-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathabstractarray.jl
1200 lines (1049 loc) · 39.3 KB
/
abstractarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: http://julialang.org/license
## Type aliases for convenience ##
typealias AbstractVector{T} AbstractArray{T,1}
typealias AbstractMatrix{T} AbstractArray{T,2}
typealias AbstractVecOrMat{T} Union{AbstractVector{T}, AbstractMatrix{T}}
typealias RangeIndex Union{Int, Range{Int}, UnitRange{Int}, Colon}
## Basic functions ##
vect() = Array{Any}(0)
vect{T}(X::T...) = T[ X[i] for i=1:length(X) ]
function vect(X...)
T = promote_typeof(X...)
#T[ X[i] for i=1:length(X) ]
# TODO: this is currently much faster. should figure out why. not clear.
copy!(Array{T}(length(X)), X)
end
size{T,N}(t::AbstractArray{T,N}, d) = d <= N ? size(t)[d] : 1
size{N}(x, d1::Integer, d2::Integer, dx::Vararg{Integer, N}) = (size(x, d1), size(x, d2), ntuple(k->size(x, dx[k]), Val{N})...)
eltype{T}(::Type{AbstractArray{T}}) = T
eltype{T,N}(::Type{AbstractArray{T,N}}) = T
elsize{T}(::AbstractArray{T}) = sizeof(T)
ndims{T,N}(::AbstractArray{T,N}) = N
ndims{T,N}(::Type{AbstractArray{T,N}}) = N
ndims{T<:AbstractArray}(::Type{T}) = ndims(supertype(T))
length(t::AbstractArray) = prod(size(t))::Int
endof(a::AbstractArray) = length(a)
first(a::AbstractArray) = a[first(eachindex(a))]
function first(itr)
state = start(itr)
done(itr, state) && throw(ArgumentError("collection must be non-empty"))
next(itr, state)[1]
end
last(a) = a[end]
function stride(a::AbstractArray, i::Integer)
if i > ndims(a)
return length(a)
end
s = 1
for n=1:(i-1)
s *= size(a, n)
end
return s
end
strides(a::AbstractArray) = ntuple(i->stride(a,i), ndims(a))::Dims
function isassigned(a::AbstractArray, i::Int...)
# TODO
try
a[i...]
true
catch
false
end
end
# used to compute "end" for last index
function trailingsize(A, n)
s = 1
for i=n:ndims(A)
s *= size(A,i)
end
return s
end
## Traits for array types ##
abstract LinearIndexing
immutable LinearFast <: LinearIndexing end
immutable LinearSlow <: LinearIndexing end
linearindexing(A::AbstractArray) = linearindexing(typeof(A))
linearindexing{T<:AbstractArray}(::Type{T}) = LinearSlow()
linearindexing{T<:Array}(::Type{T}) = LinearFast()
linearindexing{T<:Range}(::Type{T}) = LinearFast()
linearindexing(A::AbstractArray, B::AbstractArray) = linearindexing(linearindexing(A), linearindexing(B))
linearindexing(A::AbstractArray, B::AbstractArray...) = linearindexing(linearindexing(A), linearindexing(B...))
linearindexing(::LinearFast, ::LinearFast) = LinearFast()
linearindexing(::LinearIndexing, ::LinearIndexing) = LinearSlow()
## Bounds checking ##
@generated function trailingsize{T,N,n}(A::AbstractArray{T,N}, ::Type{Val{n}})
n > N && return 1
ex = :(size(A, $n))
for m = n+1:N
ex = :($ex * size(A, $m))
end
Expr(:block, Expr(:meta, :inline), ex)
end
# check along a single dimension
checkbounds(::Type{Bool}, sz::Integer, i) = throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))"))
checkbounds(::Type{Bool}, sz::Integer, i::Real) = 1 <= i <= sz
checkbounds(::Type{Bool}, sz::Integer, ::Colon) = true
function checkbounds(::Type{Bool}, sz::Integer, r::Range)
@_propagate_inbounds_meta
isempty(r) | (checkbounds(Bool, sz, first(r)) & checkbounds(Bool, sz, last(r)))
end
checkbounds{N}(::Type{Bool}, sz::Integer, I::AbstractArray{Bool,N}) = N == 1 && length(I) == sz
function checkbounds(::Type{Bool}, sz::Integer, I::AbstractArray)
@_inline_meta
b = true
for i in I
b &= checkbounds(Bool, sz, i)
end
b
end
# check all dimensions
function checkbounds{N,T}(::Type{Bool}, sz::NTuple{N,Integer}, I1::T, I...)
@_inline_meta
checkbounds(Bool, sz[1], I1) & checkbounds(Bool, tail(sz), I...)
end
checkbounds{T<:Integer}(::Type{Bool}, sz::Tuple{T}, I1) = (@_inline_meta; checkbounds(Bool, sz[1], I1))
checkbounds{N}(::Type{Bool}, sz::NTuple{N,Integer}, I1) = (@_inline_meta; checkbounds(Bool, prod(sz), I1))
checkbounds{N}(::Type{Bool}, sz::NTuple{N,Integer}) = (@_inline_meta; checkbounds(Bool, sz, 1)) # for a[]
checkbounds(::Type{Bool}, sz::Tuple{}, i) = (@_inline_meta; checkbounds(Bool, 1, i))
function checkbounds(::Type{Bool}, sz::Tuple{}, i, I...)
@_inline_meta
checkbounds(Bool, 1, i) & checkbounds(Bool, (), I...)
end
# Prevent allocation of a GC frame by hiding the BoundsError in a noinline function
throw_boundserror(A, I) = (@_noinline_meta; throw(BoundsError(A, I)))
# Don't define index types on checkbounds to make extending easier
checkbounds(A::AbstractArray, I...) = (@_inline_meta; _internal_checkbounds(A, I...))
# The internal function is named _internal_checkbounds since there had been a
# _checkbounds previously that meant something different.
_internal_checkbounds(A::AbstractArray) = _internal_checkbounds(A,1)
_internal_checkbounds(A::AbstractArray, I::AbstractArray{Bool}) = size(A) == size(I) || throw_boundserror(A, I)
_internal_checkbounds(A::AbstractArray, I::AbstractVector{Bool}) = length(A) == length(I) || throw_boundserror(A, I)
function _internal_checkbounds(A::AbstractArray, I1, I...)
# having I1 seems important for good codegen
@_inline_meta
checkbounds(Bool, size(A), I1, I...) || throw_boundserror(A, (I1, I...))
end
# See also specializations in multidimensional
## Constructors ##
# default arguments to similar()
similar{T}(a::AbstractArray{T}) = similar(a, T)
similar( a::AbstractArray, T::Type) = similar(a, T, size(a))
similar{T}(a::AbstractArray{T}, dims::DimsInteger) = similar(a, T, dims)
similar{T}(a::AbstractArray{T}, dims::Integer...) = similar(a, T, dims)
similar( a::AbstractArray, T::Type, dims::Integer...) = similar(a, T, dims)
# similar creates an Array by default
similar( a::AbstractArray, T::Type, dims::DimsInteger) = similar(a, T, convert(Dims, dims))
similar( a::AbstractArray, T::Type, dims::Dims) = Array{T}(dims)
## from general iterable to any array
function copy!(dest::AbstractArray, src)
i = 1
for x in src
dest[i] = x
i += 1
end
return dest
end
# if src is not an AbstractArray, moving to the offset might be O(n)
function copy!(dest::AbstractArray, doffs::Integer, src)
doffs < 1 && throw(BoundsError(dest, doffs))
st = start(src)
i, dmax = doffs, length(dest)
while !done(src, st)
i > dmax && throw(BoundsError(dest, i))
val, st = next(src, st)
@inbounds dest[i] = val
i += 1
end
return dest
end
# copy from an some iterable object into an AbstractArray
function copy!(dest::AbstractArray, doffs::Integer, src, soffs::Integer)
if (doffs < 1) | (soffs < 1)
doffs < 1 && throw(BoundsError(dest, doffs))
throw(ArgumentError(string("source start offset (",soffs,") is < 1")))
end
st = start(src)
for j = 1:(soffs-1)
if done(src, st)
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",soffs,", got ",j-1)))
end
_, st = next(src, st)
end
dn = done(src, st)
if dn
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",soffs,", got ",soffs-1)))
end
i, dmax = doffs, length(dest)
while !dn
i > dmax && throw(BoundsError(dest, i))
val, st = next(src, st)
@inbounds dest[i] = val
i += 1
dn = done(src, st)
end
return dest
end
# this method must be separate from the above since src might not have a length
function copy!(dest::AbstractArray, doffs::Integer, src, soffs::Integer, n::Integer)
n < 0 && throw(BoundsError(dest, n))
n == 0 && return dest
dmax = doffs + n - 1
if (dmax > length(dest)) | (doffs < 1) | (soffs < 1)
doffs < 1 && throw(BoundsError(dest, doffs))
soffs < 1 && throw(ArgumentError(string("source start offset (",soffs,") is < 1")))
throw(BoundsError(dest, dmax))
end
st = start(src)
for j = 1:(soffs-1)
if done(src, st)
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",soffs,", got ",j-1)))
end
_, st = next(src, st)
end
i = doffs
while i <= dmax && !done(src, st)
val, st = next(src, st)
@inbounds dest[i] = val
i += 1
end
i <= dmax && throw(BoundsError(dest, i))
return dest
end
## copy between abstract arrays - generally more efficient
## since a single index variable can be used.
copy!(dest::AbstractArray, src::AbstractArray) =
copy!(linearindexing(dest), dest, linearindexing(src), src)
function copy!(::LinearIndexing, dest::AbstractArray, ::LinearIndexing, src::AbstractArray)
n = length(src)
n > length(dest) && throw(BoundsError(dest, n))
@inbounds for i = 1:n
dest[i] = src[i]
end
return dest
end
function copy!(::LinearIndexing, dest::AbstractArray, ::LinearSlow, src::AbstractArray)
n = length(src)
n > length(dest) && throw(BoundsError(dest, n))
i = 0
@inbounds for a in src
dest[i+=1] = a
end
return dest
end
function copy!(dest::AbstractArray, doffs::Integer, src::AbstractArray)
copy!(dest, doffs, src, 1, length(src))
end
function copy!(dest::AbstractArray, doffs::Integer, src::AbstractArray, soffs::Integer)
soffs > length(src) && throw(BoundsError(src, soffs))
copy!(dest, doffs, src, soffs, length(src)-soffs+1)
end
function copy!(dest::AbstractArray, doffs::Integer,
src::AbstractArray, soffs::Integer,
n::Integer)
n == 0 && return dest
n < 0 && throw(BoundsError(src, n))
soffs+n-1 > length(src) && throw(BoundsError(src, soffs+n-1))
doffs+n-1 > length(dest) && throw(BoundsError(dest, doffs+n-1))
doffs < 1 && throw(BoundsError(dest, doffs))
soffs < 1 && throw(BoundsError(src, soffs))
@inbounds for i = 0:(n-1) #Fixme iter
dest[doffs+i] = src[soffs+i]
end
return dest
end
copy(a::AbstractArray) = copymutable(a)
function copy!{R,S}(B::AbstractVecOrMat{R}, ir_dest::Range{Int}, jr_dest::Range{Int},
A::AbstractVecOrMat{S}, ir_src::Range{Int}, jr_src::Range{Int})
if length(ir_dest) != length(ir_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(ir_src)," and ",length(ir_dest),")")))
end
if length(jr_dest) != length(jr_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(jr_src)," and ",length(jr_dest),")")))
end
@boundscheck checkbounds(B, ir_dest, jr_dest)
@boundscheck checkbounds(A, ir_src, jr_src)
jdest = first(jr_dest)
for jsrc in jr_src
idest = first(ir_dest)
for isrc in ir_src
B[idest,jdest] = A[isrc,jsrc]
idest += step(ir_dest)
end
jdest += step(jr_dest)
end
return B
end
function copy_transpose!{R,S}(B::AbstractVecOrMat{R}, ir_dest::Range{Int}, jr_dest::Range{Int},
A::AbstractVecOrMat{S}, ir_src::Range{Int}, jr_src::Range{Int})
if length(ir_dest) != length(jr_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(jr_src)," and ",length(ir_dest),")")))
end
if length(jr_dest) != length(ir_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(ir_src)," and ",length(jr_dest),")")))
end
@boundscheck checkbounds(B, ir_dest, jr_dest)
@boundscheck checkbounds(A, ir_src, jr_src)
idest = first(ir_dest)
for jsrc in jr_src
jdest = first(jr_dest)
for isrc in ir_src
B[idest,jdest] = A[isrc,jsrc]
jdest += step(jr_dest)
end
idest += step(ir_dest)
end
return B
end
copymutable(a::AbstractArray) = copy!(similar(a), a)
copymutable(itr) = collect(itr)
"""
copymutable(a)
Make a mutable copy of an array or iterable `a`. For `a::Array`,
this is equivalent to `copy(a)`, but for other array types it may
differ depending on the type of `similar(a)`. For generic iterables
this is equivalent to `collect(a)`.
"""
copymutable
zero{T}(x::AbstractArray{T}) = fill!(similar(x), zero(T))
## iteration support for arrays by iterating over `eachindex` in the array ##
# Allows fast iteration by default for both LinearFast and LinearSlow arrays
# While the definitions for LinearFast are all simple enough to inline on their
# own, LinearSlow's CartesianRange is more complicated and requires explicit
# inlining.
start(A::AbstractArray) = (@_inline_meta(); itr = eachindex(A); (itr, start(itr)))
next(A::AbstractArray,i) = (@_inline_meta(); (idx, s) = next(i[1], i[2]); (A[idx], (i[1], s)))
done(A::AbstractArray,i) = done(i[1], i[2])
# eachindex iterates over all indices. LinearSlow definitions are later.
eachindex(A::AbstractArray) = (@_inline_meta(); eachindex(linearindexing(A), A))
function eachindex(A::AbstractArray, B::AbstractArray)
@_inline_meta
eachindex(linearindexing(A,B), A, B)
end
function eachindex(A::AbstractArray, B::AbstractArray...)
@_inline_meta
eachindex(linearindexing(A,B...), A, B...)
end
eachindex(::LinearFast, A::AbstractArray) = 1:length(A)
function eachindex(::LinearFast, A::AbstractArray, B::AbstractArray...)
@_inline_meta
1:_maxlength(A, B...)
end
_maxlength(A) = length(A)
function _maxlength(A, B, C...)
@_inline_meta
max(length(A), _maxlength(B, C...))
end
isempty(a::AbstractArray) = (length(a) == 0)
## Conversions ##
convert{T,N }(::Type{AbstractArray{T,N}}, A::AbstractArray{T,N}) = A
convert{T,S,N}(::Type{AbstractArray{T,N}}, A::AbstractArray{S,N}) = copy!(similar(A,T), A)
convert{T,S,N}(::Type{AbstractArray{T }}, A::AbstractArray{S,N}) = convert(AbstractArray{T,N}, A)
convert{T,N}(::Type{Array}, A::AbstractArray{T,N}) = convert(Array{T,N}, A)
full(x::AbstractArray) = x
map(::Type{Integer}, a::Array) = map!(Integer, similar(a,typeof(Integer(one(eltype(a))))), a)
map(::Type{Signed}, a::Array) = map!(Signed, similar(a,typeof(Signed(one(eltype(a))))), a)
map(::Type{Unsigned}, a::Array) = map!(Unsigned, similar(a,typeof(Unsigned(one(eltype(a))))), a)
## range conversions ##
map{T<:Real}(::Type{T}, r::StepRange) = T(r.start):T(r.step):T(last(r))
map{T<:Real}(::Type{T}, r::UnitRange) = T(r.start):T(last(r))
map{T<:AbstractFloat}(::Type{T}, r::FloatRange) = FloatRange(T(r.start), T(r.step), r.len, T(r.divisor))
function map{T<:AbstractFloat}(::Type{T}, r::LinSpace)
new_len = T(r.len)
new_len == r.len || error("$r: too long for $T")
LinSpace(T(r.start), T(r.stop), new_len, T(r.divisor))
end
## unsafe/pointer conversions ##
# note: the following type definitions don't mean any AbstractArray is convertible to
# a data Ref. they just map the array element type to the pointer type for
# convenience in cases that work.
pointer{T}(x::AbstractArray{T}) = unsafe_convert(Ptr{T}, x)
pointer{T}(x::AbstractArray{T}, i::Integer) = (@_inline_meta; unsafe_convert(Ptr{T},x) + (i-1)*elsize(x))
## Approach:
# We only define one fallback method on getindex for all argument types.
# That dispatches to an (inlined) internal _getindex function, where the goal is
# to transform the indices such that we can call the only getindex method that
# we require the type A{T,N} <: AbstractArray{T,N} to define; either:
# getindex(::A, ::Int) # if linearindexing(A) == LinearFast() OR
# getindex{T,N}(::A{T,N}, ::Vararg{Int, N}) # if LinearSlow()
# If the subtype hasn't defined the required method, it falls back to the
# _getindex function again where an error is thrown to prevent stack overflows.
function getindex(A::AbstractArray, I...)
@_propagate_inbounds_meta
_getindex(linearindexing(A), A, I...)
end
function unsafe_getindex(A::AbstractArray, I...)
@_inline_meta
@inbounds r = getindex(A, I...)
r
end
## Internal definitions
_getindex(::LinearIndexing, A::AbstractArray, I...) = error("indexing $(typeof(A)) with types $(typeof(I)) is not supported")
## LinearFast Scalar indexing: canonical method is one Int
_getindex(::LinearFast, A::AbstractArray, ::Int) = error("indexing not defined for ", typeof(A))
_getindex(::LinearFast, A::AbstractArray, i::Real) = (@_propagate_inbounds_meta; getindex(A, to_index(i)))
function _getindex{T,N}(::LinearFast, A::AbstractArray{T,N}, I::Vararg{Real,N})
# We must check bounds for sub2ind; so we can then use @inbounds
@_inline_meta
J = to_indexes(I...)
@boundscheck checkbounds(A, J...)
@inbounds r = getindex(A, sub2ind(size(A), J...))
r
end
function _getindex(::LinearFast, A::AbstractArray, I::Real...) # TODO: DEPRECATE FOR #14770
@_inline_meta
J = to_indexes(I...)
@boundscheck checkbounds(A, J...)
@inbounds r = getindex(A, sub2ind(size(A), J...))
r
end
## LinearSlow Scalar indexing: Canonical method is full dimensionality of Ints
_getindex{T,N}(::LinearSlow, A::AbstractArray{T,N}, ::Vararg{Int, N}) = error("indexing not defined for ", typeof(A))
_getindex{T,N}(::LinearSlow, A::AbstractArray{T,N}, I::Vararg{Real, N}) = (@_propagate_inbounds_meta; getindex(A, to_indexes(I...)...))
function _getindex(::LinearSlow, A::AbstractArray, i::Real)
# ind2sub requires all dimensions to be > 0; may as well just check bounds
@_inline_meta
@boundscheck checkbounds(A, i)
@inbounds r = getindex(A, ind2sub(size(A), to_index(i))...)
r
end
@generated function _getindex{T,AN}(::LinearSlow, A::AbstractArray{T,AN}, I::Real...) # TODO: DEPRECATE FOR #14770
N = length(I)
if N > AN
# Drop trailing ones
Isplat = Expr[:(I[$d]) for d = 1:AN]
Osplat = Expr[:(to_index(I[$d]) == 1) for d = AN+1:N]
quote
@_propagate_inbounds_meta
@boundscheck (&)($(Osplat...)) || throw_boundserror(A, I)
getindex(A, $(Isplat...))
end
else
# Expand the last index into the appropriate number of indices
Isplat = Expr[:(I[$d]) for d = 1:N-1]
sz = Expr(:tuple)
sz.args = Expr[:(size(A, $d)) for d=max(N,1):AN]
szcheck = Expr[:(size(A, $d) > 0) for d=max(N,1):AN]
last_idx = N > 0 ? :(to_index(I[$N])) : 1
quote
# ind2sub requires all dimensions to be > 0:
@_propagate_inbounds_meta
@boundscheck (&)($(szcheck...)) || throw_boundserror(A, I)
getindex(A, $(Isplat...), ind2sub($sz, $last_idx)...)
end
end
end
## Setindex! is defined similarly. We first dispatch to an internal _setindex!
# function that allows dispatch on array storage
function setindex!(A::AbstractArray, v, I...)
@_propagate_inbounds_meta
_setindex!(linearindexing(A), A, v, I...)
end
function unsafe_setindex!(A::AbstractArray, v, I...)
@_inline_meta
@inbounds r = setindex!(A, v, I...)
r
end
## Internal defitions
_setindex!(::LinearIndexing, A::AbstractArray, v, I...) = error("indexing $(typeof(A)) with types $(typeof(I)) is not supported")
## LinearFast Scalar indexing
_setindex!(::LinearFast, A::AbstractArray, v, ::Int) = error("indexed assignment not defined for ", typeof(A))
_setindex!(::LinearFast, A::AbstractArray, v, i::Real) = (@_propagate_inbounds_meta; setindex!(A, v, to_index(i)))
function _setindex!{T,N}(::LinearFast, A::AbstractArray{T,N}, v, I::Vararg{Real,N})
# We must check bounds for sub2ind; so we can then use @inbounds
@_inline_meta
J = to_indexes(I...)
@boundscheck checkbounds(A, J...)
@inbounds r = setindex!(A, v, sub2ind(size(A), J...))
r
end
function _setindex!(::LinearFast, A::AbstractArray, v, I::Real...) # TODO: DEPRECATE FOR #14770
@_inline_meta
J = to_indexes(I...)
@boundscheck checkbounds(A, J...)
@inbounds r = setindex!(A, v, sub2ind(size(A), J...))
r
end
# LinearSlow Scalar indexing
_setindex!{T,N}(::LinearSlow, A::AbstractArray{T,N}, v, ::Vararg{Int, N}) = error("indexed assignment not defined for ", typeof(A))
_setindex!{T,N}(::LinearSlow, A::AbstractArray{T,N}, v, I::Vararg{Real, N}) = (@_propagate_inbounds_meta; setindex!(A, v, to_indexes(I...)...))
function _setindex!(::LinearSlow, A::AbstractArray, v, i::Real)
# ind2sub requires all dimensions to be > 0; may as well just check bounds
@_inline_meta
@boundscheck checkbounds(A, i)
@inbounds r = setindex!(A, v, ind2sub(size(A), to_index(i))...)
r
end
@generated function _setindex!{T,AN}(::LinearSlow, A::AbstractArray{T,AN}, v, I::Real...) # TODO: DEPRECATE FOR #14770
N = length(I)
if N > AN
# Drop trailing ones
Isplat = Expr[:(I[$d]) for d = 1:AN]
Osplat = Expr[:(to_index(I[$d]) == 1) for d = AN+1:N]
quote
# We only check the trailing ones, so just propagate @inbounds state
@_propagate_inbounds_meta
@boundscheck (&)($(Osplat...)) || throw_boundserror(A, I)
setindex!(A, v, $(Isplat...))
end
else
# Expand the last index into the appropriate number of indices
Isplat = Expr[:(I[$d]) for d = 1:N-1]
sz = Expr(:tuple)
sz.args = Expr[:(size(A, $d)) for d=max(N,1):AN]
szcheck = Expr[:(size(A, $d) > 0) for d=max(N,1):AN]
last_idx = N > 0 ? :(to_index(I[$N])) : 1
quote
# ind2sub requires all dimensions to be > 0:
@_propagate_inbounds_meta
@boundscheck (&)($(szcheck...)) || throw_boundserror(A, I)
setindex!(A, v, $(Isplat...), ind2sub($sz, $last_idx)...)
end
end
end
## get (getindex with a default value) ##
typealias RangeVecIntList{A<:AbstractVector{Int}} Union{Tuple{Vararg{Union{Range, AbstractVector{Int}}}}, AbstractVector{UnitRange{Int}}, AbstractVector{Range{Int}}, AbstractVector{A}}
get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, length(A), i) ? A[i] : default
get(A::AbstractArray, I::Tuple{}, default) = similar(A, typeof(default), 0)
get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, size(A), I...) ? A[I...] : default
function get!{T}(X::AbstractArray{T}, A::AbstractArray, I::Union{Range, AbstractVector{Int}}, default::T)
ind = findin(I, 1:length(A))
X[ind] = A[I[ind]]
X[1:first(ind)-1] = default
X[last(ind)+1:length(X)] = default
X
end
get(A::AbstractArray, I::Range, default) = get!(similar(A, typeof(default), length(I)), A, I, default)
function get!{T}(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T)
fill!(X, default)
dst, src = indcopy(size(A), I)
X[dst...] = A[src...]
X
end
get(A::AbstractArray, I::RangeVecIntList, default) = get!(similar(A, typeof(default), map(length, I)...), A, I, default)
## structured matrix methods ##
replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s
replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s
## Concatenation ##
promote_eltype() = Bottom
promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...))
#TODO: ERROR CHECK
cat(catdim::Integer) = Array{Any}(0)
vcat() = Array{Any}(0)
hcat() = Array{Any}(0)
typed_vcat(T::Type) = Array{T}(0)
typed_hcat(T::Type) = Array{T}(0)
## cat: special cases
vcat{T}(X::T...) = T[ X[i] for i=1:length(X) ]
vcat{T<:Number}(X::T...) = T[ X[i] for i=1:length(X) ]
hcat{T}(X::T...) = T[ X[j] for i=1, j=1:length(X) ]
hcat{T<:Number}(X::T...) = T[ X[j] for i=1, j=1:length(X) ]
vcat(X::Number...) = hvcat_fill(Array{promote_typeof(X...)}(length(X)), X)
hcat(X::Number...) = hvcat_fill(Array{promote_typeof(X...)}(1,length(X)), X)
typed_vcat(T::Type, X::Number...) = hvcat_fill(Array{T}(length(X)), X)
typed_hcat(T::Type, X::Number...) = hvcat_fill(Array{T}(1,length(X)), X)
vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...)
vcat{T}(V::AbstractVector{T}...) = typed_vcat(T, V...)
function typed_vcat(T::Type, V::AbstractVector...)
n::Int = 0
for Vk in V
n += length(Vk)
end
a = similar(full(V[1]), T, n)
pos = 1
for k=1:length(V)
Vk = V[k]
p1 = pos+length(Vk)-1
a[pos:p1] = Vk
pos = p1+1
end
a
end
hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...)
hcat{T}(A::AbstractVecOrMat{T}...) = typed_hcat(T, A...)
function typed_hcat(T::Type, A::AbstractVecOrMat...)
nargs = length(A)
nrows = size(A[1], 1)
ncols = 0
dense = true
for j = 1:nargs
Aj = A[j]
if size(Aj, 1) != nrows
throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
end
dense &= isa(Aj,Array)
nd = ndims(Aj)
ncols += (nd==2 ? size(Aj,2) : 1)
end
B = similar(full(A[1]), T, nrows, ncols)
pos = 1
if dense
for k=1:nargs
Ak = A[k]
n = length(Ak)
copy!(B, pos, Ak, 1, n)
pos += n
end
else
for k=1:nargs
Ak = A[k]
p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1
B[:, pos:p1] = Ak
pos = p1+1
end
end
return B
end
vcat(A::AbstractMatrix...) = typed_vcat(promote_eltype(A...), A...)
vcat{T}(A::AbstractMatrix{T}...) = typed_vcat(T, A...)
function typed_vcat(T::Type, A::AbstractMatrix...)
nargs = length(A)
nrows = sum(a->size(a, 1), A)::Int
ncols = size(A[1], 2)
for j = 2:nargs
if size(A[j], 2) != ncols
throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
end
end
B = similar(full(A[1]), T, nrows, ncols)
pos = 1
for k=1:nargs
Ak = A[k]
p1 = pos+size(Ak,1)-1
B[pos:p1, :] = Ak
pos = p1+1
end
return B
end
## cat: general case
function cat(catdims, X...)
T = promote_type(map(x->isa(x,AbstractArray) ? eltype(x) : typeof(x), X)...)
cat_t(catdims, T, X...)
end
function cat_t(catdims, typeC::Type, X...)
catdims = collect(catdims)
nargs = length(X)
ndimsX = Int[isa(a,AbstractArray) ? ndims(a) : 0 for a in X]
ndimsC = max(maximum(ndimsX), maximum(catdims))
catsizes = zeros(Int,(nargs,length(catdims)))
dims2cat = zeros(Int,ndimsC)
for k = 1:length(catdims)
dims2cat[catdims[k]]=k
end
dimsC = Int[d <= ndimsX[1] ? size(X[1],d) : 1 for d=1:ndimsC]
for k = 1:length(catdims)
catsizes[1,k] = dimsC[catdims[k]]
end
for i = 2:nargs
for d = 1:ndimsC
currentdim = (d <= ndimsX[i] ? size(X[i],d) : 1)
if dims2cat[d] != 0
dimsC[d] += currentdim
catsizes[i,dims2cat[d]] = currentdim
elseif dimsC[d] != currentdim
throw(DimensionMismatch(string("mismatch in dimension ",d,
" (expected ",dimsC[d],
" got ",currentdim,")")))
end
end
end
C = similar(isa(X[1],AbstractArray) ? full(X[1]) : [X[1]], typeC, tuple(dimsC...))
if length(catdims)>1
fill!(C,0)
end
offsets = zeros(Int,length(catdims))
for i=1:nargs
cat_one = [ dims2cat[d] == 0 ? (1:dimsC[d]) : (offsets[dims2cat[d]]+(1:catsizes[i,dims2cat[d]]))
for d=1:ndimsC ]
C[cat_one...] = X[i]
for k = 1:length(catdims)
offsets[k] += catsizes[i,k]
end
end
return C
end
vcat(X...) = cat(1, X...)
hcat(X...) = cat(2, X...)
typed_vcat(T::Type, X...) = cat_t(1, T, X...)
typed_hcat(T::Type, X...) = cat_t(2, T, X...)
cat{T}(catdims, A::AbstractArray{T}...) = cat_t(catdims, T, A...)
cat(catdims, A::AbstractArray...) = cat_t(catdims, promote_eltype(A...), A...)
# The specializations for 1 and 2 inputs are important
# especially when running with --inline=no, see #11158
vcat(A::AbstractArray) = cat(1, A)
vcat(A::AbstractArray, B::AbstractArray) = cat(1, A, B)
vcat(A::AbstractArray...) = cat(1, A...)
hcat(A::AbstractArray) = cat(2, A)
hcat(A::AbstractArray, B::AbstractArray) = cat(2, A, B)
hcat(A::AbstractArray...) = cat(2, A...)
typed_vcat(T::Type, A::AbstractArray) = cat_t(1, T, A)
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(1, T, A, B)
typed_vcat(T::Type, A::AbstractArray...) = cat_t(1, T, A...)
typed_hcat(T::Type, A::AbstractArray) = cat_t(2, T, A)
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(2, T, A, B)
typed_hcat(T::Type, A::AbstractArray...) = cat_t(2, T, A...)
# 2d horizontal and vertical concatenation
function hvcat(nbc::Integer, as...)
# nbc = # of block columns
n = length(as)
mod(n,nbc) != 0 &&
throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc"))
nbr = div(n,nbc)
hvcat(ntuple(i->nbc, nbr), as...)
end
function hvcat{T}(rows::Tuple{Vararg{Int}}, as::AbstractMatrix{T}...)
nbr = length(rows) # number of block rows
nc = 0
for i=1:rows[1]
nc += size(as[i],2)
end
nr = 0
a = 1
for i = 1:nbr
nr += size(as[a],1)
a += rows[i]
end
out = similar(full(as[1]), T, nr, nc)
a = 1
r = 1
for i = 1:nbr
c = 1
szi = size(as[a],1)
for j = 1:rows[i]
Aj = as[a+j-1]
szj = size(Aj,2)
if size(Aj,1) != szi
throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
end
if c-1+szj > nc
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
end
out[r:r-1+szi, c:c-1+szj] = Aj
c += szj
end
if c != nc+1
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
end
r += szi
a += rows[i]
end
out
end
hvcat(rows::Tuple{Vararg{Int}}) = []
function hvcat{T<:Number}(rows::Tuple{Vararg{Int}}, xs::T...)
nr = length(rows)
nc = rows[1]
a = Array{T}(nr, nc)
if length(a) != length(xs)
throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))"))
end
k = 1
@inbounds for i=1:nr
if nc != rows[i]
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
end
for j=1:nc
a[i,j] = xs[k]
k += 1
end
end
a
end
function hvcat_fill(a::Array, xs::Tuple)
k = 1
nr, nc = size(a,1), size(a,2)
for i=1:nr
@inbounds for j=1:nc
a[i,j] = xs[k]
k += 1
end
end
a
end
function typed_hvcat(T::Type, rows::Tuple{Vararg{Int}}, xs::Number...)
nr = length(rows)
nc = rows[1]
for i = 2:nr
if nc != rows[i]
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
end
end
len = length(xs)
if nr*nc != len
throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))"))
end
hvcat_fill(Array{T}(nr, nc), xs)
end
function hvcat(rows::Tuple{Vararg{Int}}, xs::Number...)
T = promote_typeof(xs...)
typed_hvcat(T, rows, xs...)
end
# fallback definition of hvcat in terms of hcat and vcat
function hvcat(rows::Tuple{Vararg{Int}}, as...)
nbr = length(rows) # number of block rows
rs = Array{Any}(nbr)
a = 1
for i = 1:nbr
rs[i] = hcat(as[a:a-1+rows[i]]...)
a += rows[i]
end
vcat(rs...)
end
function typed_hvcat(T::Type, rows::Tuple{Vararg{Int}}, as...)
nbr = length(rows) # number of block rows
rs = Array{Any}(nbr)
a = 1
for i = 1:nbr
rs[i] = hcat(as[a:a-1+rows[i]]...)
a += rows[i]
end
T[rs...;]
end
## Reductions and scans ##
function isequal(A::AbstractArray, B::AbstractArray)
if A === B return true end
if size(A) != size(B)
return false
end
if isa(A,Range) != isa(B,Range)
return false
end
for (a, b) in zip(A, B)
if !isequal(a, b)
return false
end
end
return true
end
function lexcmp(A::AbstractArray, B::AbstractArray)
for (a, b) in zip(A, B)
res = lexcmp(a, b)
res == 0 || return res
end
return cmp(length(A), length(B))
end
function (==)(A::AbstractArray, B::AbstractArray)
if size(A) != size(B)
return false
end
if isa(A,Range) != isa(B,Range)
return false
end
for (a, b) in zip(A, B)
if !(a == b)
return false
end
end
return true
end
sub2ind(dims::Tuple{Vararg{Integer}}) = 1
sub2ind(dims::Tuple{Vararg{Integer}}, I::Integer...) = _sub2ind(dims,I)
@generated function _sub2ind{N,M}(dims::NTuple{N,Integer}, I::NTuple{M,Integer})
meta = Expr(:meta,:inline)
ex = :(I[$M] - 1)
for i = M-1:-1:1
if i > N
ex = :(I[$i] - 1 + $ex)
else
ex = :(I[$i] - 1 + dims[$i]*$ex)
end
end
Expr(:block, meta,:($ex + 1))
end
@generated function ind2sub{N}(dims::NTuple{N,Integer}, ind::Integer)
meta = Expr(:meta,:inline)
N==0 && return :($meta; ind==1 ? () : throw(BoundsError()))
exprs = Expr[:(ind = ind-1)]
for i = 1:N-1
push!(exprs,:(ind2 = div(ind,dims[$i])))
push!(exprs,Expr(:(=),Symbol(:s,i),:(ind-dims[$i]*ind2+1)))
push!(exprs,:(ind=ind2))
end
push!(exprs,Expr(:(=),Symbol(:s,N),:(ind+1)))
Expr(:block,meta,exprs...,Expr(:tuple,[Symbol(:s,i) for i=1:N]...))
end
ind2sub(a::AbstractArray, ind::Integer) = ind2sub(size(a), ind)
sub2ind(a::AbstractArray, I::Integer...) = sub2ind(size(a), I...)
function sub2ind{T<:Integer}(dims::Tuple{Vararg{Integer}}, I::AbstractVector{T}...)
N = length(dims)
M = length(I[1])
indices = Array{T}(length(I[1]))
copy!(indices,I[1])
s = dims[1]
for j=2:length(I)
Ij = I[j]