-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathgnnheterograph.jl
299 lines (245 loc) · 10.7 KB
/
gnnheterograph.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
const EType = Tuple{Symbol, Symbol, Symbol}
const NType = Symbol
const EDict{T} = Dict{EType, T}
const NDict{T} = Dict{NType, T}
"""
GNNHeteroGraph(data; [ndata, edata, gdata, num_nodes])
GNNHeteroGraph(pairs...; [ndata, edata, gdata, num_nodes])
A type representing a heterogeneous graph structure.
It is similar to [`GNNGraph`](@ref) but nodes and edges are of different types.
# Constructor Arguments
- `data`: A dictionary or an iterable object that maps `(source_type, edge_type, target_type)`
triples to `(source, target)` index vectors (or to `(source, target, weight)` if also edge weights are present).
- `pairs`: Passing multiple relations as pairs is equivalent to passing `data=Dict(pairs...)`.
- `ndata`: Node features. A dictionary of arrays or named tuple of arrays.
The size of the last dimension of each array must be given by `g.num_nodes`.
- `edata`: Edge features. A dictionary of arrays or named tuple of arrays. Default `nothing`.
The size of the last dimension of each array must be given by `g.num_edges`. Default `nothing`.
- `gdata`: Graph features. An array or named tuple of arrays whose last dimension has size `num_graphs`. Default `nothing`.
- `num_nodes`: The number of nodes for each type. If not specified, inferred from `data`. Default `nothing`.
# Fields
- `graph`: A dictionary that maps (source_type, edge_type, target_type) triples to (source, target) index vectors.
- `num_nodes`: The number of nodes for each type.
- `num_edges`: The number of edges for each type.
- `ndata`: Node features.
- `edata`: Edge features.
- `gdata`: Graph features.
- `ntypes`: The node types.
- `etypes`: The edge types.
# Examples
```julia
julia> using GraphNeuralNetworks
julia> nA, nB = 10, 20;
julia> num_nodes = Dict(:A => nA, :B => nB);
julia> edges1 = (rand(1:nA, 20), rand(1:nB, 20))
([4, 8, 6, 3, 4, 7, 2, 7, 3, 2, 3, 4, 9, 4, 2, 9, 10, 1, 3, 9], [6, 4, 20, 8, 16, 7, 12, 16, 5, 4, 6, 20, 11, 19, 17, 9, 12, 2, 18, 12])
julia> edges2 = (rand(1:nB, 30), rand(1:nA, 30))
([17, 5, 2, 4, 5, 3, 8, 7, 9, 7 … 19, 8, 20, 7, 16, 2, 9, 15, 8, 13], [1, 1, 3, 1, 1, 3, 2, 7, 4, 4 … 7, 10, 6, 3, 4, 9, 1, 5, 8, 5])
julia> data = ((:A, :rel1, :B) => edges1, (:B, :rel2, :A) => edges2);
julia> hg = GNNHeteroGraph(data; num_nodes)
GNNHeteroGraph:
num_nodes: (:A => 10, :B => 20)
num_edges: ((:A, :rel1, :B) => 20, (:B, :rel2, :A) => 30)
julia> hg.num_edges
Dict{Tuple{Symbol, Symbol, Symbol}, Int64} with 2 entries:
(:A, :rel1, :B) => 20
(:B, :rel2, :A) => 30
# Let's add some node features
julia> ndata = Dict(:A => (x = rand(2, nA), y = rand(3, num_nodes[:A])),
:B => rand(10, nB));
julia> hg = GNNHeteroGraph(data; num_nodes, ndata)
GNNHeteroGraph:
num_nodes: (:A => 10, :B => 20)
num_edges: ((:A, :rel1, :B) => 20, (:B, :rel2, :A) => 30)
ndata:
:A => (x = 2×10 Matrix{Float64}, y = 3×10 Matrix{Float64})
:B => x = 10×20 Matrix{Float64}
# Access features of nodes of type :A
julia> hg.ndata[:A].x
2×10 Matrix{Float64}:
0.825882 0.0797502 0.245813 0.142281 0.231253 0.685025 0.821457 0.888838 0.571347 0.53165
0.631286 0.316292 0.705325 0.239211 0.533007 0.249233 0.473736 0.595475 0.0623298 0.159307
```
See also [`GNNGraph`](@ref) for a homogeneous graph type and [`rand_heterograph`](@ref) for a function to generate random heterographs.
"""
struct GNNHeteroGraph{T <: Union{COO_T, ADJMAT_T}} <: AbstractGNNGraph{T}
graph::EDict{T}
num_nodes::NDict{Int}
num_edges::EDict{Int}
num_graphs::Int
graph_indicator::Union{Nothing, NDict}
ndata::NDict{DataStore}
edata::EDict{DataStore}
gdata::DataStore
ntypes::Vector{NType}
etypes::Vector{EType}
end
@functor GNNHeteroGraph
GNNHeteroGraph(data; kws...) = GNNHeteroGraph(Dict(data); kws...)
GNNHeteroGraph(data::Pair...; kws...) = GNNHeteroGraph(Dict(data...); kws...)
GNNHeteroGraph() = GNNHeteroGraph(Dict{Tuple{Symbol,Symbol,Symbol}, Any}())
function GNNHeteroGraph(data::Dict; kws...)
all(k -> k isa EType, keys(data)) || throw(ArgumentError("Keys of data must be tuples of the form `(source_type, edge_type, target_type)`"))
return GNNHeteroGraph(Dict([k => v for (k, v) in pairs(data)]...); kws...)
end
function GNNHeteroGraph(data::EDict;
num_nodes = nothing,
graph_indicator = nothing,
graph_type = :coo,
dir = :out,
ndata = nothing,
edata = nothing,
gdata = (;))
@assert graph_type ∈ [:coo, :dense, :sparse] "Invalid graph_type $graph_type requested"
@assert dir ∈ [:in, :out]
@assert graph_type==:coo "only :coo graph_type is supported for now"
if num_nodes !== nothing
num_nodes = Dict(num_nodes)
end
ntypes = union([[k[1] for k in keys(data)]; [k[3] for k in keys(data)]])
etypes = collect(keys(data))
if graph_type == :coo
graph, num_nodes, num_edges = to_coo(data; num_nodes, dir)
elseif graph_type == :dense
graph, num_nodes, num_edges = to_dense(data; num_nodes, dir)
elseif graph_type == :sparse
graph, num_nodes, num_edges = to_sparse(data; num_nodes, dir)
end
num_graphs = !isnothing(graph_indicator) ?
maximum([maximum(gi) for gi in values(graph_indicator)]) : 1
if length(keys(graph)) == 0
ndata = Dict{Symbol, DataStore}()
edata = Dict{Tuple{Symbol, Symbol, Symbol}, DataStore}()
gdata = DataStore()
else
ndata = normalize_heterographdata(ndata, default_name = :x, ns = num_nodes)
edata = normalize_heterographdata(edata, default_name = :e, ns = num_edges,
duplicate_if_needed = true)
gdata = normalize_graphdata(gdata, default_name = :u, n = num_graphs)
end
return GNNHeteroGraph(graph,
num_nodes, num_edges, num_graphs,
graph_indicator,
ndata, edata, gdata,
ntypes, etypes)
end
function show_sorted_dict(io::IO, d::Dict, compact::Bool)
# if compact
print(io, "Dict")
# end
print(io, "(")
if !isempty(d)
_keys = sort!(collect(keys(d)))
for key in _keys[1:end-1]
print(io, "$(_str(key)) => $(d[key]), ")
end
print(io, "$(_str(_keys[end])) => $(d[_keys[end]])")
end
# if length(d) == 1
# print(io, ",")
# end
print(io, ")")
end
function Base.show(io::IO, g::GNNHeteroGraph)
print(io, "GNNHeteroGraph(")
show_sorted_dict(io, g.num_nodes, true)
print(io, ", ")
show_sorted_dict(io, g.num_edges, true)
print(io, ")")
end
function Base.show(io::IO, ::MIME"text/plain", g::GNNHeteroGraph)
if get(io, :compact, false)
print(io, "GNNHeteroGraph(")
show_sorted_dict(io, g.num_nodes, true)
print(io, ", ")
show_sorted_dict(io, g.num_edges, true)
print(io, ")")
else
print(io, "GNNHeteroGraph:\n num_nodes: ")
show_sorted_dict(io, g.num_nodes, false)
print(io, "\n num_edges: ")
show_sorted_dict(io, g.num_edges, false)
g.num_graphs > 1 && print(io, "\n num_graphs: $(g.num_graphs)")
if !isempty(g.ndata) && !all(isempty, values(g.ndata))
print(io, "\n ndata:")
for k in sort(collect(keys(g.ndata)))
isempty(g.ndata[k]) && continue
print(io, "\n\t", _str(k), " => $(shortsummary(g.ndata[k]))")
end
end
if !isempty(g.edata) && !all(isempty, values(g.edata))
print(io, "\n edata:")
for k in sort(collect(keys(g.edata)))
isempty(g.edata[k]) && continue
print(io, "\n\t$k => $(shortsummary(g.edata[k]))")
end
end
if !isempty(g.gdata)
print(io, "\n gdata:\n\t")
shortsummary(io, g.gdata)
end
end
end
_str(s::Symbol) = ":$s"
_str(s) = "$s"
MLUtils.numobs(g::GNNHeteroGraph) = g.num_graphs
# MLUtils.getobs(g::GNNHeteroGraph, i) = getgraph(g, i)
"""
num_edge_types(g)
Return the number of edge types in the graph. For [`GNNGraph`](@ref)s, this is always 1.
For [`GNNHeteroGraph`](@ref)s, this is the number of unique edge types.
"""
num_edge_types(g::GNNGraph) = 1
num_edge_types(g::GNNHeteroGraph) = length(g.etypes)
"""
num_node_types(g)
Return the number of node types in the graph. For [`GNNGraph`](@ref)s, this is always 1.
For [`GNNHeteroGraph`](@ref)s, this is the number of unique node types.
"""
num_node_types(g::GNNGraph) = 1
num_node_types(g::GNNHeteroGraph) = length(g.ntypes)
"""
edge_type_subgraph(g::GNNHeteroGraph, edge_ts)
Return a subgraph of `g` that contains only the edges of type `edge_ts`.
Edge types can be specified as a single edge type (i.e. a tuple containing 3 symbols) or a vector of edge types.
"""
edge_type_subgraph(g::GNNHeteroGraph, edge_t::EType) = edge_type_subgraph(g, [edge_t])
function edge_type_subgraph(g::GNNHeteroGraph, edge_ts::AbstractVector{<:EType})
for edge_t in edge_ts
@assert edge_t in g.etypes "Edge type $(edge_t) not found in graph"
end
node_ts = _ntypes_from_edges(edge_ts)
graph = Dict([edge_t => g.graph[edge_t] for edge_t in edge_ts]...)
num_nodes = Dict([node_t => g.num_nodes[node_t] for node_t in node_ts]...)
num_edges = Dict([edge_t => g.num_edges[edge_t] for edge_t in edge_ts]...)
if g.graph_indicator === nothing
graph_indicator = nothing
else
graph_indicator = Dict([node_t => g.graph_indicator[node_t] for node_t in node_ts]...)
end
ndata = Dict([node_t => g.ndata[node_t] for node_t in node_ts if node_t in keys(g.ndata)]...)
edata = Dict([edge_t => g.edata[edge_t] for edge_t in edge_ts if edge_t in keys(g.edata)]...)
return GNNHeteroGraph(graph, num_nodes, num_edges, g.num_graphs,
graph_indicator, ndata, edata, g.gdata,
node_ts, edge_ts)
end
# TODO this is not correct but Zygote cannot differentiate
# through dictionary generation
# @non_differentiable edge_type_subgraph(::Any...)
function _ntypes_from_edges(edge_ts::AbstractVector{<:EType})
ntypes = Symbol[]
for edge_t in edge_ts
node1_t, _, node2_t = edge_t
!in(node1_t, ntypes) && push!(ntypes, node1_t)
!in(node2_t, ntypes) && push!(ntypes, node2_t)
end
return ntypes
end
@non_differentiable _ntypes_from_edges(::Any...)
function Base.getindex(g::GNNHeteroGraph, node_t::NType)
return g.ndata[node_t]
end
Base.getindex(g::GNNHeteroGraph, n1_t::Symbol, rel::Symbol, n2_t::Symbol) = g[(n1_t, rel, n2_t)]
function Base.getindex(g::GNNHeteroGraph, edge_t::EType)
return g.edata[edge_t]
end