-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
generic.jl
489 lines (432 loc) · 17.4 KB
/
generic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestGeneric
using Test, LinearAlgebra, Random
const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Quaternions) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Quaternions.jl"))
using .Main.Quaternions
isdefined(Main, :OffsetArrays) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "OffsetArrays.jl"))
using .Main.OffsetArrays
Random.seed!(123)
n = 5 # should be odd
@testset for elty in (Int, Rational{BigInt}, Float32, Float64, BigFloat, ComplexF32, ComplexF64, Complex{BigFloat})
# In the long run, these tests should step through Strang's
# axiomatic definition of determinants.
# If all axioms are satisfied and all the composition rules work,
# all determinants will be correct except for floating point errors.
if elty != Rational{BigInt}
@testset "det(A::Matrix)" begin
# The determinant of the identity matrix should always be 1.
for i = 1:10
A = Matrix{elty}(I, i, i)
@test det(A) ≈ one(elty)
end
# The determinant of a Householder reflection matrix should always be -1.
for i = 1:10
A = Matrix{elty}(I, 10, 10)
A[i, i] = -one(elty)
@test det(A) ≈ -one(elty)
end
# The determinant of a rotation matrix should always be 1.
if elty != Int
for theta = convert(Vector{elty}, pi ./ [1:4;])
R = [cos(theta) -sin(theta);
sin(theta) cos(theta)]
@test convert(elty, det(R)) ≈ one(elty)
end
end
end
end
if elty <: Int
A = rand(-n:n, n, n) + 10I
elseif elty <: Rational
A = Rational{BigInt}[rand(-n:n)/rand(1:n) for i = 1:n, j = 1:n] + 10I
elseif elty <: Real
A = convert(Matrix{elty}, randn(n,n)) + 10I
else
A = convert(Matrix{elty}, complex.(randn(n,n), randn(n,n)))
end
@testset "logdet and logabsdet" begin
@test logdet(A[1,1]) == log(det(A[1,1]))
@test logdet(A) ≈ log(det(A))
@test logabsdet(A)[1] ≈ log(abs(det(A)))
@test logabsdet(Matrix{elty}(-I, n, n))[2] == -1
infinity = convert(float(elty), Inf)
@test logabsdet(zeros(elty, n, n)) == (-infinity, zero(elty))
if elty <: Real
@test logabsdet(A)[2] == sign(det(A))
@test_throws DomainError logdet(Matrix{elty}(-I, n, n))
else
@test logabsdet(A)[2] ≈ sign(det(A))
end
end
end
@testset "diag" begin
A = Matrix(1.0I, 4, 4)
@test diag(A) == fill(1, 4)
@test diag(view(A, 1:3, 1:3)) == fill(1, 3)
@test diag(view(A, 1:2, 1:2)) == fill(1, 2)
@test_throws ArgumentError diag(rand(10))
end
@testset "generic axpy" begin
x = ['a','b','c','d','e']
y = ['a','b','c','d','e']
α, β = 'f', 'g'
@test_throws DimensionMismatch LinearAlgebra.axpy!(α,x,['g'])
@test_throws DimensionMismatch LinearAlgebra.axpby!(α,x,β,['g'])
@test_throws BoundsError LinearAlgebra.axpy!(α,x,Vector(-1:5),y,Vector(1:7))
@test_throws BoundsError LinearAlgebra.axpy!(α,x,Vector(1:7),y,Vector(-1:5))
@test_throws BoundsError LinearAlgebra.axpy!(α,x,Vector(1:7),y,Vector(1:7))
@test_throws DimensionMismatch LinearAlgebra.axpy!(α,x,Vector(1:3),y,Vector(1:5))
end
@test !issymmetric(fill(1,5,3))
@test !ishermitian(fill(1,5,3))
@test (x = fill(1,3); cross(x,x) == zeros(3))
@test_throws DimensionMismatch cross(fill(1,3), fill(1,4))
@test_throws DimensionMismatch cross(fill(1,2), fill(1,3))
@test tr(Bidiagonal(fill(1,5),fill(0,4),:U)) == 5
@testset "array and subarray" begin
aa = reshape([1.:6;], (2,3))
for a in (aa, view(aa, 1:2, 1:2))
am, an = size(a)
@testset "Scaling with rmul! and lmul" begin
@test rmul!(copy(a), 5.) == a*5
@test lmul!(5., copy(a)) == a*5
b = randn(2048)
subB = view(b, :, :)
@test rmul!(copy(b), 5.) == b*5
@test rmul!(copy(subB), 5.) == subB*5
@test lmul!(Diagonal([1.; 2.]), copy(a)) == a.*[1; 2]
@test lmul!(Diagonal([1; 2]), copy(a)) == a.*[1; 2]
@test rmul!(copy(a), Diagonal(1.:an)) == a.*Vector(1:an)'
@test rmul!(copy(a), Diagonal(1:an)) == a.*Vector(1:an)'
@test_throws DimensionMismatch lmul!(Diagonal(Vector{Float64}(undef,am+1)), a)
@test_throws DimensionMismatch rmul!(a, Diagonal(Vector{Float64}(undef,an+1)))
end
@testset "Scaling with rdiv! and ldiv!" begin
@test rdiv!(copy(a), 5.) == a/5
@test ldiv!(5., copy(a)) == a/5
@test ldiv!(zero(a), 5., copy(a)) == a/5
end
@testset "Scaling with 3-argument mul!" begin
@test mul!(similar(a), 5., a) == a*5
@test mul!(similar(a), a, 5.) == a*5
@test mul!(similar(a), Diagonal([1.; 2.]), a) == a.*[1; 2]
@test mul!(similar(a), Diagonal([1; 2]), a) == a.*[1; 2]
@test_throws DimensionMismatch mul!(similar(a), Diagonal(Vector{Float64}(undef, am+1)), a)
@test_throws DimensionMismatch mul!(Matrix{Float64}(undef, 3, 2), a, Diagonal(Vector{Float64}(undef, an+1)))
@test_throws DimensionMismatch mul!(similar(a), a, Diagonal(Vector{Float64}(undef, an+1)))
@test mul!(similar(a), a, Diagonal(1.:an)) == a.*Vector(1:an)'
@test mul!(similar(a), a, Diagonal(1:an)) == a.*Vector(1:an)'
end
@testset "Scaling with 5-argument mul!" begin
@test mul!(copy(a), 5., a, 10, 100) == a*150
@test mul!(copy(a), a, 5., 10, 100) == a*150
@test mul!(copy(a), Diagonal([1.; 2.]), a, 10, 100) == 10a.*[1; 2] .+ 100a
@test mul!(copy(a), Diagonal([1; 2]), a, 10, 100) == 10a.*[1; 2] .+ 100a
@test mul!(copy(a), a, Diagonal(1.:an), 10, 100) == 10a.*Vector(1:an)' .+ 100a
@test mul!(copy(a), a, Diagonal(1:an), 10, 100) == 10a.*Vector(1:an)' .+ 100a
end
end
end
@testset "scale real matrix by complex type" begin
@test_throws InexactError rmul!([1.0], 2.0im)
@test isequal([1.0] * 2.0im, ComplexF64[2.0im])
@test isequal(2.0im * [1.0], ComplexF64[2.0im])
@test isequal(Float32[1.0] * 2.0f0im, ComplexF32[2.0im])
@test isequal(Float32[1.0] * 2.0im, ComplexF64[2.0im])
@test isequal(Float64[1.0] * 2.0f0im, ComplexF64[2.0im])
@test isequal(Float32[1.0] * big(2.0)im, Complex{BigFloat}[2.0im])
@test isequal(Float64[1.0] * big(2.0)im, Complex{BigFloat}[2.0im])
@test isequal(BigFloat[1.0] * 2.0im, Complex{BigFloat}[2.0im])
@test isequal(BigFloat[1.0] * 2.0f0im, Complex{BigFloat}[2.0im])
end
@testset "* and mul! for non-commutative scaling" begin
q = Quaternion(0.44567, 0.755871, 0.882548, 0.423612)
qmat = [Quaternion(0.015007, 0.355067, 0.418645, 0.318373)]
@test lmul!(q, copy(qmat)) != rmul!(copy(qmat), q)
@test q*qmat ≉ qmat*q
@test conj(q*qmat) ≈ conj(qmat)*conj(q)
@test q * (q \ qmat) ≈ qmat ≈ (qmat / q) * q
@test q\qmat ≉ qmat/q
alpha = Quaternion(rand(4)...)
beta = Quaternion(0, 0, 0, 0)
@test mul!(copy(qmat), qmat, q, alpha, beta) ≈ qmat * q * alpha
@test mul!(copy(qmat), q, qmat, alpha, beta) ≈ q * qmat * alpha
end
@testset "ops on Numbers" begin
@testset for elty in [Float32,Float64,ComplexF32,ComplexF64]
a = rand(elty)
@test tr(a) == a
@test rank(zero(elty)) == 0
@test rank(one(elty)) == 1
@test !isfinite(cond(zero(elty)))
@test cond(a) == one(elty)
@test cond(a,1) == one(elty)
@test issymmetric(a)
@test ishermitian(one(elty))
@test det(a) == a
@test norm(a) == abs(a)
@test norm(a, 0) == 1
end
@test !issymmetric(NaN16)
@test !issymmetric(NaN32)
@test !issymmetric(NaN)
@test norm(NaN) === NaN
@test norm(NaN, 0) === NaN
end
@test rank(fill(0, 0, 0)) == 0
@test rank([1.0 0.0; 0.0 0.9],0.95) == 1
@test rank([1.0 0.0; 0.0 0.9],rtol=0.95) == 1
@test rank([1.0 0.0; 0.0 0.9],atol=0.95) == 1
@test rank([1.0 0.0; 0.0 0.9],atol=0.95,rtol=0.95)==1
@test qr(big.([0 1; 0 0])).R == [0 1; 0 0]
@test norm([2.4e-322, 4.4e-323]) ≈ 2.47e-322
@test norm([2.4e-322, 4.4e-323], 3) ≈ 2.4e-322
@test_throws ArgumentError opnorm(Matrix{Float64}(undef,5,5),5)
@testset "generic norm for arrays of arrays" begin
x = Vector{Int}[[1,2], [3,4]]
@test @inferred(norm(x)) ≈ sqrt(30)
@test norm(x, 0) == length(x)
@test norm(x, 1) ≈ 5+sqrt(5)
@test norm(x, 3) ≈ cbrt(5^3 +sqrt(5)^3)
end
@testset "rotate! and reflect!" begin
x = rand(ComplexF64, 10)
y = rand(ComplexF64, 10)
c = rand(Float64)
s = rand(ComplexF64)
x2 = copy(x)
y2 = copy(y)
rotate!(x, y, c, s)
@test x ≈ c*x2 + s*y2
@test y ≈ -conj(s)*x2 + c*y2
x3 = copy(x)
y3 = copy(y)
reflect!(x, y, c, s)
@test x ≈ c*x3 + s*y3
@test y ≈ conj(s)*x3 - c*y3
end
@testset "LinearAlgebra.axp(b)y! for element type without commutative multiplication" begin
α = [1 2; 3 4]
β = [5 6; 7 8]
x = fill([ 9 10; 11 12], 3)
y = fill([13 14; 15 16], 3)
axpy = LinearAlgebra.axpy!(α, x, deepcopy(y))
axpby = LinearAlgebra.axpby!(α, x, β, deepcopy(y))
@test axpy == x .* [α] .+ y
@test axpy != [α] .* x .+ y
@test axpby == x .* [α] .+ y .* [β]
@test axpby != [α] .* x .+ [β] .* y
end
@testset "LinearAlgebra.axpy! for x and y of different dimensions" begin
α = 5
x = 2:5
y = fill(1, 2, 4)
rx = [1 4]
ry = [2 8]
@test LinearAlgebra.axpy!(α, x, rx, y, ry) == [1 1 1 1; 11 1 1 26]
end
@testset "norm and normalize!" begin
vr = [3.0, 4.0]
for Tr in (Float32, Float64)
for T in (Tr, Complex{Tr})
v = convert(Vector{T}, vr)
@test norm(v) == 5.0
w = normalize(v)
@test norm(w - [0.6, 0.8], Inf) < eps(Tr)
@test norm(w) == 1.0
@test norm(normalize!(copy(v)) - w, Inf) < eps(Tr)
@test isempty(normalize!(T[]))
end
end
end
@testset "normalize for multidimensional arrays" begin
for arr in (
fill(10.0, ()), # 0 dim
[1.0], # 1 dim
[1.0 2.0 3.0; 4.0 5.0 6.0], # 2-dim
rand(1,2,3), # higher dims
rand(1,2,3,4),
OffsetArray([-1,0], (-2,)) # no index 1
)
@test normalize(arr) == normalize!(copy(arr))
@test size(normalize(arr)) == size(arr)
@test axes(normalize(arr)) == axes(arr)
@test vec(normalize(arr)) == normalize(vec(arr))
end
@test typeof(normalize([1 2 3; 4 5 6])) == Array{Float64,2}
end
@testset "Issue #30466" begin
@test norm([typemin(Int), typemin(Int)], Inf) == -float(typemin(Int))
@test norm([typemin(Int), typemin(Int)], 1) == -2float(typemin(Int))
end
@testset "potential overflow in normalize!" begin
δ = inv(prevfloat(typemax(Float64)))
v = [δ, -δ]
@test norm(v) === 7.866824069956793e-309
w = normalize(v)
@test w ≈ [1/√2, -1/√2]
@test norm(w) === 1.0
@test norm(normalize!(v) - w, Inf) < eps()
end
@testset "normalize with Infs. Issue 29681." begin
@test all(isequal.(normalize([1, -1, Inf]),
[0.0, -0.0, NaN]))
@test all(isequal.(normalize([complex(1), complex(0, -1), complex(Inf, -Inf)]),
[0.0 + 0.0im, 0.0 - 0.0im, NaN + NaN*im]))
end
@testset "Issue 14657" begin
@test det([true false; false true]) == det(Matrix(1I, 2, 2))
end
@test_throws ArgumentError LinearAlgebra.char_uplo(:Z)
@testset "Issue 17650" begin
@test [0.01311489462160816, Inf] ≈ [0.013114894621608135, Inf]
end
@testset "Issue 19035" begin
@test LinearAlgebra.promote_leaf_eltypes([1, 2, [3.0, 4.0]]) == Float64
@test LinearAlgebra.promote_leaf_eltypes([[1,2, [3,4]], 5.0, [6im, [7.0, 8.0]]]) == ComplexF64
@test [1, 2, 3] ≈ [1, 2, 3]
@test [[1, 2], [3, 4]] ≈ [[1, 2], [3, 4]]
@test [[1, 2], [3, 4]] ≈ [[1.0-eps(), 2.0+eps()], [3.0+2eps(), 4.0-1e8eps()]]
@test [[1, 2], [3, 4]] ≉ [[1.0-eps(), 2.0+eps()], [3.0+2eps(), 4.0-1e9eps()]]
@test [[1,2, [3,4]], 5.0, [6im, [7.0, 8.0]]] ≈ [[1,2, [3,4]], 5.0, [6im, [7.0, 8.0]]]
end
# Minimal modulo number type - but not subtyping Number
struct ModInt{n}
k
ModInt{n}(k) where {n} = new(mod(k,n))
ModInt{n}(k::ModInt{n}) where {n} = k
end
Base.:+(a::ModInt{n}, b::ModInt{n}) where {n} = ModInt{n}(a.k + b.k)
Base.:-(a::ModInt{n}, b::ModInt{n}) where {n} = ModInt{n}(a.k - b.k)
Base.:*(a::ModInt{n}, b::ModInt{n}) where {n} = ModInt{n}(a.k * b.k)
Base.:-(a::ModInt{n}) where {n} = ModInt{n}(-a.k)
Base.inv(a::ModInt{n}) where {n} = ModInt{n}(invmod(a.k, n))
Base.:/(a::ModInt{n}, b::ModInt{n}) where {n} = a*inv(b)
Base.zero(::Type{ModInt{n}}) where {n} = ModInt{n}(0)
Base.zero(::ModInt{n}) where {n} = ModInt{n}(0)
Base.one(::Type{ModInt{n}}) where {n} = ModInt{n}(1)
Base.one(::ModInt{n}) where {n} = ModInt{n}(1)
Base.conj(a::ModInt{n}) where {n} = a
Base.adjoint(a::ModInt{n}) where {n} = ModInt{n}(conj(a))
Base.transpose(a::ModInt{n}) where {n} = a # see Issue 20978
LinearAlgebra.Adjoint(a::ModInt{n}) where {n} = adjoint(a)
LinearAlgebra.Transpose(a::ModInt{n}) where {n} = transpose(a)
@testset "Issue 22042" begin
A = [ModInt{2}(1) ModInt{2}(0); ModInt{2}(1) ModInt{2}(1)]
b = [ModInt{2}(1), ModInt{2}(0)]
@test A*(lu(A, Val(false))\b) == b
# Needed for pivoting:
Base.abs(a::ModInt{n}) where {n} = a
Base.:<(a::ModInt{n}, b::ModInt{n}) where {n} = a.k < b.k
@test A*(lu(A, Val(true))\b) == b
end
@testset "Issue 18742" begin
@test_throws DimensionMismatch ones(4,5)/zeros(3,6)
@test_throws DimensionMismatch ones(4,5)\zeros(3,6)
end
@testset "fallback throws properly for AbstractArrays with dimension > 2" begin
@test_throws ErrorException adjoint(rand(2,2,2,2))
@test_throws ErrorException transpose(rand(2,2,2,2))
end
@testset "generic functions for checking whether matrices have banded structure" begin
using LinearAlgebra: isbanded
pentadiag = [1 2 3; 4 5 6; 7 8 9]
tridiag = [1 2 0; 4 5 6; 0 8 9]
ubidiag = [1 2 0; 0 5 6; 0 0 9]
lbidiag = [1 0 0; 4 5 0; 0 8 9]
adiag = [1 0 0; 0 5 0; 0 0 9]
@testset "istriu" begin
@test !istriu(pentadiag)
@test istriu(pentadiag, -2)
@test !istriu(tridiag)
@test istriu(tridiag, -1)
@test istriu(ubidiag)
@test !istriu(ubidiag, 1)
@test !istriu(lbidiag)
@test istriu(lbidiag, -1)
@test istriu(adiag)
end
@testset "istril" begin
@test !istril(pentadiag)
@test istril(pentadiag, 2)
@test !istril(tridiag)
@test istril(tridiag, 1)
@test !istril(ubidiag)
@test istril(ubidiag, 1)
@test istril(lbidiag)
@test !istril(lbidiag, -1)
@test istril(adiag)
end
@testset "isbanded" begin
@test isbanded(pentadiag, -2, 2)
@test !isbanded(pentadiag, -1, 2)
@test !isbanded(pentadiag, -2, 1)
@test isbanded(tridiag, -1, 1)
@test !isbanded(tridiag, 0, 1)
@test !isbanded(tridiag, -1, 0)
@test isbanded(ubidiag, 0, 1)
@test !isbanded(ubidiag, 1, 1)
@test !isbanded(ubidiag, 0, 0)
@test isbanded(lbidiag, -1, 0)
@test !isbanded(lbidiag, 0, 0)
@test !isbanded(lbidiag, -1, -1)
@test isbanded(adiag, 0, 0)
@test !isbanded(adiag, -1, -1)
@test !isbanded(adiag, 1, 1)
end
@testset "isdiag" begin
@test !isdiag(tridiag)
@test !isdiag(ubidiag)
@test !isdiag(lbidiag)
@test isdiag(adiag)
end
end
@testset "missing values" begin
@test ismissing(norm(missing))
end
@testset "peakflops" begin
@test LinearAlgebra.peakflops() > 0
end
@testset "NaN handling: Issue 28972" begin
@test all(isnan, rmul!([NaN], 0.0))
@test all(isnan, rmul!(Any[NaN], 0.0))
@test all(isnan, lmul!(0.0, [NaN]))
@test all(isnan, lmul!(0.0, Any[NaN]))
@test all(!isnan, rmul!([NaN], false))
@test all(!isnan, rmul!(Any[NaN], false))
@test all(!isnan, lmul!(false, [NaN]))
@test all(!isnan, lmul!(false, Any[NaN]))
end
@testset "generalized dot #32739" begin
for elty in (Int, Float32, Float64, BigFloat, ComplexF32, ComplexF64, Complex{BigFloat})
n = 10
if elty <: Int
A = rand(-n:n, n, n)
x = rand(-n:n, n)
y = rand(-n:n, n)
elseif elty <: Real
A = convert(Matrix{elty}, randn(n,n))
x = rand(elty, n)
y = rand(elty, n)
else
A = convert(Matrix{elty}, complex.(randn(n,n), randn(n,n)))
x = rand(elty, n)
y = rand(elty, n)
end
@test dot(x, A, y) ≈ dot(A'x, y) ≈ *(x', A, y) ≈ (x'A)*y
@test dot(x, A', y) ≈ dot(A*x, y) ≈ *(x', A', y) ≈ (x'A')*y
elty <: Real && @test dot(x, transpose(A), y) ≈ dot(x, transpose(A)*y) ≈ *(x', transpose(A), y) ≈ (x'*transpose(A))*y
B = reshape([A], 1, 1)
x = [x]
y = [y]
@test dot(x, B, y) ≈ dot(B'x, y)
@test dot(x, B', y) ≈ dot(B*x, y)
elty <: Real && @test dot(x, transpose(B), y) ≈ dot(x, transpose(B)*y)
end
end
@testset "condskeel #34512" begin
A = rand(3, 3)
@test condskeel(A) ≈ condskeel(A, [8,8,8])
end
end # module TestGeneric