/reinterpretarray.jl new file mode 100644 index 00000000000000..5a5a524f1e810a --- /dev/null +++ b/base/reinterpretarray.jl @@ -0,0 +1,127 @@ +""" +Gives a reinterpreted view (of element type T) of the underlying array (of element type S). +If the size of `T` differs from the size of `S`, the array will be compressed/expanded in +the first dimension. +""" +struct ReinterpretArray{T,N,S,A<:AbstractArray{S, N}} <: AbstractArray{T, N} + parent::A + function reinterpret(::Type{T}, a::A) where {T,N,S,A<:AbstractArray{S, N}} + function throwbits(::Type{S}, ::Type{T}, ::Type{U}) where {S,T,U} + @_noinline_meta + throw(ArgumentError("cannot reinterpret `$(S)` `$(T)`, type `$(U)` is not a bits type")) + end + function throwsize0(::Type{S}, ::Type{T}) + @_noinline_meta + throw(ArgumentError("cannot reinterpret a zero-dimensional `$(S)` array to `$(T)` which is of a different size")) + end + function thrownonint(::Type{S}, ::Type{T}, dim) + @_noinline_meta + throw(ArgumentError(""" + cannot reinterpret an `$(S)` array to `$(T)` whose first dimension has size `$(dim)`. + The resulting array would have non-integral first dimension. + """)) + end + isbits(T) || throwbits(S, T, T) + isbits(S) || throwbits(S, T, S) + (N != 0 || sizeof(T) == sizeof(S)) || throwsize0(S, T) + if N != 0 && sizeof(S) != sizeof(T) + dim = size(a)[1] + rem(dim*sizeof(S),sizeof(T)) == 0 || thrownonint(S, T, dim) + end + new{T, N, S, A}(a) + end +end + +parent(a::ReinterpretArray) = a.parent + +eltype(a::ReinterpretArray{T}) where {T} = T +function size(a::ReinterpretArray{T,N,S} where {N}) where {T,S} + psize = size(a.parent) + size1 = div(psize[1]*sizeof(S), sizeof(T)) + tuple(size1, tail(psize)...) +end + +unsafe_convert(::Type{Ptr{T}}, a::ReinterpretArray{T,N,S} where N) where {T,S} = Ptr{T}(unsafe_convert(Ptr{S},a.parent)) + +@inline @propagate_inbounds getindex(a::ReinterpretArray{T,0}) where {T} = reinterpret(T, a.parent[]) +@inline @propagate_inbounds getindex(a::ReinterpretArray) = a[1] + +@inline @propagate_inbounds function getindex(a::ReinterpretArray{T,N,S}, inds::Vararg{Int, N}) where {T,N,S} + if sizeof(T) == sizeof(S) + return reinterpret(T, a.parent[inds...]) + else + ind_start, sidx = divrem((inds[1]-1)*sizeof(T), sizeof(S)) + t = Ref{T}() + s = Ref{S}() + @gc_preserve t s begin + tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t)) + sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s)) + i = 1 + nbytes_copied = 0 + # This is a bit complicated to deal with partial elements + # at both the start and the end. LLVM will fold as appropriate, + # once it knows the data layout + while nbytes_copied < sizeof(T) + s[] = a.parent[ind_start + i, tail(inds)...] + while nbytes_copied < sizeof(T) && sidx < sizeof(S) + unsafe_store!(tptr, unsafe_load(sptr, sidx + 1), nbytes_copied + 1) + sidx += 1 + nbytes_copied += 1 + end + sidx = 0 + i += 1 + end + end + return t[] + end +end + +@inline @propagate_inbounds setindex!(a::ReinterpretArray{T,0,S} where T, v) where {S} = (a.parent[] = reinterpret(S, v)) +@inline @propagate_inbounds setindex!(a::ReinterpretArray, v) = (a[1] = v) + +@inline @propagate_inbounds function setindex!(a::ReinterpretArray{T,N,S}, v, inds::Vararg{Int, N}) where {T,N,S} + v = convert(T, v)::T + if sizeof(T) == sizeof(S) + return setindex!(a.parent, reinterpret(S, v), inds...) + else + ind_start, sidx = divrem((inds[1]-1)*sizeof(T), sizeof(S)) + t = Ref{T}(v) + s = Ref{S}() + @gc_preserve t s begin + tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t)) + sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s)) + nbytes_copied = 0 + i = 1 + @inline function copy_element() + while nbytes_copied < sizeof(T) && sidx < sizeof(S) + unsafe_store!(sptr, unsafe_load(tptr, nbytes_copied + 1), sidx + 1) + sidx += 1 + nbytes_copied += 1 + end + end + # Deal with any partial elements at the start. We'll have to copy in the + # element from the original array and overwrite the relevant parts + if sidx != 0 + s[] = a.parent[ind_start + i, tail(inds)...] + copy_element() + a.parent[ind_start + i, tail(inds)...] = s[] + i += 1 + sidx = 0 + end + # Deal with the main body of elements + while nbytes_copied < sizeof(T) && (sizeof(T) - nbytes_copied) > sizeof(S) + copy_element() + a.parent[ind_start + i, tail(inds)...] = s[] + i += 1 + sidx = 0 + end + # Deal with trailing partial elements + if nbytes_copied < sizeof(T) + s[] = a.parent[ind_start + i, tail(inds)...] + copy_element() + a.parent[ind_start + i, tail(inds)...] = s[] + end + end + end + return a +end diff --git a/base/show.jl b/base/show.jl index ce9f3eb17dff47..65c91412ebd7b1 100644 --- a/base/show.jl +++ b/base/show.jl @@ -1888,6 +1888,12 @@ function showarg(io::IO, r::ReshapedArray, toplevel) toplevel && print(io, " with eltype ", eltype(r)) end +function showarg(io::IO, r::ReinterpretArray{T}, toplevel) where {T} + print(io, "reinterpret($T, ") + showarg(io, parent(r), false) + print(io, ')') +end + # n-dimensional arrays function show_nd(io::IO, a::AbstractArray, print_matrix, label_slices) limit::Bool = get(io, :limit, false) diff --git a/base/sparse/abstractsparse.jl b/base/sparse/abstractsparse.jl index e17d3be97dbcbb..ca73c3b3166b25 100644 --- a/base/sparse/abstractsparse.jl +++ b/base/sparse/abstractsparse.jl @@ -2,7 +2,7 @@ abstract type AbstractSparseArray{Tv,Ti,N} <: AbstractArray{Tv,N} end -const AbstractSparseVector{Tv,Ti} = AbstractSparseArray{Tv,Ti,1} +const AbstractSparseVector{Tv,Ti} = Union{AbstractSparseArray{Tv,Ti,1}, Base.ReinterpretArray{Tv,1,T,<:AbstractSparseArray{T,Ti,1}} where T} const AbstractSparseMatrix{Tv,Ti} = AbstractSparseArray{Tv,Ti,2} """ @@ -19,5 +19,21 @@ issparse(S::LowerTriangular{<:Any,<:AbstractSparseMatrix}) = true issparse(S::LinAlg.UnitLowerTriangular{<:Any,<:AbstractSparseMatrix}) = true issparse(S::UpperTriangular{<:Any,<:AbstractSparseMatrix}) = true issparse(S::LinAlg.UnitUpperTriangular{<:Any,<:AbstractSparseMatrix}) = true +issparse(S::Base.ReinterpretArray) = issparse(S.parent) indtype(S::AbstractSparseArray{<:Any,Ti}) where {Ti} = Ti + +nonzeros(A::Base.ReinterpretArray{T}) where {T} = reinterpret(T, nonzeros(A.parent)) +function nonzeroinds(A::Base.ReinterpretArray{T,N,S} where {N}) where {T,S} + if sizeof(T) == sizeof(S) + return nonzeroinds(A.parent) + elseif sizeof(T) > sizeof(S) + unique(map(nonzeroinds(A.parent)) do ind + div(ind, div(sizeof(T), sizeof(S))) + end) + else + map(nonzeroinds(A.parent)) do ind + ind * div(sizeof(S), sizeof(T)) + end + end +end \ No newline at end of file diff --git a/base/sparse/sparsematrix.jl b/base/sparse/sparsematrix.jl index 09255dacdaefae..098081eb15dbfd 100644 --- a/base/sparse/sparsematrix.jl +++ b/base/sparse/sparsematrix.jl @@ -212,17 +212,6 @@ end ## Reinterpret and Reshape -function reinterpret(::Type{T}, a::SparseMatrixCSC{Tv}) where {T,Tv} - if sizeof(T) != sizeof(Tv) - throw(ArgumentError("SparseMatrixCSC reinterpret is only supported for element types of the same size")) - end - mA, nA = size(a) - colptr = copy(a.colptr) - rowval = copy(a.rowval) - nzval = reinterpret(T, a.nzval) - return SparseMatrixCSC(mA, nA, colptr, rowval, nzval) -end - function sparse_compute_reshaped_colptr_and_rowval(colptrS::Vector{Ti}, rowvalS::Vector{Ti}, mS::Int, nS::Int, colptrA::Vector{Ti}, rowvalA::Vector{Ti}, mA::Int, nA::Int) where Ti @@ -257,25 +246,6 @@ function sparse_compute_reshaped_colptr_and_rowval(colptrS::Vector{Ti}, rowvalS: end end -function reinterpret(::Type{T}, a::SparseMatrixCSC{Tv,Ti}, dims::NTuple{N,Int}) where {T,Tv,Ti,N} - if sizeof(T) != sizeof(Tv) - throw(ArgumentError("SparseMatrixCSC reinterpret is only supported for element types of the same size")) - end - if prod(dims) != length(a) - throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))")) - end - mS,nS = dims - mA,nA = size(a) - numnz = nnz(a) - colptr = Vector{Ti}(nS+1) - rowval = similar(a.rowval) - nzval = reinterpret(T, a.nzval) - - sparse_compute_reshaped_colptr_and_rowval(colptr, rowval, mS, nS, a.colptr, a.rowval, mA, nA) - - return SparseMatrixCSC(mS, nS, colptr, rowval, nzval) -end - function copy(ra::ReshapedArray{<:Any,2,<:SparseMatrixCSC}) mS,nS = size(ra) a = parent(ra) diff --git a/base/sparse/sparsevector.jl b/base/sparse/sparsevector.jl index ddaf2ef9ebf547..a8b77b8fd7a2e2 100644 --- a/base/sparse/sparsevector.jl +++ b/base/sparse/sparsevector.jl @@ -14,7 +14,7 @@ import Base.LinAlg: promote_to_array_type, promote_to_arrays_ Vector type for storing sparse vectors. """ -struct SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti} +struct SparseVector{Tv,Ti<:Integer} <: AbstractSparseArray{Tv,Ti,1} n::Int # Length of the sparse vector nzind::Vector{Ti} # Indices of stored values nzval::Vector{Tv} # Stored values, typically nonzeros @@ -856,12 +856,6 @@ vec(x::AbstractSparseVector) = x copy(x::AbstractSparseVector) = SparseVector(length(x), copy(nonzeroinds(x)), copy(nonzeros(x))) -function reinterpret(::Type{T}, x::AbstractSparseVector{Tv}) where {T,Tv} - sizeof(T) == sizeof(Tv) || - throw(ArgumentError("reinterpret of sparse vectors only supports element types of the same size.")) - SparseVector(length(x), copy(nonzeroinds(x)), reinterpret(T, nonzeros(x))) -end - float(x::AbstractSparseVector{<:AbstractFloat}) = x float(x::AbstractSparseVector) = SparseVector(length(x), copy(nonzeroinds(x)), float(nonzeros(x))) diff --git a/base/sparse/spqr.jl b/base/sparse/spqr.jl index d7527120277602..e1bf8119ec1333 100644 --- a/base/sparse/spqr.jl +++ b/base/sparse/spqr.jl @@ -341,14 +341,14 @@ function (\)(F::QRSparse{Float64}, B::VecOrMat{Complex{Float64}}) # |z2|z4| -> |y1|y2|y3|y4| -> |x2|y2| -> |x2|y2|x4|y4| # |x3|y3| # |x4|y4| - c2r = reshape(transpose(reinterpret(Float64, B, (2, length(B)))), size(B, 1), 2*size(B, 2)) + c2r = reshape(transpose(reinterpret(Float64, reshape(B, (1, length(B))))), size(B, 1), 2*size(B, 2)) x = F\c2r # |z1|z3| reinterpret |x1|x2|x3|x4| transpose |x1|y1| reshape |x1|y1|x3|y3| # |z2|z4| <- |y1|y2|y3|y4| <- |x2|y2| <- |x2|y2|x4|y4| # |x3|y3| # |x4|y4| - return reinterpret(Complex{Float64}, transpose(reshape(x, (length(x) >> 1), 2)), _ret_size(F, B)) + return collect(reshape(reinterpret(Complex{Float64}, transpose(reshape(x, (length(x) >> 1), 2))), _ret_size(F, B))) end function _ldiv_basic(F::QRSparse, B::StridedVecOrMat) diff --git a/base/sysimg.jl b/base/sysimg.jl index 7609ab098fad2e..15307bee62fffa 100644 --- a/base/sysimg.jl +++ b/base/sysimg.jl @@ -121,6 +121,7 @@ include("indices.jl") include("array.jl") include("abstractarray.jl") include("subarray.jl") +include("reinterpretarray.jl") # Array convenience converting constructors Array{T}(m::Integer) where {T} = Array{T,1}(Int(m)) @@ -182,15 +183,16 @@ using .Iterators: Flatten, product # for generators # Definition of StridedArray StridedReshapedArray{T,N,A<:Union{DenseArray,FastContiguousSubArray}} = ReshapedArray{T,N,A} +StridedReinterpretArray{T,N,A<:Union{DenseArray,FastContiguousSubArray}} = ReinterpretArray{T,N,S,A} where S StridedArray{T,N,A<:Union{DenseArray,StridedReshapedArray}, I<:Tuple{Vararg{Union{RangeIndex, AbstractCartesianIndex}}}} = - Union{DenseArray{T,N}, SubArray{T,N,A,I}, StridedReshapedArray{T,N}} + Union{DenseArray{T,N}, SubArray{T,N,A,I}, StridedReshapedArray{T,N}, StridedReinterpretArray{T,N,A}} StridedVector{T,A<:Union{DenseArray,StridedReshapedArray}, I<:Tuple{Vararg{Union{RangeIndex, AbstractCartesianIndex}}}} = - Union{DenseArray{T,1}, SubArray{T,1,A,I}, StridedReshapedArray{T,1}} + Union{DenseArray{T,1}, SubArray{T,1,A,I}, StridedReshapedArray{T,1}, StridedReinterpretArray{T,1,A}} StridedMatrix{T,A<:Union{DenseArray,StridedReshapedArray}, I<:Tuple{Vararg{Union{RangeIndex, AbstractCartesianIndex}}}} = - Union{DenseArray{T,2}, SubArray{T,2,A,I}, StridedReshapedArray{T,2}} + Union{DenseArray{T,2}, SubArray{T,2,A,I}, StridedReshapedArray{T,2}, StridedReinterpretArray{T,2,A}} StridedVecOrMat{T} = Union{StridedVector{T}, StridedMatrix{T}} # For OS specific stuff diff --git a/src/array.c b/src/array.c index 0810ab9348958e..e519415a6cca0c 100644 --- a/src/array.c +++ b/src/array.c @@ -180,6 +180,7 @@ JL_DLLEXPORT jl_array_t *jl_reshape_array(jl_value_t *atype, jl_array_t *data, size_t ndims = jl_nfields(_dims); assert(is_ntuple_long(_dims)); size_t *dims = (size_t*)_dims; + assert(jl_types_equal(jl_tparam0(jl_typeof(data)), jl_tparam0(atype))); int ndimwords = jl_array_ndimwords(ndims); int tsz = JL_ARRAY_ALIGN(sizeof(jl_array_t) + ndimwords * sizeof(size_t) + sizeof(void*), JL_SMALL_BYTE_ALIGNMENT); diff --git a/test/arrayops.jl b/test/arrayops.jl index 79dd9f788a62ba..be0a3ecbb141ee 100644 --- a/test/arrayops.jl +++ b/test/arrayops.jl @@ -68,19 +68,15 @@ using Main.TestHelpers.OAs @test a[1,2,1,1,2] == 20 @test a[1,1,2,2,1] == 30 - @test_throws ArgumentError reinterpret(Int8, a) - b = reshape(a, (32,)) @test b[1] == 10 @test b[19] == 20 @test b[13] == 30 @test_throws DimensionMismatch reshape(b,(5,7)) @test_throws DimensionMismatch reshape(b,(35,)) - @test_throws DimensionMismatch reinterpret(Int, b, (35,)) - @test_throws ArgumentError reinterpret(Any, b, (32,)) - @test_throws DimensionMismatch reinterpret(Complex128, b, (32,)) + @test_throws ArgumentError reinterpret(Any, b) c = ["hello", "world"] - @test_throws ArgumentError reinterpret(Float32, c, (2,)) + @test_throws ArgumentError reinterpret(Float32, c) a = Vector(ones(5)) @test_throws ArgumentError resize!(a, -2) @@ -209,7 +205,7 @@ end @test b[5] == -4 @test b[6] == -3 @test b[7] == -2 - b = reinterpret(Int, a, (3,4)) + b = reinterpret(Int, a) b[1] = -1 @test vec(b) == vec(a) diff --git a/test/choosetests.jl b/test/choosetests.jl index c769fe9d44dca2..aa42294befb4bc 100644 --- a/test/choosetests.jl +++ b/test/choosetests.jl @@ -41,7 +41,8 @@ function choosetests(choices = []) "enums", "cmdlineargs", "i18n", "workspace", "libdl", "int", "checked", "intset", "floatfuncs", "compile", "distributed", "inline", "boundscheck", "error", "ambiguous", "cartesian", "asmvariant", "osutils", - "channels", "iostream", "specificity", "codegen", "codevalidation" + "channels", "iostream", "specificity", "codegen", "codevalidation", + "reinterpretarray" ] profile_skipped = false if startswith(string(Sys.ARCH), "arm") diff --git a/test/core.jl b/test/core.jl index d5701879c43aeb..bb2c2a9ddcff77 100644 --- a/test/core.jl +++ b/test/core.jl @@ -3953,9 +3953,6 @@ f = unsafe_wrap(Array, pointer(d), length(d)) @test !check_nul(f) f = unsafe_wrap(Array, ccall(:malloc, Ptr{UInt8}, (Csize_t,), 10), 10, true) @test !check_nul(f) -g = reinterpret(UInt8, UInt16[0x1, 0x2]) -@test !check_nul(g) -@test check_nul(copy(g)) end # Copy of `#undef` @@ -5007,23 +5004,6 @@ end g21719(f, goal; tol = 1e-6) = T21719(f, tol, goal) @test isa(g21719(identity, 1.0; tol=0.1), T21719) -# reinterpret alignment requirement -let arr8 = zeros(UInt8, 16), - arr64 = zeros(UInt64, 2), - arr64_8 = reinterpret(UInt8, arr64), - arr64_i - - # Not allowed to reinterpret arrays allocated as UInt8 array to a Int32 array - res = @test_throws ArgumentError reinterpret(Int32, arr8) - @test res.value.msg == "reinterpret from alignment 1 bytes to alignment 4 bytes not allowed" - # OK to reinterpret arrays allocated as UInt64 array to a Int64 array even though - # it is passed as a UInt8 array - arr64_i = reinterpret(Int64, arr64_8) - @test arr8 == arr64_8 - arr64_i[2] = 1234 - @test arr64[2] == 1234 -end - # Alignment of perm boxes for i in 1:10 # Int64 box should be 16bytes aligned even on 32bits diff --git a/test/inference.jl b/test/inference.jl index 81910152cf37ec..1642878136df1c 100644 --- a/test/inference.jl +++ b/test/inference.jl @@ -830,7 +830,7 @@ f2_17003(::Any) = f2_17003(NArray_17003(gl_17003)) # issue #20847 function segfaultfunction_20847(A::Vector{NTuple{N, T}}) where {N, T} - B = reinterpret(T, A, (N, length(A))) + B = reshape(reinterpret(T, A), (N, length(A))) return nothing end diff --git a/test/reinterpretarray.jl b/test/reinterpretarray.jl new file mode 100644 index 00000000000000..31d431afbf0ca4 --- /dev/null +++ b/test/reinterpretarray.jl @@ -0,0 +1,24 @@ +using Base.Test + +A = Int64[1, 2, 3, 4] +B = Complex{Int64}[5+6im, 7+8im, 9+10im] +# getindex +@test reinterpret(Complex{Int64}, A) == [1 + 2im, 3 + 4im] +@test reinterpret(Float64, A) == reinterpret.(Float64, A) + +@test reinterpret(NTuple{3, Int64}, B) == [(5,6,7),(8,9,10)] + +# setindex +let Ac = copy(A), Bc = copy(B) + reinterpret(Complex{Int64}, Ac)[2] = -1 - 2im + @test Ac == [1, 2, -1, -2] + reinterpret(NTuple{3, Int64}, Bc)[2] = (4,5,6) + @test Bc == Complex{Int64}[5+6im, 7+4im, 5+6im] + reinterpret(NTuple{3, Int64}, Bc)[1] = (1,2,3) + @test Bc == Complex{Int64}[1+2im, 3+4im, 5+6im] + + A1 = reinterpret(Float64, A) + A2 = reinterpret(Complex{Float64}, A) + A1[1] = 1.0 + @test real(A2[1]) == 1.0 +end diff --git a/test/sparse/sparse.jl b/test/sparse/sparse.jl index dd22123c9187e8..cb448b85daedb0 100644 --- a/test/sparse/sparse.jl +++ b/test/sparse/sparse.jl @@ -964,7 +964,7 @@ end ACPY = copy(A) B = reshape(A,25,1) @test A == ACPY - C = reinterpret(Int64, A, (25, 1)) + C = reshape(reinterpret(Int64, A), (25, 1)) @test A == ACPY D = reinterpret(Int64, copy(B)) @test C == D @@ -1319,8 +1319,6 @@ end @testset "error conditions for reinterpret, reshape, and squeeze" begin local A = sprand(Bool, 5, 5, 0.2) @test_throws ArgumentError reinterpret(Complex128, A) - @test_throws ArgumentError reinterpret(Complex128, A,(5, 5)) - @test_throws DimensionMismatch reinterpret(Int8, A,(20,)) @test_throws DimensionMismatch reshape(A,(20, 2)) @test_throws ArgumentError squeeze(A,(1, 1)) end diff --git a/test/sparse/sparsevector.jl b/test/sparse/sparsevector.jl index fcc0baac1447bd..d422bdf2aeb584 100644 --- a/test/sparse/sparsevector.jl +++ b/test/sparse/sparsevector.jl @@ -283,7 +283,7 @@ let a = SparseVector(8, [2, 5, 6], Int32[12, 35, 72]) # reinterpret au = reinterpret(UInt32, a) - @test isa(au, SparseVector{UInt32,Int}) + @test isa(au, AbstractSparseVector{UInt32,Int}) @test exact_equal(au, SparseVector(8, [2, 5, 6], UInt32[12, 35, 72])) # float