-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
floatfuncs.jl
319 lines (257 loc) · 11.2 KB
/
floatfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# This file is a part of Julia. License is MIT: https://julialang.org/license
## floating-point functions ##
copysign(x::Float64, y::Float64) = copysign_float(x, y)
copysign(x::Float32, y::Float32) = copysign_float(x, y)
copysign(x::Float32, y::Real) = copysign(x, Float32(y))
copysign(x::Float64, y::Real) = copysign(x, Float64(y))
flipsign(x::Float64, y::Float64) = bitcast(Float64, xor_int(bitcast(UInt64, x), and_int(bitcast(UInt64, y), 0x8000000000000000)))
flipsign(x::Float32, y::Float32) = bitcast(Float32, xor_int(bitcast(UInt32, x), and_int(bitcast(UInt32, y), 0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, Float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, Float64(y))
signbit(x::Float64) = signbit(bitcast(Int64, x))
signbit(x::Float32) = signbit(bitcast(Int32, x))
signbit(x::Float16) = signbit(bitcast(Int16, x))
"""
maxintfloat(T=Float64)
The largest consecutive integer that is exactly represented in the given floating-point type `T`
(which defaults to `Float64`).
That is, `maxintfloat` returns the smallest positive integer `n` such that `n+1`
is *not* exactly representable in the type `T`.
"""
maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = Float32(16777216.)
maxintfloat(::Type{Float16}) = Float16(2048f0)
maxintfloat(x::T) where {T<:AbstractFloat} = maxintfloat(T)
"""
maxintfloat(T, S)
The largest consecutive integer representable in the given floating-point type `T` that
also does not exceed the maximum integer representable by the integer type `S`. Equivalently,
it is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).
"""
maxintfloat(::Type{S}, ::Type{T}) where {S<:AbstractFloat, T<:Integer} = min(maxintfloat(S), S(typemax(T)))
maxintfloat() = maxintfloat(Float64)
isinteger(x::AbstractFloat) = (x - trunc(x) == 0)
"""
round([T,] x, [r::RoundingMode])
round(x, [r::RoundingMode]; digits::Integer=0, base = 10)
round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the number `x`.
Without keyword arguments, `x` is rounded to an integer value, returning a value of type
`T`, or of the same type of `x` if no `T` is provided. An [`InexactError`](@ref) will be
thrown if the value is not representable by `T`, similar to [`convert`](@ref).
If the `digits` keyword argument is provided, it rounds to the specified number of digits
after the decimal place (or before if negative), in base `base`.
If the `sigdigits` keyword argument is provided, it rounds to the specified number of
significant digits, in base `base`.
The [`RoundingMode`](@ref) `r` controls the direction of the rounding; the default is
[`RoundNearest`](@ref), which rounds to the nearest integer, with ties (fractional values
of 0.5) being rounded to the nearest even integer. Note that `round` may give incorrect
results if the global rounding mode is changed (see [`rounding`](@ref)).
# Examples
```jldoctest
julia> round(1.7)
2.0
julia> round(Int, 1.7)
2
julia> round(1.5)
2.0
julia> round(2.5)
2.0
julia> round(pi; digits=2)
3.14
julia> round(pi; digits=3, base=2)
3.125
julia> round(123.456; sigdigits=2)
120.0
julia> round(357.913; sigdigits=4, base=2)
352.0
```
!!! note
Rounding to specified digits in bases other than 2 can be inexact when
operating on binary floating point numbers. For example, the [`Float64`](@ref)
value represented by `1.15` is actually *less* than 1.15, yet will be
rounded to 1.2.
# Examples
```jldoctest; setup = :(using Printf)
julia> x = 1.15
1.15
julia> @sprintf "%.20f" x
"1.14999999999999991118"
julia> x < 115//100
true
julia> round(x, 1)
1.2
```
# Extensions
To extend `round` to new numeric types, it is typically sufficient to define `Base.round(x::NewType, r::RoundingMode)`.
"""
round(T::Type, x)
round(::Type{T}, x::AbstractFloat, r::RoundingMode{:ToZero}) where {T<:Integer} = trunc(T, x)
round(::Type{T}, x::AbstractFloat, r::RoundingMode) where {T<:Integer} = trunc(T, round(x,r))
# NOTE: this relies on the current keyword dispatch behaviour (#9498).
function round(x::Real, r::RoundingMode=RoundNearest;
digits::Union{Nothing,Integer}=nothing, sigdigits::Union{Nothing,Integer}=nothing, base=10)
isfinite(x) || return x
_round(x,r,digits,sigdigits,base)
end
trunc(x::Real; kwargs...) = round(x, RoundToZero; kwargs...)
floor(x::Real; kwargs...) = round(x, RoundDown; kwargs...)
ceil(x::Real; kwargs...) = round(x, RoundUp; kwargs...)
# avoid recursive calls
round(x::Real, r::RoundingMode) = throw(MethodError(round, (x,r)))
round(x::Integer, r::RoundingMode) = x
_round(x, r::RoundingMode, digits::Nothing, sigdigits::Nothing, base) = round(x, r)
# round x to multiples of 1/invstep
function _round_invstep(x, invstep, r::RoundingMode)
y = round(x * invstep, r) / invstep
if !isfinite(y)
return x
end
return y
end
# round x to multiples of step
function _round_step(x, step, r::RoundingMode)
# TODO: use div with rounding mode
y = round(x / step, r) * step
if !isfinite(y)
if x > 0
return (r == RoundUp ? oftype(x, Inf) : zero(x))
elseif x < 0
return (r == RoundDown ? -oftype(x, Inf) : -zero(x))
else
return x
end
end
return y
end
function _round(x, r::RoundingMode, digits::Integer, sigdigits::Nothing, base)
fx = float(x)
if digits >= 0
invstep = oftype(fx, base)^digits
_round_invstep(fx, invstep, r)
else
step = oftype(fx, base)^-digits
_round_step(fx, step, r)
end
end
hidigit(x::Integer, base) = ndigits0z(x, base)
function hidigit(x::AbstractFloat, base)
iszero(x) && return 0
if base == 10
return 1 + floor(Int, log10(abs(x)))
elseif base == 2
return 1 + exponent(x)
else
return 1 + floor(Int, log(base, abs(x)))
end
end
hidigit(x::Real, base) = hidigit(float(x), base)
function _round(x, r::RoundingMode, digits::Nothing, sigdigits::Integer, base)
h = hidigit(x, base)
_round(x, r, sigdigits-h, nothing, base)
end
_round(x, r::RoundingMode, digits::Integer, sigdigits::Integer, base) =
throw(ArgumentError("`round` cannot use both `digits` and `sigdigits` arguments."))
# C-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesAway})
y = trunc(x)
ifelse(x==y,y,trunc(2*x-y))
end
# Java-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesUp})
y = floor(x)
ifelse(x==y,y,copysign(floor(2*x-y),x))
end
# isapprox: approximate equality of numbers
"""
isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)
Inexact equality comparison: `true` if `norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The
default `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword
argument `nans` determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to
the square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).
This corresponds to requiring equality of about half of the significand digits. Otherwise,
e.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.
`x` and `y` may also be arrays of numbers, in which case `norm` defaults to `vecnorm` but
may be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the
same thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`
or `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are
approximately equal component-wise.
The binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`
is equivalent to `!isapprox(x,y)`.
Note that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is
equivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either
supply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.
use `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`
automatically because it depends on the overall scaling (the "units") of your problem:
for example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the
[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,
but an absurdly large tolerance if `x` is the
[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.
# Examples
```jldoctest
julia> 0.1 ≈ (0.1 - 1e-10)
true
julia> isapprox(10, 11; atol = 2)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])
true
julia> 1e-10 ≈ 0
false
julia> isapprox(1e-10, 0, atol=1e-8)
true
```
"""
function isapprox(x::Number, y::Number; atol::Real=0, rtol::Real=rtoldefault(x,y,atol), nans::Bool=false)
x == y || (isfinite(x) && isfinite(y) && abs(x-y) <= max(atol, rtol*max(abs(x), abs(y)))) || (nans && isnan(x) && isnan(y))
end
const ≈ = isapprox
"""
x ≉ y
This is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).
"""
≉(args...; kws...) = !≈(args...; kws...)
# default tolerance arguments
rtoldefault(::Type{T}) where {T<:AbstractFloat} = sqrt(eps(T))
rtoldefault(::Type{<:Real}) = 0
function rtoldefault(x::Union{T,Type{T}}, y::Union{S,Type{S}}, atol::Real) where {T<:Number,S<:Number}
rtol = max(rtoldefault(real(T)),rtoldefault(real(S)))
return atol > 0 ? zero(rtol) : rtol
end
# fused multiply-add
"""
fma(x, y, z)
Computes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is
significantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain
algorithms. See [`muladd`](@ref).
"""
function fma end
fma_libm(x::Float32, y::Float32, z::Float32) =
ccall(("fmaf", libm_name), Float32, (Float32,Float32,Float32), x, y, z)
fma_libm(x::Float64, y::Float64, z::Float64) =
ccall(("fma", libm_name), Float64, (Float64,Float64,Float64), x, y, z)
fma_llvm(x::Float32, y::Float32, z::Float32) = fma_float(x, y, z)
fma_llvm(x::Float64, y::Float64, z::Float64) = fma_float(x, y, z)
# Disable LLVM's fma if it is incorrect, e.g. because LLVM falls back
# onto a broken system libm; if so, use openlibm's fma instead
# 1.0000305f0 = 1 + 1/2^15
# 1.0000000009313226 = 1 + 1/2^30
# If fma_llvm() clobbers the rounding mode, the result of 0.1 + 0.2 will be 0.3
# instead of the properly-rounded 0.30000000000000004; check after calling fma
if (Sys.ARCH != :i686 && fma_llvm(1.0000305f0, 1.0000305f0, -1.0f0) == 6.103609f-5 &&
(fma_llvm(1.0000000009313226, 1.0000000009313226, -1.0) ==
1.8626451500983188e-9) && 0.1 + 0.2 == 0.30000000000000004)
fma(x::Float32, y::Float32, z::Float32) = fma_llvm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_llvm(x,y,z)
else
fma(x::Float32, y::Float32, z::Float32) = fma_libm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_libm(x,y,z)
end
function fma(a::Float16, b::Float16, c::Float16)
Float16(fma(Float32(a), Float32(b), Float32(c)))
end
# This is necessary at least on 32-bit Intel Linux, since fma_llvm may
# have called glibc, and some broken glibc fma implementations don't
# properly restore the rounding mode
Rounding.setrounding_raw(Float32, Rounding.JL_FE_TONEAREST)
Rounding.setrounding_raw(Float64, Rounding.JL_FE_TONEAREST)