-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathabstractset.jl
343 lines (277 loc) · 6.87 KB
/
abstractset.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# This file is a part of Julia. License is MIT: https://julialang.org/license
eltype(::Type{<:AbstractSet{T}}) where {T} = @isdefined(T) ? T : Any
sizehint!(s::AbstractSet, n) = nothing
copy!(dst::AbstractSet, src::AbstractSet) = union!(empty!(dst), src)
"""
union(s, itrs...)
∪(s, itrs...)
Construct the union of sets. Maintain order with arrays.
# Examples
```jldoctest
julia> union([1, 2], [3, 4])
4-element Array{Int64,1}:
1
2
3
4
julia> union([1, 2], [2, 4])
3-element Array{Int64,1}:
1
2
4
julia> union([4, 2], 1:2)
3-element Array{Int64,1}:
4
2
1
julia> union(Set([1, 2]), 2:3)
Set([2, 3, 1])
```
"""
function union end
_in(itr) = x -> x in itr
union(s, sets...) = union!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
union(s::AbstractSet) = copy(s)
const ∪ = union
"""
union!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the union of passed in sets and overwrite `s` with the result.
Maintain order with arrays.
# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);
julia> union!(a, 1:2:8);
julia> a
Set([7, 4, 3, 5, 1])
```
"""
function union!(s::AbstractSet, sets...)
for x in sets
union!(s, x)
end
return s
end
max_values(::Type) = typemax(Int)
max_values(T::Union{map(X -> Type{X}, BitIntegerSmall_types)...}) = 1 << (8*sizeof(T))
# saturated addition to prevent overflow with typemax(Int)
max_values(T::Union) = max(max_values(T.a), max_values(T.b), max_values(T.a) + max_values(T.b))
max_values(::Type{Bool}) = 2
max_values(::Type{Nothing}) = 1
function union!(s::AbstractSet{T}, itr) where T
haslength(itr) && sizehint!(s, length(s) + length(itr))
for x=itr
push!(s, x)
length(s) == max_values(T) && break
end
s
end
"""
intersect(s, itrs...)
∩(s, itrs...)
Construct the intersection of sets.
Maintain order with arrays.
# Examples
```jldoctest
julia> intersect([1, 2, 3], [3, 4, 5])
1-element Array{Int64,1}:
3
julia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])
2-element Array{Int64,1}:
4
6
julia> intersect(Set([1, 2]), BitSet([2, 3]))
Set([2])
```
"""
intersect(s::AbstractSet, itr, itrs...) = intersect!(intersect(s, itr), itrs...)
intersect(s) = union(s)
intersect(s::AbstractSet, itr) = mapfilter(_in(s), push!, itr, emptymutable(s))
const ∩ = intersect
"""
intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)
Intersect all passed in sets and overwrite `s` with the result.
Maintain order with arrays.
"""
function intersect!(s::AbstractSet, itrs...)
for x in itrs
intersect!(s, x)
end
return s
end
intersect!(s::AbstractSet, s2::AbstractSet) = filter!(_in(s2), s)
intersect!(s::AbstractSet, itr) =
intersect!(s, union!(emptymutable(s, eltype(itr)), itr))
"""
setdiff(s, itrs...)
Construct the set of elements in `s` but not in any of the iterables in `itrs`.
Maintain order with arrays.
# Examples
```jldoctest
julia> setdiff([1,2,3], [3,4,5])
2-element Array{Int64,1}:
1
2
```
"""
setdiff(s::AbstractSet, itrs...) = setdiff!(copymutable(s), itrs...)
setdiff(s) = union(s)
"""
setdiff!(s, itrs...)
Remove from set `s` (in-place) each element of each iterable from `itrs`.
Maintain order with arrays.
# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);
julia> setdiff!(a, 1:2:6);
julia> a
Set([4])
```
"""
function setdiff!(s::AbstractSet, itrs...)
for x in itrs
setdiff!(s, x)
end
return s
end
function setdiff!(s::AbstractSet, itr)
for x in itr
delete!(s, x)
end
return s
end
"""
symdiff(s, itrs...)
Construct the symmetric difference of elements in the passed in sets.
When `s` is not an `AbstractSet`, the order is maintained.
Note that in this case the multiplicity of elements matters.
# Examples
```jldoctest
julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Array{Int64,1}:
1
2
6
julia> symdiff([1,2,1], [2, 1, 2])
2-element Array{Int64,1}:
1
2
julia> symdiff(unique([1,2,1]), unique([2, 1, 2]))
0-element Array{Int64,1}
```
"""
symdiff(s, sets...) = symdiff!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
symdiff(s) = symdiff!(copy(s))
"""
symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the symmetric difference of the passed in sets, and overwrite `s` with the result.
When `s` is an array, the order is maintained.
Note that in this case the multiplicity of elements matters.
"""
function symdiff!(s::AbstractSet, itrs...)
for x in itrs
symdiff!(s, x)
end
return s
end
function symdiff!(s::AbstractSet, itr)
for x in itr
x in s ? delete!(s, x) : push!(s, x)
end
s
end
==(l::AbstractSet, r::AbstractSet) = length(l) == length(r) && l ⊆ r
# convenience functions for AbstractSet
# (if needed, only their synonyms ⊊ and ⊆ must be specialized)
<( l::AbstractSet, r::AbstractSet) = l ⊊ r
<=(l::AbstractSet, r::AbstractSet) = l ⊆ r
function issubset(l, r)
if haslength(r)
rlen = length(r)
#This threshold was empirically determined by repeatedly
#sampling using these two methods (see #26198)
lenthresh = 70
if rlen > lenthresh && !isa(r, AbstractSet)
return issubset(l, Set(r))
end
end
for elt in l
if !in(elt, r)
return false
end
end
return true
end
# use the implementation below when it becomes as efficient
# issubset(l, r) = all(_in(r), l)
const ⊆ = issubset
⊇(l, r) = r ⊆ l
"""
issubset(a, b)
⊆(a,b) -> Bool
⊇(b, a) -> Bool
Determine whether every element of `a` is also in `b`, using [`in`](@ref).
# Examples
```jldoctest
julia> issubset([1, 2], [1, 2, 3])
true
julia> [1, 2, 3] ⊆ [1, 2]
false
julia> [1, 2, 3] ⊇ [1, 2]
true
```
"""
issubset, ⊆, ⊇
"""
issetequal(a, b)
Determine whether `a` and `b` have the same elements. Equivalent
to `a ⊆ b && b ⊆ a`.
# Examples
```jldoctest
julia> issetequal([1, 2], [1, 2, 3])
false
julia> issetequal([1, 2], [2, 1])
true
```
"""
issetequal(l, r) = length(l) == length(r) && l ⊆ r
issetequal(l::AbstractSet, r::AbstractSet) = l == r
⊊(l, r) = length(l) < length(r) && l ⊆ r
⊋(l, r) = r ⊊ l
"""
⊊(a, b)
⊋(b, a)
Determines if `a` is a subset of, but not equal to, `b`.
# Examples
```jldoctest
julia> (1, 2) ⊊ (1, 2, 3)
true
julia> (1, 2) ⊊ (1, 2)
false
```
"""
⊊, ⊋
⊈(l, r) = !⊆(l, r)
⊉(l, r) = r ⊈ l
"""
⊈(a, b)
⊉(b, a)
Negation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.
# Examples
```jldoctest
julia> (1, 2) ⊈ (2, 3)
true
julia> (1, 2) ⊈ (1, 2, 3)
false
```
"""
⊈, ⊉
filter(pred, s::AbstractSet) = mapfilter(pred, push!, s, emptymutable(s))
# it must be safe to delete the current element while iterating over s:
unsafe_filter!(pred, s::AbstractSet) = mapfilter(!pred, delete!, s, s)
# TODO: delete mapfilter in favor of comprehensions/foldl/filter when competitive
function mapfilter(pred, f, itr, res)
for x in itr
pred(x) && f(res, x)
end
res
end