From 51d79ea908729d4f8e90fc3e1826ac9a5f3c3b57 Mon Sep 17 00:00:00 2001 From: Carlo Lucibello Date: Sat, 6 Nov 2021 14:58:41 +0100 Subject: [PATCH] improve docs --- docs/src/gnngraph.md | 33 ++++++++++++++++----- docs/src/messagepassing.md | 60 ++++++++++++++++++++++++++++++++++++-- src/GNNGraphs/GNNGraphs.jl | 3 +- 3 files changed, 86 insertions(+), 10 deletions(-) diff --git a/docs/src/gnngraph.md b/docs/src/gnngraph.md index 68d0f14c9..440e1f837 100644 --- a/docs/src/gnngraph.md +++ b/docs/src/gnngraph.md @@ -41,14 +41,33 @@ See also the related methods [`Graphs.adjacency_matrix`](@ref), [`edge_index`](@ ## Basic Queries ```julia -source = [1,1,2,2,3,3,3,4] -target = [2,3,1,3,1,2,4,3] -g = GNNGraph(source, target) +julia> source = [1,1,2,2,3,3,3,4]; + +julia> target = [2,3,1,3,1,2,4,3]; + +julia> g = GNNGraph(source, target) +GNNGraph: + num_nodes = 4 + num_edges = 8 + + +julia> @assert g.num_nodes == 4 # number of nodes + +julia> @assert g.num_edges == 8 # number of edges + +julia> @assert g.num_graphs == 1 # number of subgraphs (a GNNGraph can batch many graphs together) + +julia> is_directed(g) # a GNNGraph is always directed +true + +julia> is_bidirected(g) # for each edge, also the reverse edge is present +true + +julia> has_self_loops(g) +false -@assert g.num_nodes == 4 # number of nodes -@assert g.num_edges == 8 # number of edges -@assert g.num_graphs == 1 # number of subgraphs (a GNNGraph can batch many graphs together) -is_directed(g) # a GGNGraph is always directed +julia> has_multi_edges(g) +false ``` ## Data Features diff --git a/docs/src/messagepassing.md b/docs/src/messagepassing.md index 90e023cdc..51f575385 100644 --- a/docs/src/messagepassing.md +++ b/docs/src/messagepassing.md @@ -34,9 +34,65 @@ and [`NNlib.scatter`](@ref) methods. ## Examples -### Basic use of propagate and apply_edges +### Basic use of apply_edges and propagate -TODO +The function [`apply_edges`](@ref) can be used to broadcast node data +on each edge and produce new edge data. +```julia +julia> using GraphNeuralNetworks, Graphs, Statistics + +julia> g = rand_graph(10, 20) +GNNGraph: + num_nodes = 10 + num_edges = 20 + + +julia> x = ones(2,10) +2×10 Matrix{Float64}: + 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 + 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 + +julia> z = 2ones(2,10) +2×10 Matrix{Float64}: + 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 + 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 + +julia> apply_edges((xi, xj, e) -> xi .+ xj, g, xi=x, xj=z) +2×20 Matrix{Float64}: + 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 + 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 + +# now returning a named tuple +julia> apply_edges((xi, xj, e) -> (a=xi .+ xj, b=xi .- xj), g, xi=x, xj=z) +(a = [3.0 3.0 … 3.0 3.0; 3.0 3.0 … 3.0 3.0], b = [-1.0 -1.0 … -1.0 -1.0; -1.0 -1.0 … -1.0 -1.0]) + +# Here we provide a named tuple input +julia> apply_edges((xi, xj, e) -> xi.a + xi.b .* xj, g, xi=(a=x,b=z), xj=z) +2×20 Matrix{Float64}: + 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 + 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 +``` +The function [@propagate](@ref) instead performs also the the [`apply_edges`](@ref) operation +but then applies a reduction over each node's neighborhood. +```julia +julia> propagate((xi, xj, e) -> xi .+ xj, g, +, xi=x, xj=z) +2×10 Matrix{Float64}: + 3.0 6.0 9.0 9.0 0.0 6.0 6.0 3.0 15.0 3.0 + 3.0 6.0 9.0 9.0 0.0 6.0 6.0 3.0 15.0 3.0 + +julia> degree(g) +10-element Vector{Int64}: + 1 + 2 + 3 + 3 + 0 + 2 + 2 + 1 + 5 + 1 +``` ### Implementing a custom Graph Convolutional Layer diff --git a/src/GNNGraphs/GNNGraphs.jl b/src/GNNGraphs/GNNGraphs.jl index 800abe627..9177eb34f 100644 --- a/src/GNNGraphs/GNNGraphs.jl +++ b/src/GNNGraphs/GNNGraphs.jl @@ -4,7 +4,7 @@ using SparseArrays using Functors: @functor using CUDA import Graphs -using Graphs: AbstractGraph, outneighbors, inneighbors, adjacency_matrix, degree, has_self_loops +using Graphs: AbstractGraph, outneighbors, inneighbors, adjacency_matrix, degree, has_self_loops, is_directed import Flux using Flux: batch import NNlib @@ -26,6 +26,7 @@ export adjacency_list, edge_index, graph_indicator, has_multi_edges, + is_directed, is_bidirected, normalized_laplacian, scaled_laplacian,