-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathbasic.jl
99 lines (75 loc) · 3.39 KB
/
basic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
abstract type GNNLayer <: AbstractLuxLayer end
An abstract type from which graph neural network layers are derived.
It is derived from Lux's `AbstractLuxLayer` type.
See also [`GNNLux.GNNChain`](@ref).
"""
abstract type GNNLayer <: AbstractLuxLayer end
abstract type GNNContainerLayer{T} <: AbstractLuxContainerLayer{T} end
"""
GNNChain(layers...)
GNNChain(name = layer, ...)
Collects multiple layers / functions to be called in sequence
on given input graph and input node features.
It allows to compose layers in a sequential fashion as `Lux.Chain`
does, propagating the output of each layer to the next one.
In addition, `GNNChain` handles the input graph as well, providing it
as a first argument only to layers subtyping the [`GNNLayer`](@ref) abstract type.
`GNNChain` supports indexing and slicing, `m[2]` or `m[1:end-1]`,
and if names are given, `m[:name] == m[1]` etc.
# Examples
```jldoctest
julia> using Lux, GNNLux, Random
julia> rng = Random.default_rng();
julia> m = GNNChain(GCNConv(2=>5),
x -> relu.(x),
Dense(5=>4))
julia> x = randn(rng, Float32, 2, 3);
julia> g = rand_graph(rng, 3, 6)
GNNGraph:
num_nodes: 3
num_edges: 6
julia> ps, st = LuxCore.setup(rng, m);
julia> m(g, x, ps, st) # First entry is the output, second entry is the state of the model
(Float32[-0.15594329 -0.15594329 -0.15594329; 0.93431795 0.93431795 0.93431795; 0.27568763 0.27568763 0.27568763; 0.12568939 0.12568939 0.12568939], (layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = NamedTuple()))
```
"""
@concrete struct GNNChain <: GNNContainerLayer{(:layers,)}
layers <: NamedTuple
end
GNNChain(xs...) = GNNChain(; (Symbol("layer_", i) => x for (i, x) in enumerate(xs))...)
function GNNChain(; kw...)
:layers in Base.keys(kw) &&
throw(ArgumentError("a GNNChain cannot have a named layer called `layers`"))
nt = NamedTuple{keys(kw)}(values(kw))
nt = map(_wrapforchain, nt)
return GNNChain(nt)
end
_wrapforchain(l::AbstractLuxLayer) = l
_wrapforchain(l) = Lux.WrappedFunction(l)
Base.keys(c::GNNChain) = Base.keys(getfield(c, :layers))
Base.getindex(c::GNNChain, i::Int) = c.layers[i]
Base.getindex(c::GNNChain, i::AbstractVector) = GNNChain(NamedTuple{keys(c)[i]}(Tuple(c.layers)[i]))
function Base.getproperty(c::GNNChain, name::Symbol)
hasfield(typeof(c), name) && return getfield(c, name)
layers = getfield(c, :layers)
hasfield(typeof(layers), name) && return getfield(layers, name)
throw(ArgumentError("$(typeof(c)) has no field or layer $name"))
end
Base.length(c::GNNChain) = length(c.layers)
Base.lastindex(c::GNNChain) = lastindex(c.layers)
Base.firstindex(c::GNNChain) = firstindex(c.layers)
LuxCore.outputsize(c::GNNChain) = LuxCore.outputsize(c.layers[end])
(c::GNNChain)(g::GNNGraph, x, ps, st) = _applychain(c.layers, g, x, ps.layers, st.layers)
function _applychain(layers, g::GNNGraph, x, ps, st) # type-unstable path, helps compile times
newst = (;)
for (name, l) in pairs(layers)
x, s′ = _applylayer(l, g, x, getproperty(ps, name), getproperty(st, name))
newst = merge(newst, (; name => s′))
end
return x, newst
end
_applylayer(l, g::GNNGraph, x, ps, st) = l(x), (;)
_applylayer(l::AbstractLuxLayer, g::GNNGraph, x, ps, st) = l(x, ps, st)
_applylayer(l::GNNLayer, g::GNNGraph, x, ps, st) = l(g, x, ps, st)
_applylayer(l::GNNContainerLayer, g::GNNGraph, x, ps, st) = l(g, x, ps, st)