-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathaddmul.jl
221 lines (190 loc) · 6.76 KB
/
addmul.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestAddmul
using Base: rtoldefault
using Test
using LinearAlgebra
using LinearAlgebra: AbstractTriangular
using SparseArrays
using Random
_rand(::Type{T}) where {T <: AbstractFloat} = T(randn())
_rand(::Type{T}) where {F, T <: Complex{F}} = T(_rand(F), _rand(F))
_rand(::Type{T}) where {T <: Integer} =
T(rand(max(typemin(T), -10):min(typemax(T), 10)))
_rand(::Type{BigInt}) = BigInt(_rand(Int))
function _rand(A::Type{<:Array}, shape)
T = eltype(A)
data = T[_rand(T) for _ in 1:prod(shape)]
return copy(reshape(data, shape))
end
constructor_of(::Type{T}) where T = getfield(parentmodule(T), nameof(T))
function _rand(A::Type{<: AbstractArray}, shape)
data = _rand(Array{eltype(A)}, shape)
T = constructor_of(A)
if A <: Union{Bidiagonal, Hermitian, Symmetric}
return T(data, rand([:U, :L]))
# Maybe test with both :U and :L?
end
return T(data)
end
_rand(A::Type{<: SymTridiagonal{T}}, shape) where {T} =
SymTridiagonal(_rand(Symmetric{T}, shape))
const FloatOrC = Union{AbstractFloat, Complex{<: AbstractFloat}}
const IntegerOrC = Union{Integer, Complex{<: Integer}}
const LTri = Union{LowerTriangular, UnitLowerTriangular, Diagonal}
const UTri = Union{UpperTriangular, UnitUpperTriangular, Diagonal}
needsquare(::Type{<:Matrix}) = false
needsquare(::Type) = true
testdata = []
sizecandidates = 1:4
floattypes = [
Float64, Float32, ComplexF64, ComplexF32, # BlasFloat
BigFloat,
]
inttypes = [
Int,
BigInt,
]
# `Bool` can be added to `inttypes` but it's hard to handle
# `InexactError` bug that is mentioned in:
# https://github.com/JuliaLang/julia/issues/30094#issuecomment-440175887
alleltypes = [floattypes; inttypes]
celtypes = [Float64, ComplexF64, BigFloat, Int]
mattypes = [
Matrix,
Bidiagonal,
Diagonal,
Hermitian,
LowerTriangular,
SymTridiagonal,
Symmetric,
Tridiagonal,
UnitLowerTriangular,
UnitUpperTriangular,
UpperTriangular,
]
isnanfillable(::AbstractArray) = false
isnanfillable(::Array{<:AbstractFloat}) = true
isnanfillable(A::AbstractArray{<:AbstractFloat}) = parent(A) isa Array
"""
Sample `n` elements from `S` on average but make sure at least one
element is sampled.
"""
function sample(S, n::Real)
length(S) <= n && return S
xs = randsubseq(S, n / length(S))
return length(xs) > 0 ? xs : rand(S, 1) # sample at least one
end
function inputeltypes(celt, alleltypes = alleltypes)
# Skip if destination type is "too small"
celt <: Bool && return []
filter(alleltypes) do aelt
celt <: Real && aelt <: Complex && return false
!(celt <: BigFloat) && aelt <: BigFloat && return false
!(celt <: BigInt) && aelt <: BigInt && return false
celt <: IntegerOrC && aelt <: FloatOrC && return false
if celt <: IntegerOrC && !(celt <: BigInt)
typemin(celt) > typemin(aelt) && return false
typemax(celt) < typemax(aelt) && return false
end
return true
end
end
# Note: using `randsubseq` instead of `rand` to avoid repetition.
function inputmattypes(cmat, mattypes = mattypes)
# Skip if destination type is "too small"
cmat <: Union{Bidiagonal, Tridiagonal, SymTridiagonal,
UnitLowerTriangular, UnitUpperTriangular,
Hermitian, Symmetric} && return []
filter(mattypes) do amat
cmat <: Diagonal && (amat <: Diagonal || return false)
cmat <: LowerTriangular && (amat <: LTri || return false)
cmat <: UpperTriangular && (amat <: UTri || return false)
return true
end
end
n_samples = 1.5
# n_samples = Inf # to try all combinations
for cmat in mattypes,
amat in sample(inputmattypes(cmat), n_samples),
bmat in sample(inputmattypes(cmat), n_samples),
celt in celtypes,
aelt in sample(inputeltypes(celt), n_samples),
belt in sample(inputeltypes(celt), n_samples)
push!(testdata, (cmat{celt}, amat{aelt}, bmat{belt}))
end
@testset "mul!(::$TC, ::$TA, ::$TB, α, β)" for (TC, TA, TB) in testdata
if needsquare(TA)
na1 = na2 = rand(sizecandidates)
else
na1, na2 = rand(sizecandidates, 2)
end
if needsquare(TB)
nb2 = na2
elseif needsquare(TC)
nb2 = na1
else
nb2 = rand(sizecandidates)
end
asize = (na1, na2)
bsize = (na2, nb2)
csize = (na1, nb2)
@testset for α in Any[true, eltype(TC)(1), _rand(eltype(TC))],
β in Any[false, eltype(TC)(0), _rand(eltype(TC))]
C = _rand(TC, csize)
A = _rand(TA, asize)
B = _rand(TB, bsize)
# This is similar to how `isapprox` choose `rtol` (when
# `atol=0`) but consider all number types involved:
rtol = max(rtoldefault.(real.(eltype.((C, A, B))))...,
rtoldefault.(real.(typeof.((α, β))))...)
Cc = copy(C)
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, β)
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc + β * Cc rtol=rtol
y = C[:, 1]
x = B[:, 1]
yc = Vector(y)
xc = Vector(x)
returned_vec = mul!(y, A, x, α, β)
@test returned_vec === y
@test collect(returned_vec) ≈ α * Ac * xc + β * yc rtol=rtol
if TC <: Matrix
@testset "adjoint and transpose" begin
@testset for fa in [identity, adjoint, transpose],
fb in [identity, adjoint, transpose]
fa === fb === identity && continue
Af = fa === identity ? A : fa(_rand(TA, reverse(asize)))
Bf = fb === identity ? B : fb(_rand(TB, reverse(bsize)))
Ac = collect(Af)
Bc = collect(Bf)
Cc = collect(C)
returned_mat = mul!(C, Af, Bf, α, β)
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc + β * Cc rtol=rtol
end
end
end
if isnanfillable(C)
@testset "β = 0 ignores C .= NaN" begin
parent(C) .= NaN
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, zero(eltype(C)))
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc rtol=rtol
end
end
if isnanfillable(A)
@testset "α = 0 ignores A .= NaN" begin
parent(A) .= NaN
Cc = copy(C)
returned_mat = mul!(C, A, B, zero(eltype(A)), β)
@test returned_mat === C
@test collect(returned_mat) ≈ β * Cc rtol=rtol
end
end
end
end
end # module