-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathbasic.jl
212 lines (165 loc) · 5.85 KB
/
basic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
abstract type GNNLayer end
An abstract type from which graph neural network layers are derived.
See also [`GNNChain`](@ref).
"""
abstract type GNNLayer end
# Forward pass with graph-only input.
# To be specialized by layers also needing edge features as input (e.g. NNConv).
(l::GNNLayer)(g::GNNGraph) = GNNGraph(g, ndata = l(g, node_features(g)))
"""
WithGraph(model, g::GNNGraph; traingraph=false)
A type wrapping the `model` and tying it to the graph `g`.
In the forward pass, can only take feature arrays as inputs,
returning `model(g, x...; kws...)`.
If `traingraph=false`, the graph's parameters won't be part of
the `trainable` parameters in the gradient updates.
# Examples
```julia
g = GNNGraph([1,2,3], [2,3,1])
x = rand(Float32, 2, 3)
model = SAGEConv(2 => 3)
wg = WithGraph(model, g)
# No need to feed the graph to `wg`
@assert wg(x) == model(g, x)
g2 = GNNGraph([1,1,2,3], [2,4,1,1])
x2 = rand(Float32, 2, 4)
# WithGraph will ignore the internal graph if fed with a new one.
@assert wg(g2, x2) == model(g2, x2)
```
"""
struct WithGraph{M, G <: GNNGraph}
model::M
g::G
traingraph::Bool
end
WithGraph(model, g::GNNGraph; traingraph = false) = WithGraph(model, g, traingraph)
Flux.@layer :expand WithGraph
Flux.trainable(l::WithGraph) = l.traingraph ? (; l.model, l.g) : (; l.model)
(l::WithGraph)(g::GNNGraph, x...; kws...) = l.model(g, x...; kws...)
(l::WithGraph)(x...; kws...) = l.model(l.g, x...; kws...)
"""
GNNChain(layers...)
GNNChain(name = layer, ...)
Collects multiple layers / functions to be called in sequence
on given input graph and input node features.
It allows to compose layers in a sequential fashion as `Flux.Chain`
does, propagating the output of each layer to the next one.
In addition, `GNNChain` handles the input graph as well, providing it
as a first argument only to layers subtyping the [`GNNLayer`](@ref) abstract type.
`GNNChain` supports indexing and slicing, `m[2]` or `m[1:end-1]`,
and if names are given, `m[:name] == m[1]` etc.
# Examples
```jldoctest
julia> using Flux, GraphNeuralNetworks
julia> m = GNNChain(GCNConv(2=>5),
BatchNorm(5),
x -> relu.(x),
Dense(5, 4))
GNNChain(GCNConv(2 => 5), BatchNorm(5), #7, Dense(5 => 4))
julia> x = randn(Float32, 2, 3);
julia> g = rand_graph(3, 6)
GNNGraph:
num_nodes = 3
num_edges = 6
julia> m(g, x)
4×3 Matrix{Float32}:
-0.795592 -0.795592 -0.795592
-0.736409 -0.736409 -0.736409
0.994925 0.994925 0.994925
0.857549 0.857549 0.857549
julia> m2 = GNNChain(enc = m,
dec = DotDecoder())
GNNChain(enc = GNNChain(GCNConv(2 => 5), BatchNorm(5), #7, Dense(5 => 4)), dec = DotDecoder())
julia> m2(g, x)
1×6 Matrix{Float32}:
2.90053 2.90053 2.90053 2.90053 2.90053 2.90053
julia> m2[:enc](g, x) == m(g, x)
true
```
"""
struct GNNChain{T <: Union{Tuple, NamedTuple, AbstractVector}} <: GNNLayer
layers::T
end
Flux.@layer :expand GNNChain
GNNChain(xs...) = GNNChain(xs)
function GNNChain(; kw...)
:layers in Base.keys(kw) &&
throw(ArgumentError("a GNNChain cannot have a named layer called `layers`"))
isempty(kw) && return GNNChain(())
GNNChain(values(kw))
end
@forward GNNChain.layers Base.getindex, Base.length, Base.first, Base.last,
Base.iterate, Base.lastindex, Base.keys, Base.firstindex
(c::GNNChain)(g::GNNGraph, x) = _applychain(c.layers, g, x)
(c::GNNChain)(g::GNNGraph) = _applychain(c.layers, g)
## TODO see if this is faster for small chains
## see https://github.com/FluxML/Flux.jl/pull/1809#discussion_r781691180
# @generated function _applychain(layers::Tuple{Vararg{<:Any,N}}, g::GNNGraph, x) where {N}
# symbols = vcat(:x, [gensym() for _ in 1:N])
# calls = [:($(symbols[i+1]) = _applylayer(layers[$i], $(symbols[i]))) for i in 1:N]
# Expr(:block, calls...)
# end
# _applychain(layers::NamedTuple, g, x) = _applychain(Tuple(layers), x)
function _applychain(layers, g::GNNGraph, x) # type-unstable path, helps compile times
for l in layers
x = _applylayer(l, g, x)
end
return x
end
function _applychain(layers, g::GNNGraph) # type-unstable path, helps compile times
for l in layers
g = _applylayer(l, g)
end
return g
end
# # explicit input
_applylayer(l, g::GNNGraph, x) = l(x)
_applylayer(l::GNNLayer, g::GNNGraph, x) = l(g, x)
# input from graph
_applylayer(l, g::GNNGraph) = GNNGraph(g, ndata = l(node_features(g)))
_applylayer(l::GNNLayer, g::GNNGraph) = l(g)
# # Handle Flux.Parallel
function _applylayer(l::Parallel, g::GNNGraph)
GNNGraph(g, ndata = _applylayer(l, g, node_features(g)))
end
function _applylayer(l::Parallel, g::GNNGraph, x::AbstractArray)
closures = map(f -> (x -> _applylayer(f, g, x)), l.layers)
return Parallel(l.connection, closures)(x)
end
Base.getindex(c::GNNChain, i::AbstractArray) = GNNChain(c.layers[i])
function Base.getindex(c::GNNChain{<:NamedTuple}, i::AbstractArray)
GNNChain(NamedTuple{keys(c)[i]}(Tuple(c.layers)[i]))
end
function Base.show(io::IO, c::GNNChain)
print(io, "GNNChain(")
_show_layers(io, c.layers)
print(io, ")")
end
_show_layers(io, layers::Tuple) = join(io, layers, ", ")
function _show_layers(io, layers::NamedTuple)
join(io, ["$k = $v" for (k, v) in pairs(layers)], ", ")
end
function _show_layers(io, layers::AbstractVector)
(print(io, "["); join(io, layers, ", "); print(io, "]"))
end
"""
DotDecoder()
A graph neural network layer that
for given input graph `g` and node features `x`,
returns the dot product `x_i ⋅ xj` on each edge.
# Examples
```jldoctest
julia> g = rand_graph(5, 6)
GNNGraph:
num_nodes = 5
num_edges = 6
julia> dotdec = DotDecoder()
DotDecoder()
julia> dotdec(g, rand(2, 5))
1×6 Matrix{Float64}:
0.345098 0.458305 0.106353 0.345098 0.458305 0.106353
```
"""
struct DotDecoder <: GNNLayer end
(::DotDecoder)(g, x) = GNNlib.dot_decoder(g, x)