From 454e43f4db734e38c2d81e4eba5deec36d8e0f54 Mon Sep 17 00:00:00 2001 From: Tim Holy Date: Sun, 26 Jun 2016 20:52:51 -0500 Subject: [PATCH] Rename allocate_for -> similar. Fixes #17124. --- base/abstractarray.jl | 33 +++++++++++---------------------- base/broadcast.jl | 8 ++++---- base/exports.jl | 1 - base/multidimensional.jl | 8 ++++---- base/sort.jl | 8 ++++---- test/offsetarray.jl | 7 +++---- 6 files changed, 26 insertions(+), 39 deletions(-) diff --git a/base/abstractarray.jl b/base/abstractarray.jl index 3114468f0102d..d8c3b7a2d73f6 100644 --- a/base/abstractarray.jl +++ b/base/abstractarray.jl @@ -326,7 +326,6 @@ different element type it will create a regular `Array` instead: 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 -See also `allocate_for`. """ similar{T}(a::AbstractArray{T}) = similar(a, T) similar( a::AbstractArray, T::Type) = similar(a, T, to_shape(indices(a))) @@ -347,44 +346,34 @@ to_shape(r::OneTo) = Int(last(r)) to_shape(r::UnitRange) = convert(UnitRange{Int}, r) """ - allocate_for(storagetype, referencearray, [shape]) + similar(storagetype, indices) Create an uninitialized mutable array analogous to that specified by -`storagetype`, but with type and shape specified by the final two -arguments. The main purpose of this function is to support allocation -of arrays that may have unconventional indexing (starting at other -than 1), as determined by `referencearray` and the optional `shape` -information. +`storagetype`, but with `indices` specified by the last +argument. `storagetype` might be a type or a function. **Examples**: - allocate_for(Array{Int}, A) + similar(Array{Int}, indices(A)) creates an array that "acts like" an `Array{Int}` (and might indeed be backed by one), but which is indexed identically to `A`. If `A` has -conventional indexing, this will likely just call +conventional indexing, this will be identical to `Array{Int}(size(A))`, but if `A` has unconventional indexing then the indices of the result will match `A`. - allocate_for(BitArray, A, (indices(A, 2),)) + similar(BitArray, (indices(A, 2),)) would create a 1-dimensional logical array whose indices match those of the columns of `A`. -The main purpose of the `referencearray` argument is to select a -particular array type supporting unconventional indexing (as it is -possible that several different ones will be simultaneously in use). + similar(dims->zeros(Int, dims), indices(A)) -See also `similar`. +would create an array of `Int`, initialized to zero, matching the +indices of `A`. """ -allocate_for(f, a, shape::Union{DimOrInd,DimsOrInds}) = f(to_shape(shape)) -allocate_for(f, a) = allocate_for(f, a, indices(a)) -# allocate_for when passed multiple arrays. Necessary for broadcast, etc. -function allocate_for(f, as::Tuple, shape::Union{DimOrInd,DimsOrInds}) - @_inline_meta - a = promote_indices(as...) - allocate_for(f, a, shape) -end +similar(f, shape::Tuple) = f(to_shape(shape)) +similar(f, dims::DimOrInd...) = similar(f, dims) promote_indices(a) = a function promote_indices(a, b, c...) diff --git a/base/broadcast.jl b/base/broadcast.jl index bc77b6d855794..a0eb7f13955b8 100644 --- a/base/broadcast.jl +++ b/base/broadcast.jl @@ -3,7 +3,7 @@ module Broadcast using Base.Cartesian -using Base: promote_op, promote_eltype, promote_eltype_op, @get!, _msk_end, unsafe_bitgetindex, linearindices, to_shape, allocate_for, tail, dimlength, OneTo +using Base: promote_op, promote_eltype, promote_eltype_op, @get!, _msk_end, unsafe_bitgetindex, linearindices, to_shape, tail, dimlength, OneTo import Base: .+, .-, .*, ./, .\, .//, .==, .<, .!=, .<=, .รท, .%, .<<, .>>, .^ export broadcast, broadcast!, bitbroadcast export broadcast_getindex, broadcast_setindex! @@ -142,9 +142,9 @@ end B end -@inline broadcast(f, As...) = broadcast!(f, allocate_for(Array{promote_eltype_op(f, As...)}, As, broadcast_shape(As...)), As...) +@inline broadcast(f, As...) = broadcast!(f, similar(Array{promote_eltype_op(f, As...)}, broadcast_shape(As...)), As...) -@inline bitbroadcast(f, As...) = broadcast!(f, allocate_for(BitArray, As, broadcast_shape(As...)), As...) +@inline bitbroadcast(f, As...) = broadcast!(f, similar(BitArray, broadcast_shape(As...)), As...) broadcast_getindex(src::AbstractArray, I::AbstractArray...) = broadcast_getindex!(Array{eltype(src)}(to_shape(broadcast_shape(I...))), src, I...) @generated function broadcast_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray...) @@ -295,7 +295,7 @@ for (f, scalarf) in ((:.==, :(==)), shape = :(indices($active)) @eval begin function ($f)(A::$sigA, B::$sigB) - P = allocate_for(BitArray, $active, $shape) + P = similar(BitArray, $shape) F = parent(P) l = length(F) l == 0 && return F diff --git a/base/exports.jl b/base/exports.jl index 0dd82228cb120..0aa88824453fa 100644 --- a/base/exports.jl +++ b/base/exports.jl @@ -484,7 +484,6 @@ export zeta, # arrays - allocate_for, bitbroadcast, broadcast!, broadcast, diff --git a/base/multidimensional.jl b/base/multidimensional.jl index d7bcd3c364cad..ef3a7b00a52bd 100644 --- a/base/multidimensional.jl +++ b/base/multidimensional.jl @@ -781,7 +781,7 @@ If `dim` is specified, returns unique regions of the array `itr` along `dim`. @generated function unique{T,N}(A::AbstractArray{T,N}, dim::Int) quote 1 <= dim <= $N || return copy(A) - hashes = allocate_for(inds->zeros(UInt, inds), A, indices(A, dim)) + hashes = similar(inds->zeros(UInt, inds), indices(A, dim)) # Compute hash for each row k = 0 @@ -790,7 +790,7 @@ If `dim` is specified, returns unique regions of the array `itr` along `dim`. end # Collect index of first row for each hash - uniquerow = allocate_for(Array{Int}, A, indices(A, dim)) + uniquerow = similar(Array{Int}, indices(A, dim)) firstrow = Dict{Prehashed,Int}() for k = indices(A, dim) uniquerow[k] = get!(firstrow, Prehashed(hashes[k]), k) @@ -798,7 +798,7 @@ If `dim` is specified, returns unique regions of the array `itr` along `dim`. uniquerows = collect(values(firstrow)) # Check for collisions - collided = allocate_for(falses, A, indices(A, dim)) + collided = similar(falses, indices(A, dim)) @inbounds begin @nloops $N i A d->(if d == dim k = i_d @@ -813,7 +813,7 @@ If `dim` is specified, returns unique regions of the array `itr` along `dim`. end if any(collided) - nowcollided = allocate_for(BitArray, A, indices(A, dim)) + nowcollided = similar(BitArray, indices(A, dim)) while any(collided) # Collect index of first row for each collided hash empty!(firstrow) diff --git a/base/sort.jl b/base/sort.jl index e5aa1522374b1..9cac327aa92c5 100644 --- a/base/sort.jl +++ b/base/sort.jl @@ -2,7 +2,7 @@ module Sort -using Base: Order, copymutable, linearindices, allocate_for, linearindexing, viewindexing, LinearFast +using Base: Order, copymutable, linearindices, linearindexing, viewindexing, LinearFast import Base.sort, @@ -447,7 +447,7 @@ function sortperm(v::AbstractVector; by=identity, rev::Bool=false, order::Ordering=Forward) - p = Base.allocate_for(Vector{Int}, v, indices(v, 1)) + p = similar(Vector{Int}, indices(v, 1)) for (i,ind) in zip(eachindex(p), indices(v, 1)) p[i] = ind end @@ -507,7 +507,7 @@ end function sortrows(A::AbstractMatrix; kws...) inds = indices(A,1) T = slicetypeof(A, inds, :) - rows = allocate_for(Vector{T}, A, indices(A, 1)) + rows = similar(Vector{T}, indices(A, 1)) for i in inds rows[i] = view(A, i, :) end @@ -518,7 +518,7 @@ end function sortcols(A::AbstractMatrix; kws...) inds = indices(A,2) T = slicetypeof(A, :, inds) - cols = allocate_for(Vector{T}, A, indices(A, 2)) + cols = similar(Vector{T}, indices(A, 2)) for i in inds cols[i] = view(A, :, i) end diff --git a/test/offsetarray.jl b/test/offsetarray.jl index 4363da1008963..bc22f027c30dd 100644 --- a/test/offsetarray.jl +++ b/test/offsetarray.jl @@ -7,7 +7,7 @@ module OAs -using Base: DimOrInd, Indices, LinearSlow, LinearFast +using Base: DimOrInd, DimsOrInds, Indices, LinearSlow, LinearFast export OffsetArray @@ -47,13 +47,12 @@ Base.indices1{T}(A::OffsetArray{T,0}) = 1:1 function Base.similar(A::OffsetArray, T::Type, dims::Dims) B = similar(parent(A), T, dims) end -function Base.similar(A::AbstractArray, T::Type, inds::Tuple{Vararg{DimOrInd}}) +function Base.similar(A::AbstractArray, T::Type, inds::DimsOrInds) B = similar(A, T, map(Base.dimlength, inds)) OffsetArray(B, map(indsoffset, inds)) end -Base.allocate_for(f, A::OffsetArray, shape::DimOrInd) = OffsetArray(f(Base.dimlength(shape)), (indsoffset(shape),)) -Base.allocate_for(f, A::OffsetArray, shape::Tuple{Vararg{DimOrInd}}) = OffsetArray(f(map(Base.dimlength, shape)), map(indsoffset, shape)) +Base.similar(f::Union{Function,Type}, shape::Tuple{Vararg{UnitRange}}) = OffsetArray(f(map(Base.dimlength, shape)), map(indsoffset, shape)) Base.promote_indices(a::OffsetArray, b::OffsetArray) = a Base.reshape(A::AbstractArray, inds::Indices) = OffsetArray(reshape(A, map(Base.dimlength, inds)), map(indsoffset, inds))