We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
GCNConv
GNNGraph
MWE:
using GraphNeuralNetworks, Flux, Zygote using LinearAlgebra, Random, SparseArrays, Statistics rng = Random.seed!(63) x = randn(rng, Float32, 5, 10) y = randn(10) A = sparse(Symmetric(sprand(rng, Bool, 10, 10, 0.2))) g1 = rand_graph(10, 20; ndata=(; x, y)) # random graph g2 = GNNGraph(A; ndata=(; x, y)) # from sparse adjacency matrix model1 = GNNChain(Dense(5 => 1)) # without GCNConv model2 = GNNChain(GCNConv(5 => 5), Dense(5 => 1)) # with GCNConv myloss(model, g::GNNGraph) = mean(abs2, vec(model(g, g.x)) .- g.y) model1(g1, g1.x), model2(g1, g1.x), model2(g2, g2.x), model2(g2, g2.x); # all works gradient(model -> myloss(model, g1), model1) # works gradient(model -> myloss(model, g1), model2) # works gradient(model -> myloss(model, g2), model1) # works gradient(model -> myloss(model, g2), model2) # fails
Error:
julia> gradient(model -> myloss(model, g2), model2) # fails ERROR: MethodError: no method matching zero(::Nothing) Closest candidates are: zero(::Type{Union{}}, Any...) @ Base number.jl:310 zero(::Type{Dates.Time}) @ Dates ~/.julia/juliaup/julia-1.10.4+0.x64.linux.gnu/share/julia/stdlib/v1.10/Dates/src/types.jl:440 zero(::Type{Pkg.Resolve.FieldValue}) @ Pkg ~/.julia/juliaup/julia-1.10.4+0.x64.linux.gnu/share/julia/stdlib/v1.10/Pkg/src/Resolve/fieldvalues.jl:38 ... Stacktrace: [1] iszero(x::Nothing) @ Base ./number.jl:42 [2] _iszero(x::Nothing) @ SparseArrays ~/.julia/juliaup/julia-1.10.4+0.x64.linux.gnu/share/julia/stdlib/v1.10/SparseArrays/src/SparseArrays.jl:41 [3] _noshapecheck_map(::typeof(Zygote.wrap_chainrules_output), ::SparseMatrixCSC{ChainRulesCore.NoTangent, Int64}) @ SparseArrays.HigherOrderFns ~/.julia/juliaup/julia-1.10.4+0.x64.linux.gnu/share/julia/stdlib/v1.10/SparseArrays/src/higherorderfns.jl:181 [4] map @ ~/.julia/juliaup/julia-1.10.4+0.x64.linux.gnu/share/julia/stdlib/v1.10/SparseArrays/src/higherorderfns.jl:1187 [inlined] [5] wrap_chainrules_output @ ~/.julia/packages/Zygote/nsBv0/src/compiler/chainrules.jl:127 [inlined] [6] wrap_chainrules_output @ ~/.julia/packages/Zygote/nsBv0/src/compiler/chainrules.jl:110 [inlined] [7] map @ ./tuple.jl:293 [inlined] [8] wrap_chainrules_output @ ~/.julia/packages/Zygote/nsBv0/src/compiler/chainrules.jl:111 [inlined] [9] ZBack @ ~/.julia/packages/Zygote/nsBv0/src/compiler/chainrules.jl:211 [inlined] [10] propagate @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/msgpass.jl:251 [inlined] [11] #propagate#128 @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/msgpass.jl:77 [inlined] [12] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [13] propagate @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/msgpass.jl:76 [inlined] [14] (::Zygote.Pullback{Tuple{…}, Any})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [15] #_#24 @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/layers/conv.jl:160 [inlined] [16] (::Zygote.Pullback{Tuple{…}, Any})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [17] GCNConv (repeats 2 times) @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/layers/conv.jl:103 [inlined] [18] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [19] _applylayer @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/layers/basic.jl:158 [inlined] [20] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [21] _applychain @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/layers/basic.jl:144 [inlined] [22] (::Zygote.Pullback{Tuple{…}, Any})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [23] GNNChain @ ~/.julia/packages/GraphNeuralNetworks/AxIf2/src/layers/basic.jl:130 [inlined] [24] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Matrix{Float32}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [25] myloss @ ~/Work/GitHub/Julia/Oversmoothing.jl/experiments/gnn.jl:43 [inlined] [26] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [27] #25 @ ~/Work/GitHub/Julia/Oversmoothing.jl/experiments/gnn.jl:50 [inlined] [28] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [29] (::Zygote.var"#75#76"{Zygote.Pullback{Tuple{…}, Tuple{…}}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface.jl:91 [30] gradient(f::Function, args::GNNChain{Tuple{GCNConv{…}, Dense{…}}}) @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface.jl:148 [31] top-level scope @ ~/Work/GitHub/Julia/Oversmoothing.jl/experiments/gnn.jl:50 Some type information was truncated. Use `show(err)` to see complete types.
The text was updated successfully, but these errors were encountered:
My bad, I had not specified graph_type=:sparse
graph_type=:sparse
Sorry, something went wrong.
No branches or pull requests
MWE:
Error:
The text was updated successfully, but these errors were encountered: