Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extra roots bug for large intervals #162

Closed
dpsanders opened this issue Mar 14, 2021 · 5 comments · Fixed by #203
Closed

Extra roots bug for large intervals #162

dpsanders opened this issue Mar 14, 2021 · 5 comments · Fixed by #203

Comments

@dpsanders
Copy link
Member

dpsanders commented Mar 14, 2021

https://discourse.julialang.org/t/question-about-interval-root-finding/57124

f(E) = tan((2E)) + (E / (3π^2 - E))

roots(f, -1e100..1e100)

is buggy.

@lucaferranti
Copy link
Member

lucaferranti commented Mar 14, 2021

Also, now that I look at the function better E=0 should also be a root, but that goes undetected with Newton 🤔. Krawczyk and Bisection can find it at the cost of a couple of extra roots.

julia> roots(f, 0..30, Bisection)
5-element Vector{Root{Interval{Float64}}}:
 Root(Interval(1.2337005023828356, 1.233700557778276), :unknown)
 Root(Interval(15.064561967948055, 15.064562025101973), :unknown)
 Root(Interval(3.844642092262015, 3.8446421485298243), :unknown)
 Root(Interval(11.103304945220835, 11.103305008980778), :unknown)
 Root(Interval(0.0, 8.972354260755779e-8), :unknown)

julia> roots(f, 0..30, Krawczyk)
5-element Vector{Root{Interval{Float64}}}:
 Root(Interval(15.064562002776027, 15.064562002781207), :unique)
 Root(Interval(11.103304945220835, 11.103305008980778), :unknown)
 Root(Interval(1.2337005023828356, 1.233700557778276), :unknown)
 Root(Interval(3.8446421166049274, 3.844642116613573), :unique)
 Root(Interval(0.0, 8.972354260755779e-8), :unknown)

Also, those extra intervals contain or are close to vertical asymptotes of the function (pi^2/8 and 9/8*pi^2), which I guess explains why the algorithm cannot through them away.

@dpsanders
Copy link
Member Author

The root at 0 cannot be proved because there is not an open interval around it, since sqrt is undefined for negative numbers.

@dpsanders
Copy link
Member Author

But the root at 0 should still be reported as :unknown. That seems like a serious bug! I am wondering if that is what is giving the empty interval.

@lucaferranti
Copy link
Member

yeah I also wondered whether there was a relation between the returned empty set and the root at zero. It seems that starting with "small" intervals in the form [0, a] the root 0 is correctly found as :unknown , for bigger intervals the root at zero remains undetected. Furthermore, if 0 is in the interior of the starting interval, then sometimes an empty set is returned.

julia> f(E) = tan(sqrt(2*E)) + sqrt(E/(3*pi^2-E))
f (generic function with 1 method)

julia> roots(f, 0..1)
1-element Vector{Root{Interval{Float64}}}:
 Root([0, 9.95329e-08], :unknown)

julia> roots(f, 0..2)
2-element Vector{Root{Interval{Float64}}}:
 Root([0, 9.87553e-08], :unknown)
 Root([1.2337, 1.23371], :unknown)

julia> roots(f, 0..5)
3-element Vector{Root{Interval{Float64}}}:
 Root([1.2337, 1.23371], :unknown)
 Root([0, 6.07614e-08], :unknown)
 Root([3.84464, 3.84465], :unique)

julia> roots(f, 0..10)
1-element Vector{Root{Interval{Float64}}}:
 Root([3.84464, 3.84465], :unique)

julia> roots(f, 0..30)
2-element Vector{Root{Interval{Float64}}}:
 Root([15.0645, 15.0646], :unique)
 Root([3.84464, 3.84465], :unique)

julia> roots(f, 0..100)
2-element Vector{Root{Interval{Float64}}}:
 Root([3.84464, 3.84465], :unique)
 Root([15.0645, 15.0646], :unique)

julia> roots(f, -1..1)
1-element Vector{Root{Interval{Float64}}}:
 Root(∅, :unique)

julia> roots(f, -2..2)
2-element Vector{Root{Interval{Float64}}}:
 Root([1.2337, 1.23371], :unknown)
 Root(∅, :unique)

julia> roots(f, -3..3)
2-element Vector{Root{Interval{Float64}}}:
 Root([1.2337, 1.23371], :unknown)
 Root(∅, :unique)

julia> roots(f, -5..5)
3-element Vector{Root{Interval{Float64}}}:
 Root([3.84464, 3.84465], :unique)
 Root([1.2337, 1.23371], :unknown)
 Root(∅, :unique)

julia> roots(f, -10..10)
1-element Vector{Root{Interval{Float64}}}:
 Root([3.84464, 3.84465], :unique)

julia> roots(f, -100..100)
2-element Vector{Root{Interval{Float64}}}:
 Root([3.84464, 3.84465], :unique)
 Root([15.0645, 15.0646], :unique)

julia> roots(f, -1e100..1e100)
2-element Vector{Root{Interval{Float64}}}:
 Root([15.0645, 15.0646], :unique)
 Root([3.84464, 3.84465], :unique)

julia> roots(f, -1e200..1e200)
4-element Vector{Root{Interval{Float64}}}:
 Root([15.0645, 15.0646], :unique)
 Root([11.1033, 11.1034], :unknown)
 Root(∅, :unique)
 Root([3.84464, 3.84465], :unique)

@Kolaru
Copy link
Collaborator

Kolaru commented Mar 14, 2021

I suspect the empty interval appears because it is a subset of any interval, so some inclusion test somewhere does not work as intended (in many places empty intervals are explicitly special cased, otherwise this example would be way more broken ^^').

This together with JuliaIntervals/IntervalArithmetic.jl#441 makes me wonder if we should use decorated itnerval as default, or at least convert everything to decorated interval in IntervalRootFinding to catch that kind of problems.

Moreover, looking at the graph of the function, it even may be that Newton should not be able to exclude the singularities, since the image of any interval containing one of the singularity will contain zero. The function may violate some of the hypothesis of the Newton method we take for granted here. Decorations could help for that as well.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants