-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathintfuncs.jl
1379 lines (1169 loc) · 37.6 KB
/
intfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
## number-theoretic functions ##
"""
gcd(x, y...)
Greatest common (positive) divisor (or zero if all arguments are zero).
The arguments may be integer and rational numbers.
!!! compat "Julia 1.4"
Rational arguments require Julia 1.4 or later.
# Examples
```jldoctest
julia> gcd(6, 9)
3
julia> gcd(6, -9)
3
julia> gcd(6, 0)
6
julia> gcd(0, 0)
0
julia> gcd(1//3, 2//3)
1//3
julia> gcd(1//3, -2//3)
1//3
julia> gcd(1//3, 2)
1//3
julia> gcd(0, 0, 10, 15)
5
```
"""
function gcd(a::T, b::T) where T<:Integer
while b != 0
t = b
b = rem(a, b)
a = t
end
checked_abs(a)
end
function gcd(a::T, b::T) where T<:BitInteger
a == 0 && return Base.checked_abs(b)
b == 0 && return Base.checked_abs(a)
if a isa Signed && a == typemin(T)
if a == b
Base.__throw_gcd_overflow(a, b)
else
a, b = b, a
end
end
return _gcd(a, b)
end
@noinline __throw_gcd_overflow(a, b) =
throw(OverflowError(LazyString("gcd(", a, ", ", b, ") overflows")))
function absdiff(x::T,y::T) where {T<:Unsigned}
d = max(x,y) - min(x,y)
d, d
end
function absdiff(x::T,y::T) where {T<:Signed}
d = x - y
abs(d), d
end
# binary GCD (aka Stein's) algorithm
# about 1.7x (2.1x) faster for random Int64s (Int128s)
# Unfortunately, we need to manually annotate this as `@assume_effects :terminates_locally` to work around #41694.
# Since this is used in the Rational constructor, constant folding is something we do care about here.
@assume_effects :terminates_locally function _gcd(ain::T, bin::T) where T<:BitInteger
zb = trailing_zeros(bin)
za = trailing_zeros(ain)
a = abs(ain)
b = abs(bin >> zb)
k = min(za, zb)
while a != 0
a >>= za
absd, diff = absdiff(a, b)
za = trailing_zeros(diff)
b = min(a, b)
a = absd
end
r = b << k
return r % T
end
"""
lcm(x, y...)
Least common (positive) multiple (or zero if any argument is zero).
The arguments may be integer and rational numbers.
``a`` is a multiple of ``b`` if there exists an integer ``m`` such
that ``a=mb``.
!!! compat "Julia 1.4"
Rational arguments require Julia 1.4 or later.
# Examples
```jldoctest
julia> lcm(2, 3)
6
julia> lcm(-2, 3)
6
julia> lcm(0, 3)
0
julia> lcm(0, 0)
0
julia> lcm(1//3, 2//3)
2//3
julia> lcm(1//3, -2//3)
2//3
julia> lcm(1//3, 2)
2//1
julia> lcm(1, 3, 5, 7)
105
```
"""
function lcm(a::T, b::T) where T<:Integer
# explicit a==0 test is to handle case of lcm(0, 0) correctly
# explicit b==0 test is to handle case of lcm(typemin(T),0) correctly
if a == 0 || b == 0
return zero(a)
else
return checked_abs(checked_mul(a, div(b, gcd(b,a))))
end
end
gcd(a::Integer) = checked_abs(a)
gcd(a::Rational) = checked_abs(a.num) // a.den
lcm(a::Union{Integer,Rational}) = gcd(a)
gcd(a::Unsigned, b::Signed) = gcd(promote(a, abs(b))...)
gcd(a::Signed, b::Unsigned) = gcd(promote(abs(a), b)...)
gcd(a::Real, b::Real) = gcd(promote(a,b)...)
lcm(a::Real, b::Real) = lcm(promote(a,b)...)
gcd(a::Real, b::Real, c::Real...) = gcd(a, gcd(b, c...))
lcm(a::Real, b::Real, c::Real...) = lcm(a, lcm(b, c...))
gcd(a::T, b::T) where T<:Real = throw(MethodError(gcd, (a,b)))
lcm(a::T, b::T) where T<:Real = throw(MethodError(lcm, (a,b)))
gcd(abc::AbstractArray{<:Real}) = reduce(gcd, abc; init=zero(eltype(abc)))
function lcm(abc::AbstractArray{<:Real})
# Using reduce with init=one(eltype(abc)) is buggy for Rationals.
l = length(abc)
if l == 0
eltype(abc) <: Integer && return one(eltype(abc))
throw(ArgumentError("lcm has no identity for $(eltype(abc))"))
end
l == 1 && return abs(only(abc))
return reduce(lcm, abc)
end
function gcd(abc::AbstractArray{<:Integer})
a = zero(eltype(abc))
for b in abc
a = gcd(a, b)
if a == 1
return a
end
end
return a
end
# return (gcd(a, b), x, y) such that ax+by == gcd(a, b)
"""
gcdx(a, b...)
Computes the greatest common (positive) divisor of `a` and `b` and their Bézout
coefficients, i.e. the integer coefficients `u` and `v` that satisfy
``u*a + v*b = d = gcd(a, b)``. ``gcdx(a, b)`` returns ``(d, u, v)``.
For more arguments than two, i.e., `gcdx(a, b, c, ...)` the Bézout coefficients are computed
recursively, returning a solution `(d, u, v, w, ...)` to
``u*a + v*b + w*c + ... = d = gcd(a, b, c, ...)``.
The arguments may be integer and rational numbers.
!!! compat "Julia 1.4"
Rational arguments require Julia 1.4 or later.
!!! compat "Julia 1.12"
More or fewer arguments than two require Julia 1.12 or later.
# Examples
```jldoctest
julia> gcdx(12, 42)
(6, -3, 1)
julia> gcdx(240, 46)
(2, -9, 47)
julia> gcdx(15, 12, 20)
(1, 7, -7, -1)
```
!!! note
Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal
Bézout coefficients that are computed by the extended Euclidean algorithm.
(Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)
For signed integers, these coefficients `u` and `v` are minimal in
the sense that ``|u| < |b/d|`` and ``|v| < |a/d|``. Furthermore,
the signs of `u` and `v` are chosen so that `d` is positive.
For unsigned integers, the coefficients `u` and `v` might be near
their `typemax`, and the identity then holds only via the unsigned
integers' modulo arithmetic.
"""
Base.@assume_effects :terminates_locally function gcdx(a::Integer, b::Integer)
T = promote_type(typeof(a), typeof(b))
a == b == 0 && return (zero(T), zero(T), zero(T))
# a0, b0 = a, b
s0, s1 = oneunit(T), zero(T)
t0, t1 = s1, s0
# The loop invariant is: s0*a0 + t0*b0 == a && s1*a0 + t1*b0 == b
x = a % T
y = b % T
while y != 0
q, r = divrem(x, y)
x, y = y, r
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
end
x < 0 ? (-x, -s0, -t0) : (x, s0, t0)
end
gcdx(a::Real, b::Real) = gcdx(promote(a,b)...)
gcdx(a::T, b::T) where T<:Real = throw(MethodError(gcdx, (a,b)))
gcdx(a::Real) = (gcd(a), signbit(a) ? -one(a) : one(a))
function gcdx(a::Real, b::Real, cs::Real...)
# a solution to the 3-arg `gcdx(a,b,c)` problem, `u*a + v*b + w*c = gcd(a,b,c)`, can be
# obtained from the 2-arg problem in three steps:
# 1. `gcdx(a,b)`: solve `i*a + j*b = d′ = gcd(a,b)` for `(i,j)`
# 2. `gcdx(d′,c)`: solve `x*gcd(a,b) + yc = gcd(gcd(a,b),c) = gcd(a,b,c)` for `(x,y)`
# 3. return `d = gcd(a,b,c)`, `u = i*x`, `v = j*x`, and `w = y`
# the N-arg solution proceeds similarly by recursion
d, i, j = gcdx(a, b)
d′, x, ys... = gcdx(d, cs...)
return d′, i*x, j*x, ys...
end
# multiplicative inverse of n mod m, error if none
"""
invmod(n::Integer, m::Integer)
Take the inverse of `n` modulo `m`: `y` such that ``n y = 1 \\pmod m``,
and ``div(y,m) = 0``. This will throw an error if ``m = 0``, or if
``gcd(n,m) \\neq 1``.
# Examples
```jldoctest
julia> invmod(2, 5)
3
julia> invmod(2, 3)
2
julia> invmod(5, 6)
5
```
"""
function invmod(n::Integer, m::Integer)
iszero(m) && throw(DomainError(m, "`m` must not be 0."))
if n isa Signed && hastypemax(typeof(n))
# work around inconsistencies in gcdx
# https://github.com/JuliaLang/julia/issues/33781
T = promote_type(typeof(n), typeof(m))
n == typemin(typeof(n)) && m == typeof(n)(-1) && return T(0)
n == typeof(n)(-1) && m == typemin(typeof(n)) && return T(-1)
end
g, x, y = gcdx(n, m)
g != 1 && throw(DomainError((n, m), LazyString("Greatest common divisor is ", g, ".")))
# Note that m might be negative here.
if n isa Unsigned && hastypemax(typeof(n)) && x > typemax(n)>>1
# x might have wrapped if it would have been negative
# adding back m forces a correction
x += m
end
# The postcondition is: mod(result * n, m) == mod(T(1), m) && div(result, m) == 0
return mod(x, m)
end
"""
invmod(n::Integer, T) where {T <: Base.BitInteger}
invmod(n::T) where {T <: Base.BitInteger}
Compute the modular inverse of `n` in the integer ring of type `T`, i.e. modulo
`2^N` where `N = 8*sizeof(T)` (e.g. `N = 32` for `Int32`). In other words, these
methods satisfy the following identities:
```
n * invmod(n) == 1
(n * invmod(n, T)) % T == 1
(n % T) * invmod(n, T) == 1
```
Note that `*` here is modular multiplication in the integer ring, `T`. This will
throw an error if `n` is even, because then it is not relatively prime with `2^N`
and thus has no such inverse.
Specifying the modulus implied by an integer type as an explicit value is often
inconvenient since the modulus is by definition too big to be represented by the
type.
The modular inverse is computed much more efficiently than the general case
using the algorithm described in https://arxiv.org/pdf/2204.04342.pdf.
!!! compat "Julia 1.11"
The `invmod(n)` and `invmod(n, T)` methods require Julia 1.11 or later.
"""
invmod(n::Integer, ::Type{T}) where {T<:BitInteger} = invmod(n % T)
function invmod(n::T) where {T<:BitInteger}
isodd(n) || throw(DomainError(n, "Argument must be odd."))
x = (3*n ⊻ 2) % T
y = (1 - n*x) % T
for _ = 1:trailing_zeros(2*sizeof(T))
x *= y + true
y *= y
end
return x
end
# ^ for any x supporting *
function to_power_type(x::Number)
T = promote_type(typeof(x), typeof(one(x)), typeof(x*x))
convert(T, x)
end
to_power_type(x) = oftype(x*x, x)
@noinline throw_domerr_powbysq(::Any, p) = throw(DomainError(p, LazyString(
"Cannot raise an integer x to a negative power ", p, ".",
"\nConvert input to float.")))
@noinline throw_domerr_powbysq(::Integer, p) = throw(DomainError(p, LazyString(
"Cannot raise an integer x to a negative power ", p, ".",
"\nMake x or ", p, " a float by adding a zero decimal ",
"(e.g., 2.0^", p, " or 2^", float(p), " instead of 2^", p, ") ",
"or write 1/x^", -p, ", float(x)^", p, ", x^float(", p, ") or (x//1)^", p, ".")))
@noinline throw_domerr_powbysq(::AbstractMatrix, p) = throw(DomainError(p, LazyString(
"Cannot raise an integer matrix x to a negative power ", p, ".",
"\nMake x a float matrix by adding a zero decimal ",
"(e.g., [2.0 1.0;1.0 0.0]^", p, " instead of [2 1;1 0]^", p, ") ",
"or write float(x)^", p, " or Rational.(x)^", p, ".")))
# The * keyword supports `*=checked_mul` for `checked_pow`
@assume_effects :terminates_locally function power_by_squaring(x_, p::Integer; mul=*)
x = to_power_type(x_)
if p == 1
return copy(x)
elseif p == 0
return one(x)
elseif p == 2
return mul(x, x)
elseif p < 0
isone(x) && return copy(x)
isone(-x) && return iseven(p) ? one(x) : copy(x)
throw_domerr_powbysq(x, p)
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x = mul(x, x)
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x = mul(x, x)
end
y = mul(y, x)
end
return y
end
power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x)
function power_by_squaring(x::Bool, p::Integer)
p < 0 && !x && throw_domerr_powbysq(x, p)
return (p==0) | x
end
^(x::T, p::T) where {T<:Integer} = power_by_squaring(x,p)
^(x::Number, p::Integer) = power_by_squaring(x,p)
# x^p for any literal integer p is lowered to Base.literal_pow(^, x, Val(p))
# to enable compile-time optimizations specialized to p.
# However, we still need a fallback that calls the function ^ which may either
# mean Base.^ or something else, depending on context.
# We mark these @inline since if the target is marked @inline,
# we want to make sure that gets propagated,
# even if it is over the inlining threshold.
@inline literal_pow(f, x, ::Val{p}) where {p} = f(x,p)
# Restrict inlining to hardware-supported arithmetic types, which
# are fast enough to benefit from inlining.
const HWReal = Union{Int8,Int16,Int32,Int64,UInt8,UInt16,UInt32,UInt64,Float16,Float32,Float64}
const HWNumber = Union{HWReal, Complex{<:HWReal}, Rational{<:HWReal}}
# Inline x^2 and x^3 for Val
# (The first argument prevents unexpected behavior if a function ^
# is defined that is not equal to Base.^)
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{0}) = one(x)
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{1}) = x
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{2}) = x*x
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{3}) = x*x*x
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{-1}) = inv(x)
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{-2}) = (i=inv(x); i*i)
# don't use the inv(x) transformation here since float^p is slightly more accurate
@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{p}) where {p} = x^p
@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{-1}) = inv(x)
# for other types, define x^-n as inv(x)^n so that negative literal powers can
# be computed in a type-stable way even for e.g. integers.
@inline function literal_pow(f::typeof(^), x, ::Val{p}) where {p}
if p < 0
if x isa BitInteger64
f(Float64(x), p) # inv would cause rounding, while Float64^Integer is able to compensate the inverse
else
f(inv(x), -p)
end
else
f(x, p)
end
end
# note: it is tempting to add optimized literal_pow(::typeof(^), x, ::Val{n})
# methods here for various n, but this easily leads to method ambiguities
# if anyone has defined literal_pow(::typeof(^), x::T, ::Val).
# b^p mod m
"""
powermod(x::Integer, p::Integer, m)
Compute ``x^p \\pmod m``.
# Examples
```jldoctest
julia> powermod(2, 6, 5)
4
julia> mod(2^6, 5)
4
julia> powermod(5, 2, 20)
5
julia> powermod(5, 2, 19)
6
julia> powermod(5, 3, 19)
11
```
"""
function powermod(x::Integer, p::Integer, m::T) where T<:Integer
p == 0 && return mod(one(m),m)
# When the concrete type of p is signed and has the lowest value,
# `p != 0 && p == -p` is equivalent to `p == typemin(typeof(p))` for 2's complement representation.
# but will work for integer types like `BigInt` that don't have `typemin` defined
# It needs special handling otherwise will cause overflow problem.
if p == -p
imod = invmod(x, m)
rhalf = powermod(imod, -(p÷2), m)
r::T = mod(widemul(rhalf, rhalf), m)
isodd(p) && (r = mod(widemul(r, imod), m))
#else odd
return r
elseif p < 0
return powermod(invmod(x, m), -p, m)
end
(m == 1 || m == -1) && return zero(m)
b = oftype(m,mod(x,m)) # this also checks for divide by zero
t = prevpow(2, p)
r = 1
while true
if p >= t
r = mod(widemul(r,b),m)
p -= t
end
t >>>= 1
t <= 0 && break
r = mod(widemul(r,r),m)
end
return r
end
# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above)
powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m)))
_nextpow2(x::Unsigned) = oneunit(x)<<(top_set_bit(x-oneunit(x)))
_nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_nextpow2(unsigned(-x)) : _nextpow2(unsigned(x)))
_prevpow2(x::Unsigned) = one(x) << unsigned(top_set_bit(x)-1)
_prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_prevpow2(unsigned(-x)) : _prevpow2(unsigned(x)))
"""
ispow2(n::Number) -> Bool
Test whether `n` is an integer power of two.
See also [`count_ones`](@ref), [`prevpow`](@ref), [`nextpow`](@ref).
# Examples
```jldoctest
julia> ispow2(4)
true
julia> ispow2(5)
false
julia> ispow2(4.5)
false
julia> ispow2(0.25)
true
julia> ispow2(1//8)
true
```
!!! compat "Julia 1.6"
Support for non-`Integer` arguments was added in Julia 1.6.
"""
ispow2(x::Number) = isreal(x) && ispow2(real(x))
ispow2(x::Integer) = x > 0 && count_ones(x) == 1
"""
nextpow(a, x)
The smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be
greater than 1, and `x` must be greater than 0.
See also [`prevpow`](@ref).
# Examples
```jldoctest
julia> nextpow(2, 7)
8
julia> nextpow(2, 9)
16
julia> nextpow(5, 20)
25
julia> nextpow(4, 16)
16
```
"""
function nextpow(a::Real, x::Real)
x <= 0 && throw(DomainError(x, "`x` must be positive."))
# Special case fast path for x::Integer, a == 2.
# This is a very common case. Constant prop will make sure that a call site
# specified as `nextpow(2, x)` will get this special case inlined.
a == 2 && isa(x, Integer) && return _nextpow2(x)
a <= 1 && throw(DomainError(a, "`a` must be greater than 1."))
x <= 1 && return one(a)
n = ceil(Integer,log(a, x))
# round-off error of log can go either direction, so need some checks
p = a^(n-1)
x > typemax(p) && throw(DomainError(x,"argument is beyond the range of type of the base"))
p >= x && return p
wp = a^n
wp > p || throw(OverflowError("result is beyond the range of type of the base"))
wp >= x && return wp
wwp = a^(n+1)
wwp > wp || throw(OverflowError("result is beyond the range of type of the base"))
return wwp
end
"""
prevpow(a, x)
The largest `a^n` not greater than `x`, where `n` is a non-negative integer.
`a` must be greater than 1, and `x` must not be less than 1.
See also [`nextpow`](@ref), [`isqrt`](@ref).
# Examples
```jldoctest
julia> prevpow(2, 7)
4
julia> prevpow(2, 9)
8
julia> prevpow(5, 20)
5
julia> prevpow(4, 16)
16
```
"""
function prevpow(a::T, x::Real) where T <: Real
x < 1 && throw(DomainError(x, "`x` must be ≥ 1."))
# See comment in nextpos() for a == special case.
a == 2 && isa(x, Integer) && return _prevpow2(x)
a <= 1 && throw(DomainError(a, "`a` must be greater than 1."))
n = floor(Integer,log(a, x))
# round-off error of log can go either direction, so need some checks
p = a^n
x > typemax(p) && throw(DomainError(x,"argument is beyond the range of type of the base"))
if a isa Integer
wp, overflow = mul_with_overflow(a, p)
wp <= x && !overflow && return wp
else
wp = a^(n+1)
wp <= x && return wp
end
p <= x && return p
return a^(n-1)
end
## ndigits (number of digits) in base 10 ##
# decimal digits in an unsigned integer
const powers_of_ten = [
0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8,
0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680,
0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800,
0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000,
0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000,
]
function bit_ndigits0z(x::Base.BitUnsigned64)
lz = top_set_bit(x)
nd = (1233*lz)>>12+1
nd -= x < powers_of_ten[nd]
end
function bit_ndigits0z(x::UInt128)
n = 0
while x > 0x8ac7230489e80000 # 10e18
x = div(x,0x8ac7230489e80000)
n += 19
end
return n + ndigits0z(UInt64(x))
end
ndigits0z(x::BitSigned) = bit_ndigits0z(unsigned(abs(x)))
ndigits0z(x::BitUnsigned) = bit_ndigits0z(x)
ndigits0z(x::Integer) = ndigits0zpb(x, 10)
## ndigits with specified base ##
# The suffix "nb" stands for "negative base"
function ndigits0znb(x::Integer, b::Integer)
d = 0
if x isa Unsigned
d += (x != 0)::Bool
x = -signed(fld(x, -b))
end
# precondition: b < -1 && !(typeof(x) <: Unsigned)
while x != 0
x = cld(x,b)
d += 1
end
return d
end
# do first division before conversion with signed here, which can otherwise overflow
ndigits0znb(x::Bool, b::Integer) = x % Int
# The suffix "pb" stands for "positive base"
function ndigits0zpb(x::Integer, b::Integer)
# precondition: b > 1
x == 0 && return 0
b = Int(b)
x = abs(x)
if x isa Base.BitInteger
x = unsigned(x)::Unsigned
b == 2 && return top_set_bit(x)
b == 8 && return (top_set_bit(x) + 2) ÷ 3
b == 16 && return sizeof(x)<<1 - leading_zeros(x)>>2
b == 10 && return bit_ndigits0z(x)
if ispow2(b)
dv, rm = divrem(top_set_bit(x), trailing_zeros(b))
return iszero(rm) ? dv : dv + 1
end
end
d = 0
while x > typemax(Int)
x = div(x,b)
d += 1
end
x = div(x,b)
d += 1
m = 1
while m <= x
m *= b
d += 1
end
return d
end
ndigits0zpb(x::Bool, b::Integer) = x % Int
# The suffix "0z" means that the output is 0 on input zero (cf. #16841)
"""
ndigits0z(n::Integer, b::Integer=10)
Return 0 if `n == 0`, otherwise compute the number of digits in
integer `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`
in this case).
The base `b` must not be in `[-1, 0, 1]`.
# Examples
```jldoctest
julia> Base.ndigits0z(0, 16)
0
julia> Base.ndigits(0, base=16)
1
julia> Base.ndigits0z(0)
0
julia> Base.ndigits0z(10, 2)
4
julia> Base.ndigits0z(10)
2
```
See also [`ndigits`](@ref).
"""
function ndigits0z(x::Integer, b::Integer)
if b < -1
ndigits0znb(x, b)
elseif b > 1
ndigits0zpb(x, b)
else
throw(DomainError(b, "The base must not be in `[-1, 0, 1]`."))
end
end
# Extends the definition in base/int.jl
top_set_bit(x::Integer) = ceil(Integer, log2(x + oneunit(x)))
"""
ndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer `n` written in base `base`
(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros
to a specified size (the result will never be less than `pad`).
See also [`digits`](@ref), [`count_ones`](@ref).
# Examples
```jldoctest
julia> ndigits(0)
1
julia> ndigits(12345)
5
julia> ndigits(1022, base=16)
3
julia> string(1022, base=16)
"3fe"
julia> ndigits(123, pad=5)
5
julia> ndigits(-123)
3
```
"""
ndigits(x::Integer; base::Integer=10, pad::Integer=1) = max(pad, ndigits0z(x, base))
## integer to string functions ##
function bin(x::Unsigned, pad::Int, neg::Bool)
m = top_set_bit(x)
n = neg + max(pad, m)
a = StringMemory(n)
# for i in 0x0:UInt(n-1) # automatic vectorization produces redundant codes
# @inbounds a[n - i] = 0x30 + (((x >> i) % UInt8)::UInt8 & 0x1)
# end
i = n
@inbounds while i >= 4
b = UInt32((x % UInt8)::UInt8)
d = 0x30303030 + ((b * 0x08040201) >> 0x3) & 0x01010101
a[i-3] = (d >> 0x00) % UInt8
a[i-2] = (d >> 0x08) % UInt8
a[i-1] = (d >> 0x10) % UInt8
a[i] = (d >> 0x18) % UInt8
x >>= 0x4
i -= 4
end
while i > neg
@inbounds a[i] = 0x30 + ((x % UInt8)::UInt8 & 0x1)
x >>= 0x1
i -= 1
end
neg && (@inbounds a[1] = 0x2d) # UInt8('-')
unsafe_takestring(a)
end
function oct(x::Unsigned, pad::Int, neg::Bool)
m = div(top_set_bit(x) + 2, 3)
n = neg + max(pad, m)
a = StringMemory(n)
i = n
while i > neg
@inbounds a[i] = 0x30 + ((x % UInt8)::UInt8 & 0x7)
x >>= 0x3
i -= 1
end
neg && (@inbounds a[1] = 0x2d) # UInt8('-')
unsafe_takestring(a)
end
# 2-digit decimal characters ("00":"99")
const _dec_d100 = UInt16[
# generating expression: UInt16[(0x30 + i % 10) << 0x8 + (0x30 + i ÷ 10) for i = 0:99]
# 0 0, 0 1, 0 2, 0 3, and so on in little-endian
0x3030, 0x3130, 0x3230, 0x3330, 0x3430, 0x3530, 0x3630, 0x3730, 0x3830, 0x3930,
0x3031, 0x3131, 0x3231, 0x3331, 0x3431, 0x3531, 0x3631, 0x3731, 0x3831, 0x3931,
0x3032, 0x3132, 0x3232, 0x3332, 0x3432, 0x3532, 0x3632, 0x3732, 0x3832, 0x3932,
0x3033, 0x3133, 0x3233, 0x3333, 0x3433, 0x3533, 0x3633, 0x3733, 0x3833, 0x3933,
0x3034, 0x3134, 0x3234, 0x3334, 0x3434, 0x3534, 0x3634, 0x3734, 0x3834, 0x3934,
0x3035, 0x3135, 0x3235, 0x3335, 0x3435, 0x3535, 0x3635, 0x3735, 0x3835, 0x3935,
0x3036, 0x3136, 0x3236, 0x3336, 0x3436, 0x3536, 0x3636, 0x3736, 0x3836, 0x3936,
0x3037, 0x3137, 0x3237, 0x3337, 0x3437, 0x3537, 0x3637, 0x3737, 0x3837, 0x3937,
0x3038, 0x3138, 0x3238, 0x3338, 0x3438, 0x3538, 0x3638, 0x3738, 0x3838, 0x3938,
0x3039, 0x3139, 0x3239, 0x3339, 0x3439, 0x3539, 0x3639, 0x3739, 0x3839, 0x3939
]
function append_c_digits(olength::Int, digits::Unsigned, buf, pos::Int)
i = olength
while i >= 2
d, c = divrem(digits, 0x64)
digits = oftype(digits, d)
@inbounds d100 = _dec_d100[(c % Int) + 1]
@inbounds buf[pos + i - 2] = d100 % UInt8
@inbounds buf[pos + i - 1] = (d100 >> 0x8) % UInt8
i -= 2
end
if i == 1
@inbounds buf[pos] = UInt8('0') + rem(digits, 0xa) % UInt8
i -= 1
end
return pos + olength
end
function append_nine_digits(digits::Unsigned, buf, pos::Int)
if digits == 0
for _ = 1:9
@inbounds buf[pos] = UInt8('0')
pos += 1
end
return pos
end
return @inline append_c_digits(9, digits, buf, pos) # force loop-unrolling on the length
end
function append_c_digits_fast(olength::Int, digits::Unsigned, buf, pos::Int)
i = olength
# n.b. olength may be larger than required to print all of `digits` (and will be padded
# with zeros), but the printed number will be undefined if it is smaller, and may include
# bits of both the high and low bytes.
maxpow10 = 0x3b9aca00 # 10e9 as UInt32
while i > 9 && digits > typemax(UInt)
# do everything in cheap math chunks, using the processor's native math size
d, c = divrem(digits, maxpow10)
digits = oftype(digits, d)
append_nine_digits(c % UInt32, buf, pos + i - 9)
i -= 9
end
append_c_digits(i, digits % UInt, buf, pos)
return pos + olength
end
function dec(x::Unsigned, pad::Int, neg::Bool)
n = neg + ndigits(x, pad=pad)
a = StringMemory(n)
append_c_digits_fast(n, x, a, 1)
neg && (@inbounds a[1] = 0x2d) # UInt8('-')
unsafe_takestring(a)
end
function hex(x::Unsigned, pad::Int, neg::Bool)
m = 2 * sizeof(x) - (leading_zeros(x) >> 2)
n = neg + max(pad, m)
a = StringMemory(n)
i = n
while i >= 2
b = (x % UInt8)::UInt8
d1, d2 = b >> 0x4, b & 0xf
@inbounds a[i-1] = d1 + ifelse(d1 > 0x9, 0x57, 0x30)
@inbounds a[i] = d2 + ifelse(d2 > 0x9, 0x57, 0x30)
x >>= 0x8
i -= 2
end
if i > neg
d = (x % UInt8)::UInt8 & 0xf
@inbounds a[i] = d + ifelse(d > 0x9, 0x57, 0x30)
end
neg && (@inbounds a[1] = 0x2d) # UInt8('-')
unsafe_takestring(a)
end
const base36digits = UInt8['0':'9';'a':'z']
const base62digits = UInt8['0':'9';'A':'Z';'a':'z']
function _base(base::Integer, x::Integer, pad::Int, neg::Bool)
(x >= 0) | (base < 0) || throw(DomainError(x, "For negative `x`, `base` must be negative."))
2 <= abs(base) <= 62 || throw(DomainError(base, "base must satisfy 2 ≤ abs(base) ≤ 62"))
b = (base % Int)::Int
digits = abs(b) <= 36 ? base36digits : base62digits
n = neg + ndigits(x, base=b, pad=pad)
a = StringMemory(n)
i = n
@inbounds while i > neg
if b > 0
a[i] = digits[1 + (rem(x, b) % Int)::Int]
x = div(x,b)
else
a[i] = digits[1 + (mod(x, -b) % Int)::Int]
x = cld(x,b)
end
i -= 1
end
neg && (@inbounds a[1] = 0x2d) # UInt8('-')
unsafe_takestring(a)
end
split_sign(n::Integer) = unsigned(abs(n)), n < 0
split_sign(n::Unsigned) = n, false
"""
string(n::Integer; base::Integer = 10, pad::Integer = 1)
Convert an integer `n` to a string in the given `base`,
optionally specifying a number of digits to pad to.
See also [`digits`](@ref), [`bitstring`](@ref), [`count_zeros`](@ref).
# Examples
```jldoctest
julia> string(5, base = 13, pad = 4)
"0005"
julia> string(-13, base = 5, pad = 4)
"-0023"
```
"""
function string(n::Integer; base::Integer = 10, pad::Integer = 1)
pad = (min(max(pad, typemin(Int)), typemax(Int)) % Int)::Int
if base == 2
(n_positive, neg) = split_sign(n)
bin(n_positive, pad, neg)
elseif base == 8
(n_positive, neg) = split_sign(n)
oct(n_positive, pad, neg)
elseif base == 10
(n_positive, neg) = split_sign(n)
dec(n_positive, pad, neg)
elseif base == 16
(n_positive, neg) = split_sign(n)
hex(n_positive, pad, neg)
else
_base(base, base > 0 ? unsigned(abs(n)) : convert(Signed, n), pad, (base>0) & (n<0))
end
end
string(b::Bool) = b ? "true" : "false"
"""
bitstring(n)
A string giving the literal bit representation of a primitive type
(in bigendian order, i.e. most-significant bit first).
See also [`count_ones`](@ref), [`count_zeros`](@ref), [`digits`](@ref).
# Examples
```jldoctest
julia> bitstring(Int32(4))
"00000000000000000000000000000100"
julia> bitstring(2.2)
"0100000000000001100110011001100110011001100110011001100110011010"
```
"""
function bitstring(x::T) where {T}
isprimitivetype(T) || throw(ArgumentError(LazyString(T, " not a primitive type")))
sz = sizeof(T) * 8