-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathsampling.jl
203 lines (172 loc) · 5.56 KB
/
sampling.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
sample_neighbors(g, nodes, K=-1; dir=:in, replace=false, dropnodes=false)
Sample neighboring edges of the given nodes and return the induced subgraph.
For each node, a number of inbound (or outbound when `dir = :out``) edges will be randomly chosen.
If `dropnodes=false`, the graph returned will then contain all the nodes in the original graph,
but only the sampled edges.
The returned graph will contain an edge feature `EID` corresponding to the id of the edge
in the original graph. If `dropnodes=true`, it will also contain a node feature `NID` with
the node ids in the original graph.
# Arguments
- `g`. The graph.
- `nodes`. A list of node IDs to sample neighbors from.
- `K`. The maximum number of edges to be sampled for each node.
If -1, all the neighboring edges will be selected.
- `dir`. Determines whether to sample inbound (`:in`) or outbound (``:out`) edges (Default `:in`).
- `replace`. If `true`, sample with replacement.
- `dropnodes`. If `true`, the resulting subgraph will contain only the nodes involved in the sampled edges.
# Examples
```julia
julia> g = rand_graph(20, 100)
GNNGraph:
num_nodes = 20
num_edges = 100
julia> sample_neighbors(g, 2:3)
GNNGraph:
num_nodes = 20
num_edges = 9
edata:
EID => (9,)
julia> sg = sample_neighbors(g, 2:3, dropnodes=true)
GNNGraph:
num_nodes = 10
num_edges = 9
ndata:
NID => (10,)
edata:
EID => (9,)
julia> sg.ndata.NID
10-element Vector{Int64}:
2
3
17
14
18
15
16
20
7
10
julia> sample_neighbors(g, 2:3, 5, replace=true)
GNNGraph:
num_nodes = 20
num_edges = 10
edata:
EID => (10,)
```
"""
function sample_neighbors(g::GNNGraph{<:COO_T}, nodes, K = -1;
dir = :in, replace = false, dropnodes = false)
@assert dir ∈ (:in, :out)
_, eidlist = adjacency_list(g, nodes; dir, with_eid = true)
for i in 1:length(eidlist)
if replace
k = K > 0 ? K : length(eidlist[i])
else
k = K > 0 ? min(length(eidlist[i]), K) : length(eidlist[i])
end
eidlist[i] = StatsBase.sample(eidlist[i], k; replace)
end
eids = reduce(vcat, eidlist)
s, t = edge_index(g)
w = get_edge_weight(g)
s = s[eids]
t = t[eids]
w = isnothing(w) ? nothing : w[eids]
edata = getobs(g.edata, eids)
edata.EID = eids
num_edges = length(eids)
if !dropnodes
graph = (s, t, w)
gnew = GNNGraph(graph,
g.num_nodes, num_edges, g.num_graphs,
g.graph_indicator,
g.ndata, edata, g.gdata)
else
nodes_other = dir == :in ? setdiff(s, nodes) : setdiff(t, nodes)
nodes_all = [nodes; nodes_other]
nodemap = Dict(n => i for (i, n) in enumerate(nodes_all))
s = [nodemap[s] for s in s]
t = [nodemap[t] for t in t]
graph = (s, t, w)
graph_indicator = g.graph_indicator !== nothing ? g.graph_indicator[nodes_all] :
nothing
num_nodes = length(nodes_all)
ndata = getobs(g.ndata, nodes_all)
ndata.NID = nodes_all
gnew = GNNGraph(graph,
num_nodes, num_edges, g.num_graphs,
graph_indicator,
ndata, edata, g.gdata)
end
return gnew
end
"""
induced_subgraph(graph, nodes)
Generates a subgraph from the original graph using the provided `nodes`.
The function includes the nodes' neighbors and creates edges between nodes that are connected in the original graph.
If a node has no neighbors, an isolated node will be added to the subgraph.
Returns A new `GNNGraph` containing the subgraph with the specified nodes and their features.
# Arguments
- `graph`. The original GNNGraph containing nodes, edges, and node features.
- `nodes``. A vector of node indices to include in the subgraph.
# Examples
```julia
julia> s = [1, 2]
2-element Vector{Int64}:
1
2
julia> t = [2, 3]
2-element Vector{Int64}:
2
3
julia> graph = GNNGraph((s, t), ndata = (; x=rand(Float32, 32, 3), y=rand(Float32, 3)), edata = rand(Float32, 2))
GNNGraph:
num_nodes: 3
num_edges: 2
ndata:
y = 3-element Vector{Float32}
x = 32×3 Matrix{Float32}
edata:
e = 2-element Vector{Float32}
julia> nodes = [1, 2]
2-element Vector{Int64}:
1
2
julia> subgraph = Graphs.induced_subgraph(graph, nodes)
GNNGraph:
num_nodes: 2
num_edges: 1
ndata:
y = 2-element Vector{Float32}
x = 32×2 Matrix{Float32}
edata:
e = 1-element Vector{Float32}
```
"""
function Graphs.induced_subgraph(graph::GNNGraph, nodes::Vector{Int})
if isempty(nodes)
return GNNGraph() # Return empty graph if no nodes are provided
end
node_map = Dict(node => i for (i, node) in enumerate(nodes))
edge_list = [collect(t) for t in zip(edge_index(graph)[1],edge_index(graph)[2])]
# Collect edges to add
source = Int[]
target = Int[]
eindices = Int[]
for node in nodes
neighbors = Graphs.neighbors(graph, node, dir = :in)
for neighbor in neighbors
if neighbor in keys(node_map)
push!(target, node_map[node])
push!(source, node_map[neighbor])
eindex = findfirst(x -> x == [neighbor, node], edge_list)
push!(eindices, eindex)
end
end
end
# Extract features for the new nodes
new_ndata = getobs(graph.ndata, nodes)
new_edata = getobs(graph.edata, eindices)
return GNNGraph(source, target, num_nodes = length(node_map), ndata = new_ndata, edata = new_edata)
end