From 20449576ba8a6afdd8e4680074a635b1fe4adff4 Mon Sep 17 00:00:00 2001 From: Sacha Verweij Date: Sat, 28 Oct 2017 09:39:35 -0700 Subject: [PATCH] deprecate orthogonal decomposition keyword "thin" to "full" (#24279) * Deprecate keyword argument "thin" in favor of "full" in svd methods. * Deprecate keyword argument "thin" in favor of "full" in qr methods. * Deprecate keyword argument "thin" in favor of "full" in lq methods. --- NEWS.md | 4 ++ base/deprecated.jl | 5 +++ base/linalg/bidiag.jl | 20 +++++++++- base/linalg/dense.jl | 4 +- base/linalg/lq.jl | 29 +++++++++------ base/linalg/qr.jl | 29 ++++++++++----- base/linalg/svd.jl | 86 +++++++++++++++++++++++++++++++++---------- test/linalg/lq.jl | 54 +++++++++++++-------------- test/linalg/qr.jl | 8 ++-- 9 files changed, 164 insertions(+), 75 deletions(-) diff --git a/NEWS.md b/NEWS.md index b261a65620b2d..cdf940755907f 100644 --- a/NEWS.md +++ b/NEWS.md @@ -381,6 +381,10 @@ Deprecated or removed * The `cholfact`/`cholfact!` methods that accepted an `uplo` symbol have been deprecated in favor of using `Hermitian` (or `Symmetric`) views ([#22187], [#22188]). + * The `thin` keyword argument for orthogonal decomposition methods has + been deprecated in favor of `full`, which has the opposite meaning: + `thin == true` if and only if `full == false` ([#24279]). + * `isposdef(A::AbstractMatrix, UL::Symbol)` and `isposdef!(A::AbstractMatrix, UL::Symbol)` have been deprecated in favor of `isposdef(Hermitian(A, UL))` and `isposdef!(Hermitian(A, UL))` respectively ([#22245]). diff --git a/base/deprecated.jl b/base/deprecated.jl index 50d73124cd142..535d2ee577df9 100644 --- a/base/deprecated.jl +++ b/base/deprecated.jl @@ -2034,6 +2034,11 @@ end @deprecate strwidth textwidth @deprecate charwidth textwidth +# TODO: after 0.7, remove thin keyword argument and associated logic from... +# (1) base/linalg/svd.jl +# (2) base/linalg/qr.jl +# (3) base/linalg/lq.jl + @deprecate find(x::Number) find(!iszero, x) @deprecate findnext(A, v, i::Integer) findnext(equalto(v), A, i) @deprecate findfirst(A, v) findfirst(equalto(v), A) diff --git a/base/linalg/bidiag.jl b/base/linalg/bidiag.jl index e9abd67a17dfd..4a1f05ab222ef 100644 --- a/base/linalg/bidiag.jl +++ b/base/linalg/bidiag.jl @@ -182,11 +182,27 @@ similar(B::Bidiagonal, ::Type{T}, dims::Union{Dims{1},Dims{2}}) where {T} = spze #Singular values svdvals!(M::Bidiagonal{<:BlasReal}) = LAPACK.bdsdc!(M.uplo, 'N', M.dv, M.ev)[1] -function svdfact!(M::Bidiagonal{<:BlasReal}; thin::Bool=true) +function svdfact!(M::Bidiagonal{<:BlasReal}; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact!(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact!(A; full = $(!thin))`."), :svdfact!) + full::Bool = !thin + end d, e, U, Vt, Q, iQ = LAPACK.bdsdc!(M.uplo, 'I', M.dv, M.ev) SVD(U, d, Vt) end -svdfact(M::Bidiagonal; thin::Bool=true) = svdfact!(copy(M),thin=thin) +function svdfact(M::Bidiagonal; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact(A; full = $(!thin))`."), :svdfact) + full::Bool = !thin + end + return svdfact!(copy(M), full = full) +end #################### # Generic routines # diff --git a/base/linalg/dense.jl b/base/linalg/dense.jl index 95b9983635149..7545cff6a7275 100644 --- a/base/linalg/dense.jl +++ b/base/linalg/dense.jl @@ -1263,7 +1263,7 @@ function pinv(A::StridedMatrix{T}, tol::Real) where T return B end end - SVD = svdfact(A, thin=true) + SVD = svdfact(A, full = false) Stype = eltype(SVD.S) Sinv = zeros(Stype, length(SVD.S)) index = SVD.S .> tol*maximum(SVD.S) @@ -1305,7 +1305,7 @@ julia> nullspace(M) function nullspace(A::StridedMatrix{T}) where T m, n = size(A) (m == 0 || n == 0) && return eye(T, n) - SVD = svdfact(A, thin = false) + SVD = svdfact(A, full = true) indstart = sum(SVD.S .> max(m,n)*maximum(SVD.S)*eps(eltype(SVD.S))) + 1 return SVD.Vt[indstart:end,:]' end diff --git a/base/linalg/lq.jl b/base/linalg/lq.jl index 66dcff8ebf770..76b526c3769af 100644 --- a/base/linalg/lq.jl +++ b/base/linalg/lq.jl @@ -33,24 +33,31 @@ lqfact(A::StridedMatrix{<:BlasFloat}) = lqfact!(copy(A)) lqfact(x::Number) = lqfact(fill(x,1,1)) """ - lq(A; [thin=true]) -> L, Q + lq(A; full = false) -> L, Q -Perform an LQ factorization of `A` such that `A = L*Q`. The default is to compute -a "thin" factorization. The LQ factorization is the QR factorization of `A.'`. -`L` is not extendedwith zeros if the explicit, square form of `Q` -is requested via `thin = false`. +Perform an LQ factorization of `A` such that `A = L*Q`. The default (`full = false`) +computes a factorization with possibly-rectangular `L` and `Q`, commonly the "thin" +factorization. The LQ factorization is the QR factorization of `A.'`. If the explicit, +full/square form of `Q` is requested via `full = true`, `L` is not extended with zeros. !!! note While in QR factorization the "thin" factorization is so named due to yielding - either a square or "tall"/"thin" factor `Q`, in LQ factorization the "thin" - factorization somewhat confusingly produces either a square or "short"/"wide" - factor `Q`. "Thin" factorizations more broadly are also (more descriptively) - referred to as "truncated" or "reduced" factorizatons. + either a square or "tall"/"thin" rectangular factor `Q`, in LQ factorization the + "thin" factorization somewhat confusingly produces either a square or "short"/"wide" + rectangular factor `Q`. "Thin" factorizations more broadly are also + referred to as "reduced" factorizatons. """ -function lq(A::Union{Number,AbstractMatrix}; thin::Bool = true) +function lq(A::Union{Number,AbstractMatrix}; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `lq(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `lq(A; full = $(!thin))`."), :lq) + full::Bool = !thin + end F = lqfact(A) L, Q = F[:L], F[:Q] - return L, thin ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 2))) + return L, !full ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 2))) end copy(A::LQ) = LQ(copy(A.factors), copy(A.τ)) diff --git a/base/linalg/qr.jl b/base/linalg/qr.jl index b83cb0351261a..fbe1cc8876329 100644 --- a/base/linalg/qr.jl +++ b/base/linalg/qr.jl @@ -265,7 +265,7 @@ The following functions are available for the `QR` objects: [`inv`](@ref), [`siz and [`\\`](@ref). When `A` is rectangular, `\\` will return a least squares solution and if the solution is not unique, the one with smallest norm is returned. -Multiplication with respect to either thin or full `Q` is allowed, i.e. both `F[:Q]*F[:R]` +Multiplication with respect to either full/square or non-full/square `Q` is allowed, i.e. both `F[:Q]*F[:R]` and `F[:Q]*A` are supported. A `Q` matrix can be converted into a regular matrix with [`Matrix`](@ref). @@ -305,24 +305,33 @@ end qrfact(x::Number) = qrfact(fill(x,1,1)) """ - qr(A, pivot=Val(false); thin::Bool=true) -> Q, R, [p] + qr(A, pivot=Val(false); full::Bool = false) -> Q, R, [p] Compute the (pivoted) QR factorization of `A` such that either `A = Q*R` or `A[:,p] = Q*R`. Also see [`qrfact`](@ref). -The default is to compute a thin factorization. Note that `R` is not -extended with zeros when the full `Q` is requested. +The default is to compute a "thin" factorization. Note that `R` is not +extended with zeros when a full/square orthogonal factor `Q` is requested (via `full = true`). """ -qr(A::Union{Number, AbstractMatrix}, pivot::Union{Val{false}, Val{true}}=Val(false); thin::Bool=true) = - _qr(A, pivot, thin=thin) -function _qr(A::Union{Number, AbstractMatrix}, ::Val{false}; thin::Bool=true) +function qr(A::Union{Number,AbstractMatrix}, pivot::Union{Val{false},Val{true}} = Val(false); + full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `qr(A, pivot; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `qr(A, pivot; full = $(!thin))`."), :qr) + full::Bool = !thin + end + return _qr(A, pivot, full = full) +end +function _qr(A::Union{Number,AbstractMatrix}, ::Val{false}; full::Bool = false) F = qrfact(A, Val(false)) Q, R = getq(F), F[:R]::Matrix{eltype(F)} - return (thin ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 1)))), R + return (!full ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 1)))), R end -function _qr(A::Union{Number, AbstractMatrix}, ::Val{true}; thin::Bool=true) +function _qr(A::Union{Number, AbstractMatrix}, ::Val{true}; full::Bool = false) F = qrfact(A, Val(true)) Q, R, p = getq(F), F[:R]::Matrix{eltype(F)}, F[:p]::Vector{BlasInt} - return (thin ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 1)))), R, p + return (!full ? Array(Q) : A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 1)))), R, p end """ diff --git a/base/linalg/svd.jl b/base/linalg/svd.jl index 6b4ace6cce2d3..c1dcdac06757d 100644 --- a/base/linalg/svd.jl +++ b/base/linalg/svd.jl @@ -11,23 +11,30 @@ end SVD(U::AbstractArray{T}, S::Vector{Tr}, Vt::AbstractArray{T}) where {T,Tr} = SVD{T,Tr,typeof(U)}(U, S, Vt) """ - svdfact!(A, thin::Bool=true) -> SVD + svdfact!(A; full::Bool = false) -> SVD `svdfact!` is the same as [`svdfact`](@ref), but saves space by overwriting the input `A`, instead of creating a copy. """ -function svdfact!(A::StridedMatrix{T}; thin::Bool=true) where T<:BlasFloat +function svdfact!(A::StridedMatrix{T}; full::Bool = false, thin::Union{Bool,Void} = nothing) where T<:BlasFloat + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact!(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact!(A; full = $(!thin))`."), :svdfact!) + full::Bool = !thin + end m,n = size(A) if m == 0 || n == 0 - u,s,vt = (eye(T, m, thin ? n : m), real(zeros(T,0)), eye(T,n,n)) + u,s,vt = (eye(T, m, full ? m : n), real(zeros(T,0)), eye(T,n,n)) else - u,s,vt = LAPACK.gesdd!(thin ? 'S' : 'A', A) + u,s,vt = LAPACK.gesdd!(full ? 'A' : 'S', A) end SVD(u,s,vt) end """ - svdfact(A; thin::Bool=true) -> SVD + svdfact(A; full::Bool = false) -> SVD Compute the singular value decomposition (SVD) of `A` and return an `SVD` object. @@ -36,9 +43,9 @@ Compute the singular value decomposition (SVD) of `A` and return an `SVD` object The algorithm produces `Vt` and hence `Vt` is more efficient to extract than `V`. The singular values in `S` are sorted in descending order. -If `thin=true` (default), a thin SVD is returned. For a ``M \\times N`` matrix -`A`, `U` is ``M \\times M`` for a full SVD (`thin=false`) and -``M \\times \\min(M, N)`` for a thin SVD. +If `full = false` (default), a "thin" SVD is returned. For a +``M \\times N`` matrix `A`, `U` is ``M \\times M`` for a "full" SVD (`full = true`) and +``M \\times \\min(M, N)`` for a "thin" SVD. # Examples ```jldoctest @@ -59,22 +66,47 @@ julia> F[:U] * Diagonal(F[:S]) * F[:Vt] 0.0 2.0 0.0 0.0 0.0 ``` """ -function svdfact(A::StridedVecOrMat{T}; thin::Bool = true) where T +function svdfact(A::StridedVecOrMat{T}; full::Bool = false, thin::Union{Bool,Void} = nothing) where T + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact(A; full = $(!thin))`."), :svdfact) + full::Bool = !thin + end S = promote_type(Float32, typeof(one(T)/norm(one(T)))) - svdfact!(copy_oftype(A, S), thin = thin) + svdfact!(copy_oftype(A, S), full = full) +end +function svdfact(x::Number; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact(A; full = $(!thin))`."), :svdfact) + full::Bool = !thin + end + return SVD(x == 0 ? fill(one(x), 1, 1) : fill(x/abs(x), 1, 1), [abs(x)], fill(one(x), 1, 1)) +end +function svdfact(x::Integer; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svdfact(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svdfact(A; full = $(!thin))`."), :svdfact) + full::Bool = !thin + end + return svdfact(float(x), full = full) end -svdfact(x::Number; thin::Bool=true) = SVD(x == 0 ? fill(one(x), 1, 1) : fill(x/abs(x), 1, 1), [abs(x)], fill(one(x), 1, 1)) -svdfact(x::Integer; thin::Bool=true) = svdfact(float(x), thin=thin) """ - svd(A; thin::Bool=true) -> U, S, V + svd(A; full::Bool = false) -> U, S, V Computes the SVD of `A`, returning `U`, vector `S`, and `V` such that `A == U * Diagonal(S) * V'`. The singular values in `S` are sorted in descending order. -If `thin = true` (default), a thin SVD is returned. For a ``M \\times N`` matrix -`A`, `U` is ``M \\times M`` for a full SVD (`thin=false`) and -``M \\times \\min(M, N)`` for a thin SVD. +If `full = false` (default), a "thin" SVD is returned. For a ``M \\times N`` matrix +`A`, `U` is ``M \\times M`` for a "full" SVD (`full = true`) and +``M \\times \\min(M, N)`` for a "thin" SVD. `svd` is a wrapper around [`svdfact`](@ref), extracting all parts of the `SVD` factorization to a tuple. Direct use of `svdfact` is therefore more @@ -99,11 +131,27 @@ julia> U * Diagonal(S) * V' 0.0 2.0 0.0 0.0 0.0 ``` """ -function svd(A::AbstractArray; thin::Bool=true) - F = svdfact(A, thin=thin) +function svd(A::AbstractArray; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svd(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g `svd(A; full = $(!thin))`."), :svd) + full::Bool = !thin + end + F = svdfact(A, full = full) F.U, F.S, F.Vt' end -svd(x::Number; thin::Bool=true) = first.(svd(fill(x, 1, 1))) +function svd(x::Number; full::Bool = false, thin::Union{Bool,Void} = nothing) + # DEPRECATION TODO: remove deprecated thin argument and associated logic after 0.7 + if thin != nothing + Base.depwarn(string("the `thin` keyword argument in `svd(A; thin = $(thin))` has ", + "been deprecated in favor of `full`, which has the opposite meaning, ", + "e.g. `svd(A; full = $(!thin))`."), :svd) + full::Bool = !thin + end + return first.(svd(fill(x, 1, 1))) +end function getindex(F::SVD, d::Symbol) if d == :U diff --git a/test/linalg/lq.jl b/test/linalg/lq.jl index 7f487e977fc12..b7c2b2708ecc1 100644 --- a/test/linalg/lq.jl +++ b/test/linalg/lq.jl @@ -22,7 +22,7 @@ bimg = randn(n,2)/2 # helper functions to unambiguously recover explicit forms of an LQPackedQ squareQ(Q::LinAlg.LQPackedQ) = A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 2))) -truncatedQ(Q::LinAlg.LQPackedQ) = convert(Array, Q) +rectangularQ(Q::LinAlg.LQPackedQ) = convert(Array, Q) @testset for eltya in (Float32, Float64, Complex64, Complex128) a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal) @@ -98,10 +98,10 @@ truncatedQ(Q::LinAlg.LQPackedQ) = convert(Array, Q) @testset "Matmul with LQ factorizations" begin lqa = lqfact(a[:,1:n1]) l,q = lqa[:L], lqa[:Q] - @test truncatedQ(q)*truncatedQ(q)' ≈ eye(eltya,n1) + @test rectangularQ(q)*rectangularQ(q)' ≈ eye(eltya,n1) @test squareQ(q)'*squareQ(q) ≈ eye(eltya, n1) @test_throws DimensionMismatch A_mul_B!(eye(eltya,n+1),q) - @test Ac_mul_B!(q, truncatedQ(q)) ≈ eye(eltya,n1) + @test Ac_mul_B!(q, rectangularQ(q)) ≈ eye(eltya,n1) @test_throws DimensionMismatch A_mul_Bc!(eye(eltya,n+1),q) @test_throws BoundsError size(q,-1) end @@ -111,14 +111,14 @@ end @testset "correct form of Q from lq(...) (#23729)" begin # where the original matrix (say A) is square or has more rows than columns, # then A's factorization's triangular factor (say L) should have the same shape - # as A independent of factorization form (truncated, square), and A's factorization's + # as A independent of factorization form ("full", "reduced"/"thin"), and A's factorization's # orthogonal factor (say Q) should be a square matrix of order of A's number of - # columns independent of factorization form (truncated, square), and L and Q + # columns independent of factorization form ("full", "reduced"/"thin"), and L and Q # should have multiplication-compatible shapes. local m, n = 4, 2 A = randn(m, n) - for thin in (true, false) - L, Q = lq(A, thin = thin) + for full in (false, true) + L, Q = lq(A, full = full) @test size(L) == (m, n) @test size(Q) == (n, n) @test isapprox(A, L*Q) @@ -126,23 +126,23 @@ end # where the original matrix has strictly fewer rows than columns ... m, n = 2, 4 A = randn(m, n) - # ... then, for a truncated factorization of A, L should be a square matrix + # ... then, for a rectangular/"thin" factorization of A, L should be a square matrix # of order of A's number of rows, Q should have the same shape as A, # and L and Q should have multiplication-compatible shapes - Lthin, Qthin = lq(A, thin = true) - @test size(Lthin) == (m, m) - @test size(Qthin) == (m, n) - @test isapprox(A, Lthin * Qthin) - # ... and, for a square/non-truncated factorization of A, L should have the + Lrect, Qrect = lq(A, full = false) + @test size(Lrect) == (m, m) + @test size(Qrect) == (m, n) + @test isapprox(A, Lrect * Qrect) + # ... and, for a full factorization of A, L should have the # same shape as A, Q should be a square matrix of order of A's number of columns, # and L and Q should have multiplication-compatible shape. but instead the L returned - # has no zero-padding on the right / is L for the truncated factorization, + # has no zero-padding on the right / is L for the rectangular/"thin" factorization, # so for L and Q to have multiplication-compatible shapes, L must be zero-padded # to have the shape of A. - Lsquare, Qsquare = lq(A, thin = false) - @test size(Lsquare) == (m, m) - @test size(Qsquare) == (n, n) - @test isapprox(A, [Lsquare zeros(m, n - m)] * Qsquare) + Lfull, Qfull = lq(A, full = true) + @test size(Lfull) == (m, m) + @test size(Qfull) == (n, n) + @test isapprox(A, [Lfull zeros(m, n - m)] * Qfull) end @testset "getindex on LQPackedQ (#23733)" begin @@ -153,14 +153,14 @@ end return implicitQ, explicitQ end - m, n = 3, 3 # truncated Q 3-by-3, square Q 3-by-3 + m, n = 3, 3 # reduced Q 3-by-3, full Q 3-by-3 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[m, 1] == explicitQ[m, 1] @test implicitQ[1, n] == explicitQ[1, n] @test implicitQ[m, n] == explicitQ[m, n] - m, n = 3, 4 # truncated Q 3-by-4, square Q 4-by-4 + m, n = 3, 4 # reduced Q 3-by-4, full Q 4-by-4 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[m, 1] == explicitQ[m, 1] @@ -169,7 +169,7 @@ end @test implicitQ[m+1, 1] == explicitQ[m+1, 1] @test implicitQ[m+1, n] == explicitQ[m+1, n] - m, n = 4, 3 # truncated Q 3-by-3, square Q 3-by-3 + m, n = 4, 3 # reduced Q 3-by-3, full Q 3-by-3 implicitQ, explicitQ = getqs(lqfact(randn(m, n))) @test implicitQ[1, 1] == explicitQ[1, 1] @test implicitQ[n, 1] == explicitQ[n, 1] @@ -178,11 +178,11 @@ end end @testset "size on LQPackedQ (#23780)" begin - # size(Q::LQPackedQ) yields the shape of Q's square form + # size(Q::LQPackedQ) yields the shape of Q's full/square form for ((mA, nA), nQ) in ( - ((3, 3), 3), # A 3-by-3 => square Q 3-by-3 - ((3, 4), 4), # A 3-by-4 => square Q 4-by-4 - ((4, 3), 3) )# A 4-by-3 => square Q 3-by-3 + ((3, 3), 3), # A 3-by-3 => full/square Q 3-by-3 + ((3, 4), 4), # A 3-by-4 => full/square Q 4-by-4 + ((4, 3), 3) )# A 4-by-3 => full/square Q 3-by-3 @test size(lqfact(randn(mA, nA))[:Q]) == (nQ, nQ) end end @@ -205,12 +205,12 @@ end @test Ac_mul_Bc(C, implicitQ) ≈ Ac_mul_Bc(C, explicitQ) end # where the LQ-factored matrix has at least as many rows m as columns n, - # Q's square and truncated forms have the same shape (n-by-n). hence we expect + # Q's full/square and reduced/rectangular forms have the same shape (n-by-n). hence we expect # _only_ *-by-n (n-by-*) C to work in A_mul_B*(C, Q) (Ac_mul_B*(C, Q)) ops. # and hence the n-by-n C tests above suffice. # # where the LQ-factored matrix has more columns n than rows m, - # Q's square form is n-by-n whereas its truncated form is m-by-n. + # Q's full/square form is n-by-n whereas its reduced/rectangular form is m-by-n. # hence we need also test *-by-m C with # A*_mul_B(C, Q) ops, as below via m-by-m C. mA, nA = 3, 4 diff --git a/test/linalg/qr.jl b/test/linalg/qr.jl index 94f0e95d06742..2bf60515051e0 100644 --- a/test/linalg/qr.jl +++ b/test/linalg/qr.jl @@ -21,7 +21,7 @@ bimg = randn(n,2)/2 # helper functions to unambiguously recover explicit forms of an implicit QR Q squareQ(Q::LinAlg.AbstractQ) = A_mul_B!(Q, eye(eltype(Q), size(Q.factors, 1))) -truncatedQ(Q::LinAlg.AbstractQ) = convert(Array, Q) +rectangularQ(Q::LinAlg.AbstractQ) = convert(Array, Q) @testset for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int) raw_a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal) @@ -75,9 +75,9 @@ truncatedQ(Q::LinAlg.AbstractQ) = convert(Array, Q) q,r = qra[:Q], qra[:R] @test_throws KeyError qra[:Z] @test q'*squareQ(q) ≈ eye(a_1) - @test q'*truncatedQ(q) ≈ eye(a_1, n1) + @test q'*rectangularQ(q) ≈ eye(a_1, n1) @test q*r ≈ a[:, 1:n1] - @test q*b[1:n1] ≈ truncatedQ(q)*b[1:n1] atol=100ε + @test q*b[1:n1] ≈ rectangularQ(q)*b[1:n1] atol=100ε @test q*b ≈ squareQ(q)*b atol=100ε @test_throws DimensionMismatch q*b[1:n1 + 1] @test_throws DimensionMismatch b[1:n1 + 1]*q' @@ -163,7 +163,7 @@ end @testset "Issue 7304" begin A = [-√.5 -√.5; -√.5 √.5] - Q = truncatedQ(qrfact(A)[:Q]) + Q = rectangularQ(qrfact(A)[:Q]) @test vecnorm(A-Q) < eps() end