-
Notifications
You must be signed in to change notification settings - Fork 49
/
kernelfactors.jl
451 lines (370 loc) · 15.8 KB
/
kernelfactors.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
module KernelFactors
using StaticArrays, OffsetArrays
using ..ImageFiltering: centered, dummyind
import ..ImageFiltering: _reshape, _vec, nextendeddims
using Base: tail, Indices, @pure, checkbounds_indices, throw_boundserror
abstract IIRFilter{T}
"""
`KernelFactors` is a module implementing separable filtering kernels,
each stored in terms of their factors. The following kernels are
supported:
- `sobel`
- `prewitt`
- `ando3`, `ando4`, and `ando5` (the latter in 2d only)
- `gaussian`
- `IIRGaussian` (approximate gaussian filtering, fast even for large σ)
See also: Kernel.
"""
KernelFactors
Base.eltype{T}(kernel::IIRFilter{T}) = T
"""
ReshapedOneD{N,Npre}(data)
Return an object of dimensionality `N`, where `data` must have
dimensionality 1. The indices are `0:0` for the first `Npre`
dimensions, have the indices of `data` for dimension `Npre+1`, and are
`0:0` for the remaining dimensions.
`data` must support `eltype` and `ndims`, but does not have to be an
AbstractArray.
ReshapedOneDs allow one to specify a "filtering dimension" for a
1-dimensional filter.
"""
immutable ReshapedOneD{T,N,Npre,V} # not <: AbstractArray{T,N} (more general, incl. IIR)
data::V
function ReshapedOneD(data::V)
ndims(V) == 1 || throw(DimensionMismatch("must be one dimensional, got $(ndims(V))"))
new(data)
end
end
(::Type{ReshapedOneD{N,Npre}}){N,Npre,V}(data::V) = ReshapedOneD{eltype(data),N,Npre,V}(data)
# Convenient loop constructor that uses dummy NTuple{N,Bool} to keep
# track of dimensions for type-stability
@inline function ReshapedOneD{Npre,Npost}(pre::NTuple{Npre,Bool}, data, post::NTuple{Npost,Bool})
total = (pre..., true, post...)
_reshapedvector(total, pre, data)
end
_reshapedvector{N,Npre}(::NTuple{N,Bool}, ::NTuple{Npre,Bool}, data) = ReshapedOneD{eltype(data),N,Npre,typeof(data)}(data)
# Give ReshapedOneD many of the characteristics of AbstractArray
Base.eltype{T}(A::ReshapedOneD{T}) = T
Base.ndims{_,N}(A::ReshapedOneD{_,N}) = N
Base.isempty(A::ReshapedOneD) = isempty(A.data)
@inline Base.indices{_,N,Npre}(A::ReshapedOneD{_,N,Npre}) = Base.fill_to_length((Base.ntuple(d->0:0, Val{Npre})..., UnitRange(Base.indices1(A.data))), 0:0, Val{N})
Base.start(A::ReshapedOneD) = start(A.data)
Base.next(A::ReshapedOneD, state) = next(A.data, state)
Base.done(A::ReshapedOneD, state) = done(A.data, state)
@inline function Base.getindex(A::ReshapedOneD, i::Int)
@boundscheck checkbounds(A.data, i)
@inbounds ret = A.data[i]
ret
end
@inline function Base.getindex{T,N,Npre}(A::ReshapedOneD{T,N,Npre}, I::Vararg{Int,N})
@boundscheck checkbounds_indices(Bool, indices(A), I) || throw_boundserror(A, I)
@inbounds ret = A.data[I[Npre+1]]
ret
end
@inline function Base.getindex(A::ReshapedOneD, I::Union{CartesianIndex,Int}...)
A[Base.IteratorsMD.flatten(I)...]
end
Base.convert{AA<:AbstractArray}(::Type{AA}, A::ReshapedOneD) = convert(AA, reshape(A.data, indices(A)))
import Base: ==
==(A::ReshapedOneD, B::ReshapedOneD) = convert(AbstractArray, A) == convert(AbstractArray, B)
==(A::ReshapedOneD, B::AbstractArray) = convert(AbstractArray, A) == B
==(A::AbstractArray, B::ReshapedOneD) = A == convert(AbstractArray, B)
import Base: .+, .-, .*, ./
for op in (:+, :-, :*, :/)
opdot = Symbol(:., op)
@eval begin
($opdot)(A::ReshapedOneD, B::ReshapedOneD) = broadcast($op, A, B)
@inline ($opdot)(As::ReshapedOneD...) = broadcast($op, As...)
end
end
# for broadcasting
@pure Base.promote_eltype_op{S,T}(op, ::ReshapedOneD{S}, ::ReshapedOneD{T}) = Base.promote_op(op, S, T)
@pure Base.promote_eltype_op{S,T}(op, ::Type{S}, ::ReshapedOneD{T}) = Base.promote_op(op, S, T)
if VERSION >= v"0.6.0-dev.693"
Base.Broadcast.containertype{T<:ReshapedOneD}(::Type{T}) = Array
end
_reshape{T,N}(A::ReshapedOneD{T,N}, ::Type{Val{N}}) = A
_vec(A::ReshapedOneD) = A.data
Base.vec(A::ReshapedOneD) = A.data # is this OK? (note indices won't nec. start with 1)
nextendeddims(a::ReshapedOneD) = 1
"""
iterdims(inds, v::ReshapedOneD{T,N,Npre}) -> Rpre, ind, Rpost
Return a pair `Rpre`, `Rpost` of CartesianRanges that correspond to
pre- and post- dimensions for iterating over an array with indices
`inds`. `Rpre` corresponds to the `Npre` "pre" dimensions, and `Rpost`
to the trailing dimensions (not including the vector object wrapped in
`v`). Concretely,
Rpre = CartesianRange(inds[1:Npre])
ind = inds[Npre+1]
Rpost = CartesianRange(inds[Npre+2:end])
although the implementation differs for reason of type-stability.
"""
function iterdims{_,N,Npre}(inds::Indices{N}, v::ReshapedOneD{_,N,Npre})
indspre, ind, indspost = _iterdims((), (), inds, v)
CartesianRange(indspre), ind, CartesianRange(indspost)
end
@inline function _iterdims(indspre, ::Tuple{}, inds, v)
_iterdims((indspre..., inds[1]), (), tail(inds), v) # consume inds and push to indspre
end
@inline function _iterdims{_,N,Npre}(indspre::NTuple{Npre}, ::Tuple{}, inds, v::ReshapedOneD{_,N,Npre})
indspre, inds[1], tail(inds) # return the "central" and trailing dimensions
end
function indexsplit{_,N}(I::CartesianIndex{N}, v::ReshapedOneD{_,N})
ipre, i, ipost = _iterdims((), (), I.I, v)
CartesianIndex(ipre), i, CartesianIndex(ipost)
end
#### FIR filters
## gradients
"""
kern1, kern2 = sobel()
Factored Sobel filters for dimensions 1 and 2 of a two-dimensional
image. Each is a 2-tuple of one-dimensional filters.
"""
function sobel()
f1 = centered(SVector( 1.0, 2.0, 1.0)/4)
f2 = centered(SVector(-1.0, 0.0, 1.0)/2)
return kernelfactors((f2, f1)), kernelfactors((f1, f2))
end
"""
kern = sobel(extended::NTuple{N,Bool}, d)
Return a factored Sobel filter for computing the gradient in `N` dimensions along axis `d`.
If `extended[dim]` is false, `kern` will have size 1 along that dimension.
"""
function sobel{N}(extended::NTuple{N,Bool}, d)
gradfactors(extended, d, [-1, 0, 1]/2, [1, 2, 1]/4)
end
"`kern1, kern2 = prewitt()` returns factored Prewitt filters for dimensions 1 and 2 of your image"
function prewitt()
f1 = centered(SVector( 1.0, 1.0, 1.0)/3)
f2 = centered(SVector(-1.0, 0.0, 1.0)/2)
return kernelfactors((f2, f1)), kernelfactors((f1, f2))
end
"""
kern = prewitt(extended::NTuple{N,Bool}, d)
Return a factored Prewitt filter for computing the gradient in `N` dimensions along axis `d`.
If `extended[dim]` is false, `kern` will have size 1 along that dimension.
"""
function prewitt{N}(extended::NTuple{N,Bool}, d)
gradfactors(extended, d, [-1, 0, 1]/2, [1, 1, 1]/3)
end
# Consistent Gradient Operators
# Ando Shigeru
# IEEE Trans. Pat. Anal. Mach. Int., vol. 22 no 3, March 2000
#
# TODO: These coefficients were taken from the paper. It would be nice
# to resolve the optimization problem and use higher precision
# versions, which might allow better separable approximations of
# ando4 and ando5.
"""
`kern1, kern2 = ando3()` returns optimal 3x3 gradient filters for dimensions 1 and 2 of your image, as defined in
Ando Shigeru, IEEE Trans. Pat. Anal. Mach. Int., vol. 22 no 3, March 2000.
See also: `ando4`, `ando5`.
"""
function ando3()
f1 = centered(2*SVector(0.112737, 0.274526, 0.112737))
f2 = centered(SVector(-1.0, 0.0, 1.0)/2)
return kernelfactors((f2, f1)), kernelfactors((f1, f2))
end
"""
kern = ando3(extended::NTuple{N,Bool}, d)
Return a factored Ando filter (size 3) for computing the gradient in
`N` dimensions along axis `d`. If `extended[dim]` is false, `kern`
will have size 1 along that dimension.
"""
function ando3{N}(extended::NTuple{N,Bool}, d)
gradfactors(extended, d, [-1.0, 0.0, 1.0]/2, 2*[0.112737, 0.274526, 0.112737])
end
"""
`kern1, kern2 = ando4()` returns separable approximations of the
optimal 4x4 filters for dimensions 1 and 2 of your image, as defined
in Ando Shigeru, IEEE Trans. Pat. Anal. Mach. Int., vol. 22 no 3,
March 2000.
See also: `Kernel.ando4`.
"""
function ando4()
f1 = centered(SVector( 0.0919833, 0.408017, 0.408017, 0.0919833))
f2 = centered(1.46205884*SVector(-0.0919833, -0.408017, 0.408017, 0.0919833))
return kernelfactors((f2, f1)), kernelfactors((f1, f2))
end
"""
kern = ando4(extended::NTuple{N,Bool}, d)
Return a factored Ando filter (size 4) for computing the gradient in
`N` dimensions along axis `d`. If `extended[dim]` is false, `kern`
will have size 1 along that dimension.
"""
function ando4{N}(extended::NTuple{N,Bool}, d)
if N == 2 && all(extended)
return ando4()[d]
else
error("dimensions other than 2 are not yet supported")
end
end
"""
`kern1, kern2 = ando5_sep()` returns separable approximations of the
optimal 5x5 gradient filters for dimensions 1 and 2 of your image, as defined
in Ando Shigeru, IEEE Trans. Pat. Anal. Mach. Int., vol. 22 no 3,
March 2000.
See also: `Kernel.ando5`.
"""
function ando5()
f1 = centered(SVector( 0.0357338, 0.248861, 0.43081, 0.248861, 0.0357338))
f2 = centered(0.784406*SVector(-0.137424, -0.362576, 0.0, 0.362576, 0.137424))
return kernelfactors((f2, f1)), kernelfactors((f1, f2))
end
"""
kern = ando5(extended::NTuple{N,Bool}, d)
Return a factored Ando filter (size 5) for computing the gradient in
`N` dimensions along axis `d`. If `extended[dim]` is false, `kern`
will have size 1 along that dimension.
"""
function ando5{N}(extended::NTuple{N,Bool}, d)
if N == 2 && all(extended)
return ando5()[d]
else
error("dimensions other than 2 are not yet supported")
end
end
## Gaussian
"""
gaussian(σ::Real, [l]) -> g
Construct a 1d gaussian kernel `g` with standard deviation `σ`, optionally
providing the kernel length `l`. The default is to extend by two `σ`
in each direction from the center. `l` must be odd.
"""
function gaussian(σ::Real, l = 4*ceil(Int,σ)+1)
isodd(l) || throw(ArgumentError("length must be odd"))
w = l>>1
g = [exp(-x^2/(2*σ^2)) for x=-w:w]
centered(g/sum(g))
end
"""
gaussian((σ1, σ2, ...), [l]) -> (g1, g2, ...)
Construct a multidimensional gaussian filter as a product of single-dimension
factors, with standard deviation `σd` along dimension `d`. Optionally
provide the kernel length `l`, which must be a tuple of the same
length.
"""
gaussian{N}(σs::NTuple{N,Real}, ls::NTuple{N,Integer}) =
kernelfactors( map((σ,l)->gaussian(σ,l), σs, ls) )
gaussian{N}(σs::NTuple{N,Real}) = kernelfactors(map(σ->gaussian(σ), σs))
gaussian(σs::AbstractVector, ls::AbstractVector) = gaussian((σs...,), (ls...,))
gaussian(σs::AbstractVector) = gaussian((σs...,))
#### IIR
immutable TriggsSdika{T,k,l,L} <: IIRFilter{T}
a::SVector{k,T}
b::SVector{l,T}
scale::T
M::SMatrix{l,k,T,L}
asum::T
bsum::T
TriggsSdika(a, b, scale, M) = new(a, b, scale, M, sum(a), sum(b))
end
"""
TriggsSdika(a, b, scale, M)
Defines a kernel for one-dimensional infinite impulse response (IIR)
filtering. `a` is a "forward" filter, `b` a "backward" filter, `M` is
a matrix for matching boundary conditions at the right edge, and
`scale` is a constant scaling applied to each element at the
conclusion of filtering.
# Citation
B. Triggs and M. Sdika, "Boundary conditions for Young-van Vliet
recursive filtering". IEEE Trans. on Sig. Proc. 54: 2365-2367
(2006).
"""
TriggsSdika{T,k,l,L}(a::SVector{k,T}, b::SVector{l,T}, scale, M::SMatrix{l,k,T,L}) = TriggsSdika{T,k,l,L}(a, b, scale, M)
"""
TriggsSdika(ab, scale)
Create a symmetric Triggs-Sdika filter (with `a = b = ab`). `M` is
calculated for you. Only length 3 filters are currently supported.
"""
function TriggsSdika{T}(a::SVector{3,T}, scale)
a1, a2, a3 = a[1], a[2], a[3]
Mdenom = (1+a1-a2+a3)*(1-a1-a2-a3)*(1+a2+(a1-a3)*a3)
M = @SMatrix([-a3*a1+1-a3^2-a2 (a3+a1)*(a2+a3*a1) a3*(a1+a3*a2);
a1+a3*a2 -(a2-1)*(a2+a3*a1) -(a3*a1+a3^2+a2-1)*a3;
a3*a1+a2+a1^2-a2^2 a1*a2+a3*a2^2-a1*a3^2-a3^3-a3*a2+a3 a3*(a1+a3*a2)]);
TriggsSdika(a, a, scale, M/Mdenom)
end
Base.vec(kernel::TriggsSdika) = kernel
Base.ndims(kernel::TriggsSdika) = 1
Base.ndims{T<:TriggsSdika}(::Type{T}) = 1
Base.indices1(kernel::TriggsSdika) = 0:0
Base.indices(kernel::TriggsSdika) = (Base.indices1(kernel),)
Base.isempty(kernel::TriggsSdika) = false
iterdims(inds::Indices{1}, kern::TriggsSdika) = (), inds[1], ()
_reshape(kern::TriggsSdika, ::Type{Val{1}}) = kern
# Note that there's a sign reversal between Young & Triggs.
"""
IIRGaussian([T], σ; emit_warning::Bool=true)
Construct an infinite impulse response (IIR) approximation to a
Gaussian of standard deviation `σ`. `σ` may either be a single real
number or a tuple of numbers; in the latter case, a tuple of such filters
will be created, each for filtering a different dimension of an array.
Optionally specify the type `T` for the filter coefficients; if not
supplied, it will match `σ` (unless `σ` is not floating-point, in
which case `Float64` will be chosen).
# Citation
I. T. Young, L. J. van Vliet, and M. van Ginkel, "Recursive Gabor
Filtering". IEEE Trans. Sig. Proc., 50: 2798-2805 (2002).
"""
function IIRGaussian{T}(::Type{T}, σ::Real; emit_warning::Bool = true)
if emit_warning && σ < 1 && σ != 0
warn("σ is too small for accuracy")
end
m0 = convert(T,1.16680)
m1 = convert(T,1.10783)
m2 = convert(T,1.40586)
q = convert(T,1.31564*(sqrt(1+0.490811*σ*σ) - 1))
ascale = (m0+q)*(m1*m1 + m2*m2 + 2m1*q + q*q)
B = (m0*(m1*m1 + m2*m2)/ascale)^2
# This is what Young et al call -b, but in filt() notation would be called a
a1 = q*(2*m0*m1 + m1*m1 + m2*m2 + (2*m0+4*m1)*q + 3*q*q)/ascale
a2 = -q*q*(m0 + 2m1 + 3q)/ascale
a3 = q*q*q/ascale
a = SVector(a1,a2,a3)
TriggsSdika(a, B)
end
IIRGaussian(σ::Real; emit_warning::Bool = true) = IIRGaussian(iirgt(σ), σ; emit_warning=emit_warning)
function IIRGaussian{T,N}(::Type{T}, σs::NTuple{N,Real}; emit_warning::Bool = true)
iirg(T, (), σs, tail(ntuple(d->true, Val{N})), emit_warning)
end
IIRGaussian(σs::Tuple; emit_warning::Bool = true) = IIRGaussian(iirgt(σs), σs; emit_warning=emit_warning)
IIRGaussian(σs::AbstractVector; kwargs...) = IIRGaussian((σs...,); kwargs...)
IIRGaussian{T}(::Type{T}, σs::AbstractVector; kwargs...) = IIRGaussian(T, (σs...,); kwargs...)
iirgt(σ::AbstractFloat) = typeof(σ)
iirgt(σ::Real) = Float64
iirgt(σs::Tuple) = promote_type(map(iirgt, σs)...)
@inline function iirg{T}(::Type{T}, pre, σs, post, emit_warning)
kern = ReshapedOneD(pre, IIRGaussian(T, σs[1]; emit_warning=emit_warning), post)
(kern, iirg(T, (pre..., post[1]), tail(σs), tail(post), emit_warning)...)
end
iirg{T}(::Type{T}, pre, σs::Tuple{Real}, ::Tuple{}, emit_warning) =
(ReshapedOneD(pre, IIRGaussian(T, σs[1]; emit_warning=emit_warning), ()),)
###### Utilities
"""
kernelfactors(factors::Tuple)
Prepare a factored kernel for filtering. If passed a 2-tuple of
vectors of lengths `m` and `n`, this will return a 2-tuple of
`ReshapedVector`s that are effectively of sizes `m×1` and `1×n`. In
general, each successive `factor` will be reshaped to extend along the
corresponding dimension.
If passed a tuple of general arrays, it is assumed that each is shaped
appropriately along its "leading" dimensions; the dimensionality of each is
"extended" to `N = length(factors)`, appending 1s to the size as needed.
"""
kernelfactors{N}(factors::NTuple{N,AbstractVector}) = _kernelfactors((), ntuple(d->true,Val{N}), (), factors)
_kernelfactors(pre, post, out::NTuple, ::Tuple{}) = out
@inline function _kernelfactors(pre, post, out, factors)
# L+M=N
f = factors[1]
newpost = tail(post)
rv = ReshapedOneD(pre, f, newpost)
_kernelfactors((pre..., true), newpost, (out..., rv), tail(factors))
end
# A variant in which we just need to fill out to N dimensions
kernelfactors{N}(factors::NTuple{N,AbstractArray}) = map(f->_reshape(f, Val{N}), factors)
function gradfactors{N}(extended::NTuple{N,Bool}, d::Int, k1, k2)
kernelfactors(ntuple(i -> kdim(extended[i], i==d ? k1 : k2), Val{N}))
end
kdim(keep::Bool, k) = keep ? centered(k) : OffsetArray([one(eltype(k))], 0:0)
end