We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
using GraphNeuralNetworks using Flux function test_nn(nn, x) @show nn println("CPU") @show nn(x) println("GPU") x = Flux.gpu(x) nn = Flux.gpu(nn) @show nn(x) end x = GNNGraph(collect(1:6), collect(1:6), num_nodes = 6, ndata= rand(Int, 2, 6)) x2 = GNNGraph(collect(1:6), collect(1:6), num_nodes = 6, ndata= rand(2, 6)) test_nn(GNNChain(Dense(2, 2), BatchNorm(2)), x) #Works test_nn(GNNChain(GraphConv(2 => 2), BatchNorm(2)), x) #Works test_nn(GNNChain(GCNConv(2 => 2), BatchNorm(2)), x2) #Works test_nn(GNNChain(GINConv(identity, 0), BatchNorm(2)), x2) #Works test_nn(GNNChain(GCNConv(2 => 2), BatchNorm(2)), x) #Error test_nn(GNNChain(GINConv(identity, 0), BatchNorm(2)), x) #Error
Error message for the non-working:
nn = GNNChain(GCNConv(2 => 2), BatchNorm(2)) CPU nn(x) = GNNGraph: num_nodes = 6 num_edges = 6 ndata: x => (2, 6) GPU ERROR: LoadError: MethodError: no method matching batchnorm(::CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, ::CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, ::CUDA.CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}, ::CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, ::CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, ::Float32; cache=nothing, alpha=1, beta=0, eps=1.0f-5, training=false) Closest candidates are: batchnorm(::CUDA.CuArray{T}, ::CUDA.CuArray{T}, ::CUDA.CuArray{T, 2}, ::CUDA.CuArray{T}, ::CUDA.CuArray{T}, ::Any; cache, alpha, beta, eps, training) where T<:Union{Float32, Float64} at ~/.julia/packages/NNlibCUDA/IeeBk/src/cudnn/batchnorm.jl:23 batchnorm(::CUDA.CuArray{T}, ::CUDA.CuArray{T}, ::Union{CUDA.CuArray{T, 4}, CUDA.CuArray{T, 5}}, ::CUDA.CuArray{T}, ::CUDA.CuArray{T}, ::Any; cache, alpha, beta, eps, training) where T<:Union{Float32, Float64} at ~/.julia/packages/NNlibCUDA/IeeBk/src/cudnn/batchnorm.jl:27 Stacktrace: [1] (::BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}})(x::CUDA.CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}, cache::Nothing) @ Flux.CUDAint ~/.julia/packages/Flux/BPPNj/src/cuda/cudnn.jl:9 [2] (::BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}})(x::CUDA.CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}) @ Flux.CUDAint ~/.julia/packages/Flux/BPPNj/src/cuda/cudnn.jl:6 [3] applylayer(l::BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}, g::GNNGraph{Tuple{CUDA.CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}, Nothing}}) @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/KNr8R/src/layers/basic.jl:120 [4] applychain (repeats 2 times) @ ~/.julia/packages/GraphNeuralNetworks/KNr8R/src/layers/basic.jl:133 [inlined] [5] (::GNNChain{Tuple{GCNConv{CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, typeof(identity)}, BatchNorm{typeof(identity), CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}, Float32, CUDA.CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}}}})(g::GNNGraph{Tuple{CUDA.CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}, CUDA.CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}, Nothing}}) @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/KNr8R/src/layers/basic.jl:140 [6] macro expansion @ ./show.jl:1047 [inlined] [7] test_nn(nn::GNNChain{Tuple{GCNConv{Matrix{Float32}, Vector{Float32}, typeof(identity)}, BatchNorm{typeof(identity), Vector{Float32}, Float32, Vector{Float32}}}}, x::GNNGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}) @ Main ~/Documents/testJulia/main.jl:11 [8] top-level scope @ ~/Documents/testJulia/main.jl:21 in expression starting at /home/casperp/Documents/testJulia/main.jl:21
The text was updated successfully, but these errors were encountered:
This is a Flux problem. But really you shouldn't use integer features, just convert them to float32 Float32.(rand(Int, 2, 6))
Float32.(rand(Int, 2, 6))
Sorry, something went wrong.
FluxML/Flux.jl#1897
No branches or pull requests
Error message for the non-working:
The text was updated successfully, but these errors were encountered: