From 611a62146b92274bd08a92d3b35e58b061c092f0 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Tue, 17 Dec 2024 16:18:20 +0000 Subject: [PATCH] build based on 149d6c8 --- previews/PR484/404.html | 4 +-- previews/PR484/UserGuide/cache.html | 6 ++-- previews/PR484/UserGuide/chunk.html | 6 ++-- previews/PR484/UserGuide/combine.html | 6 ++-- previews/PR484/UserGuide/compute.html | 10 +++--- previews/PR484/UserGuide/convert.html | 6 ++-- previews/PR484/UserGuide/create.html | 6 ++-- previews/PR484/UserGuide/faq.html | 32 ++++++++--------- previews/PR484/UserGuide/group.html | 10 +++--- previews/PR484/UserGuide/read.html | 10 +++--- previews/PR484/UserGuide/select.html | 6 ++-- previews/PR484/UserGuide/types.html | 6 ++-- previews/PR484/UserGuide/write.html | 10 +++--- previews/PR484/api.html | 16 ++++----- ...3U.js => UserGuide_compute.md.CqQWkPRZ.js} | 2 +- ... => UserGuide_compute.md.CqQWkPRZ.lean.js} | 2 +- ...SC1gSe.js => UserGuide_faq.md.DAAqaRXV.js} | 24 ++++++------- ...n.js => UserGuide_faq.md.DAAqaRXV.lean.js} | 24 ++++++------- ...hNup.js => UserGuide_group.md.CcxfbNV7.js} | 2 +- ...js => UserGuide_group.md.CcxfbNV7.lean.js} | 2 +- ...gq0A_.js => UserGuide_read.md.CrtAcGas.js} | 2 +- ....js => UserGuide_read.md.CrtAcGas.lean.js} | 2 +- ...VFgh.js => UserGuide_write.md.BVly3P0r.js} | 2 +- ...js => UserGuide_write.md.BVly3P0r.lean.js} | 2 +- ...{api.md.Zzab-IU-.js => api.md.ukfTGbuM.js} | 6 ++-- ...ab-IU-.lean.js => api.md.ukfTGbuM.lean.js} | 6 ++-- .../{app.DVCjFPlA.js => app.WKPfegVc.js} | 2 +- .../chunks/@localSearchIndexroot.CjXaw2qO.js | 1 - .../chunks/@localSearchIndexroot.D9GWZ9z_.js | 1 + ...NxKZCr.js => VPLocalSearchBox.DKkGbUCE.js} | 2 +- .../{theme.UIEISKWu.js => theme.JyDuiASx.js} | 4 +-- ...> development_contributors.md.I99J6XWx.js} | 2 +- ...elopment_contributors.md.I99J6XWx.lean.js} | 2 +- ...ex.md.B4oX8vNy.js => index.md.DL_Vo461.js} | 2 +- ...8vNy.lean.js => index.md.DL_Vo461.lean.js} | 2 +- ...noem.D9rvatPm.png => jkytbph.D9rvatPm.png} | Bin ...aksu.C-WFBMfk.png => lnenoem.C-WFBMfk.png} | Bin ...qr.DldUI1n7.jpeg => mmzaksu.DldUI1n7.jpeg} | Bin ...wqbb.BJNzQY3Z.png => pdifvqr.BJNzQY3Z.png} | Bin ...je.Dwd2F2F-.jpeg => ssvwqbb.Dwd2F2F-.jpeg} | Bin ...orials_mean_seasonal_cycle.md.DnUGdDLG.js} | 2 +- ...s_mean_seasonal_cycle.md.DnUGdDLG.lean.js} | 2 +- ... => tutorials_plottingmaps.md.PQqZL_Fc.js} | 33 ++++++++++++++---- ...utorials_plottingmaps.md.PQqZL_Fc.lean.js} | 33 ++++++++++++++---- previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg | Bin 0 -> 74261 bytes previews/PR484/development/contribute.html | 6 ++-- previews/PR484/development/contributors.html | 8 ++--- previews/PR484/get_started.html | 6 ++-- previews/PR484/hashmap.json | 2 +- previews/PR484/index.html | 10 +++--- .../PR484/tutorials/mean_seasonal_cycle.html | 12 +++---- previews/PR484/tutorials/other_tutorials.html | 6 ++-- previews/PR484/tutorials/plottingmaps.html | 33 ++++++++++++++---- 53 files changed, 222 insertions(+), 159 deletions(-) rename previews/PR484/assets/{UserGuide_compute.md.kYurzz3U.js => UserGuide_compute.md.CqQWkPRZ.js} (97%) rename previews/PR484/assets/{UserGuide_compute.md.kYurzz3U.lean.js => UserGuide_compute.md.CqQWkPRZ.lean.js} (97%) rename previews/PR484/assets/{UserGuide_faq.md.eNSC1gSe.js => UserGuide_faq.md.DAAqaRXV.js} (98%) rename previews/PR484/assets/{UserGuide_faq.md.eNSC1gSe.lean.js => UserGuide_faq.md.DAAqaRXV.lean.js} (98%) rename previews/PR484/assets/{UserGuide_group.md.B-xPhNup.js => UserGuide_group.md.CcxfbNV7.js} (99%) rename previews/PR484/assets/{UserGuide_group.md.B-xPhNup.lean.js => UserGuide_group.md.CcxfbNV7.lean.js} (99%) rename previews/PR484/assets/{UserGuide_read.md.Brdgq0A_.js => UserGuide_read.md.CrtAcGas.js} (99%) rename previews/PR484/assets/{UserGuide_read.md.Brdgq0A_.lean.js => UserGuide_read.md.CrtAcGas.lean.js} (99%) rename previews/PR484/assets/{UserGuide_write.md.nvwrVFgh.js => UserGuide_write.md.BVly3P0r.js} (99%) rename previews/PR484/assets/{UserGuide_write.md.nvwrVFgh.lean.js => UserGuide_write.md.BVly3P0r.lean.js} (99%) rename previews/PR484/assets/{api.md.Zzab-IU-.js => api.md.ukfTGbuM.js} (92%) rename previews/PR484/assets/{api.md.Zzab-IU-.lean.js => api.md.ukfTGbuM.lean.js} (92%) rename previews/PR484/assets/{app.DVCjFPlA.js => app.WKPfegVc.js} (95%) delete mode 100644 previews/PR484/assets/chunks/@localSearchIndexroot.CjXaw2qO.js create mode 100644 previews/PR484/assets/chunks/@localSearchIndexroot.D9GWZ9z_.js rename previews/PR484/assets/chunks/{VPLocalSearchBox.BdNxKZCr.js => VPLocalSearchBox.DKkGbUCE.js} (99%) rename previews/PR484/assets/chunks/{theme.UIEISKWu.js => theme.JyDuiASx.js} (99%) rename previews/PR484/assets/{development_contributors.md.DJXEd1h6.js => development_contributors.md.I99J6XWx.js} (98%) rename previews/PR484/assets/{development_contributors.md.DJXEd1h6.lean.js => development_contributors.md.I99J6XWx.lean.js} (98%) rename previews/PR484/assets/{index.md.B4oX8vNy.js => index.md.DL_Vo461.js} (94%) rename previews/PR484/assets/{index.md.B4oX8vNy.lean.js => index.md.DL_Vo461.lean.js} (94%) rename previews/PR484/assets/{lnenoem.D9rvatPm.png => jkytbph.D9rvatPm.png} (100%) rename previews/PR484/assets/{mmzaksu.C-WFBMfk.png => lnenoem.C-WFBMfk.png} (100%) rename previews/PR484/assets/{pdifvqr.DldUI1n7.jpeg => mmzaksu.DldUI1n7.jpeg} (100%) rename previews/PR484/assets/{ssvwqbb.BJNzQY3Z.png => pdifvqr.BJNzQY3Z.png} (100%) rename previews/PR484/assets/{xzwnmje.Dwd2F2F-.jpeg => ssvwqbb.Dwd2F2F-.jpeg} (100%) rename previews/PR484/assets/{tutorials_mean_seasonal_cycle.md.B0rxzeNg.lean.js => tutorials_mean_seasonal_cycle.md.DnUGdDLG.js} (99%) rename previews/PR484/assets/{tutorials_mean_seasonal_cycle.md.B0rxzeNg.js => tutorials_mean_seasonal_cycle.md.DnUGdDLG.lean.js} (99%) rename previews/PR484/assets/{tutorials_plottingmaps.md.DbY5YmNa.js => tutorials_plottingmaps.md.PQqZL_Fc.js} (83%) rename previews/PR484/assets/{tutorials_plottingmaps.md.DbY5YmNa.lean.js => tutorials_plottingmaps.md.PQqZL_Fc.lean.js} (83%) create mode 100644 previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg diff --git a/previews/PR484/404.html b/previews/PR484/404.html index 4589ecf1..659b27e3 100644 --- a/previews/PR484/404.html +++ b/previews/PR484/404.html @@ -9,7 +9,7 @@ - + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/cache.html b/previews/PR484/UserGuide/cache.html index 8e23f4e9..397b9615 100644 --- a/previews/PR484/UserGuide/cache.html +++ b/previews/PR484/UserGuide/cache.html @@ -9,9 +9,9 @@ - + - + @@ -26,7 +26,7 @@ cachesize = 500 #MB cache(ds,maxsize = cachesize)

The above will wrap every array in the dataset into its own cache, where the 500MB are distributed equally across datasets. Alternatively individual caches can be applied to single YAXArrays

julia
yax = ds.avariable
 cache(yax,maxsize = 1000)
- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/chunk.html b/previews/PR484/UserGuide/chunk.html index da3fb72d..bfd50f1a 100644 --- a/previews/PR484/UserGuide/chunk.html +++ b/previews/PR484/UserGuide/chunk.html @@ -9,9 +9,9 @@ - + - + @@ -119,7 +119,7 @@ Variables: x, y, z

Suggestions on how to improve or add to these examples is welcome.

- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/combine.html b/previews/PR484/UserGuide/combine.html index e4299bb8..b6addca8 100644 --- a/previews/PR484/UserGuide/combine.html +++ b/previews/PR484/UserGuide/combine.html @@ -9,9 +9,9 @@ - + - + @@ -49,7 +49,7 @@ ├────────────────────────────────────────────────── loaded lazily ┤ data size: 96.0 bytes └─────────────────────────────────────────────────────────────────┘ - + \ No newline at end of file diff --git a/previews/PR484/UserGuide/compute.html b/previews/PR484/UserGuide/compute.html index cc6ac170..4909f65f 100644 --- a/previews/PR484/UserGuide/compute.html +++ b/previews/PR484/UserGuide/compute.html @@ -9,11 +9,11 @@ - + - + - + @@ -42,7 +42,7 @@ :origin => "user guide" ├──────────────────────────────────────────────────────────── loaded in memory ┤ data size: 35.16 KB -└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.023216805974179966
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
+└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.3906860099151811
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
   ↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
   → lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
@@ -413,7 +413,7 @@
 mapCube(mymean, a, indims=InDims("time"), outdims=OutDims())

In the last example, mapCube was used to map the mymean function. mapslices is a convenient function that can replace mapCube, where you can omit defining an extra function with the output argument as an input (e.g. mymean). It is possible to simply use mapslice

julia
mapslices(mean  skipmissing, a, dims="time")

It is also possible to distribute easily the workload on a cluster, with little modification to the code. To do so, we use the ClusterManagers package.

julia
using Distributed
 using ClusterManagers
 addprocs(SlurmManager(10))
- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/convert.html b/previews/PR484/UserGuide/convert.html index f12d0902..586877c3 100644 --- a/previews/PR484/UserGuide/convert.html +++ b/previews/PR484/UserGuide/convert.html @@ -9,9 +9,9 @@ - + - + @@ -67,7 +67,7 @@ 3 0.492817 0.718667 0.0702532 0.926096 0.225542 0.100622 4 0.268675 0.0566881 0.916686 0.973332 0.744521 0.052264 5 0.540514 0.215973 0.617023 0.796375 0.13205 0.366625

INFO

At the moment there is no support to save a DimArray directly into disk as a NetCDF or a Zarr file.

- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/create.html b/previews/PR484/UserGuide/create.html index c57365c1..17076a05 100644 --- a/previews/PR484/UserGuide/create.html +++ b/previews/PR484/UserGuide/create.html @@ -9,9 +9,9 @@ - + - + @@ -69,7 +69,7 @@ a2, a3 Properties: Dict(:origin => "user guide") - + \ No newline at end of file diff --git a/previews/PR484/UserGuide/faq.html b/previews/PR484/UserGuide/faq.html index 47a368af..2da9c22f 100644 --- a/previews/PR484/UserGuide/faq.html +++ b/previews/PR484/UserGuide/faq.html @@ -9,11 +9,11 @@ - + - + - + @@ -208,15 +208,15 @@ None Variables with additional axes: Additional Axes: - (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points, - → Time Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points) + (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points) Variables: - temperature + longitudes Additional Axes: - (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points) + (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points, + → Time Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points) Variables: - longitudes + temperature Additional Axes: (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points) @@ -231,11 +231,6 @@ None Variables with additional axes: Additional Axes: - (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points) - Variables: - longitudes - - Additional Axes: (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points, → Time Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points) Variables: @@ -244,7 +239,12 @@ Additional Axes: (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points) Variables: - latitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
+  latitudes
+
+  Additional Axes: 
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
+  Variables: 
+  longitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
 time Sampled{Float64} 1.0:1.0:20.0 ForwardOrdered Regular Points,
 lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
@@ -287,7 +287,7 @@
 fig, ax, obj = heatmap(classes;
     colormap=Makie.Categorical(cgrad([:grey15, :orangered, :snow3])))
 cbar = Colorbar(fig[1,2], obj)
-fig

Now we define the input cubes that will be considered for the iterable table

julia
t = CubeTable(values=ds1, classes=classes)
Datacube iterator with 1 subtables with fields: (:values, :classes, :time, :lon, :lat)
julia
using DataFrames
+fig

Now we define the input cubes that will be considered for the iterable table

julia
t = CubeTable(values=ds1, classes=classes)
Datacube iterator with 1 subtables with fields: (:values, :classes, :time, :lon, :lat)
julia
using DataFrames
 using OnlineStats
 ## visualization of the CubeTable
 c_tbl = DataFrame(t[1])
@@ -385,7 +385,7 @@
 ├─────────────────────────────────────────────────── loaded in memory ┤
   summarysize: 172.0 bytes
 └─────────────────────────────────────────────────────────────────────┘

WARNING

Note that although their creation is allowed, it is not possible to save these types into Zarr or NetCDF.

- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/group.html b/previews/PR484/UserGuide/group.html index 33fcfea9..fbbe5a81 100644 --- a/previews/PR484/UserGuide/group.html +++ b/previews/PR484/UserGuide/group.html @@ -9,11 +9,11 @@ - + - + - + @@ -228,8 +228,8 @@ colgap!(fig.layout, 5) rowgap!(fig.layout, 5) fig -end

which shows a good agreement with the results first published by Joe Hamman.

- +end

which shows a good agreement with the results first published by Joe Hamman.

+ \ No newline at end of file diff --git a/previews/PR484/UserGuide/read.html b/previews/PR484/UserGuide/read.html index 60b811a2..f3702600 100644 --- a/previews/PR484/UserGuide/read.html +++ b/previews/PR484/UserGuide/read.html @@ -9,11 +9,11 @@ - + - + - + @@ -21,7 +21,7 @@ -
Skip to content

Read YAXArrays and Datasets

This section describes how to read files, URLs, and directories into YAXArrays and datasets.

open_dataset

The usual method for reading any format is using this function. See its docstring for more information.

YAXArrays.Datasets.open_dataset Function
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
+    
Skip to content

Read YAXArrays and Datasets

This section describes how to read files, URLs, and directories into YAXArrays and datasets.

open_dataset

The usual method for reading any format is using this function. See its docstring for more information.

YAXArrays.Datasets.open_dataset Function
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
 using Zarr
 path="gs://cmip6/CMIP6/ScenarioMIP/DKRZ/MPI-ESM1-2-HR/ssp585/r1i1p1f1/3hr/tas/gn/v20190710/"
 store = zopen(path, consolidated=true)
@@ -211,7 +211,7 @@
  2020-01-05T00:00:00
  2020-01-06T00:00:00
  2020-01-07T00:00:00

providing us with a wide range of options to work with.

- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/select.html b/previews/PR484/UserGuide/select.html index 8939d6d3..b634f574 100644 --- a/previews/PR484/UserGuide/select.html +++ b/previews/PR484/UserGuide/select.html @@ -9,9 +9,9 @@ - + - + @@ -297,7 +297,7 @@ 89.5 89.5

These values are defined as lookups in the package DimensionalData:

julia
lookup(tos, :lon)
Sampled{Float64} ForwardOrdered Regular DimensionalData.Dimensions.Lookups.Points
 wrapping: 1.0:2.0:359.0

which is equivalent to:

julia
tos.lon.val
Sampled{Float64} ForwardOrdered Regular DimensionalData.Dimensions.Lookups.Points
 wrapping: 1.0:2.0:359.0
- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/types.html b/previews/PR484/UserGuide/types.html index 3318b3d3..b6a2ec9c 100644 --- a/previews/PR484/UserGuide/types.html +++ b/previews/PR484/UserGuide/types.html @@ -9,9 +9,9 @@ - + - + @@ -23,7 +23,7 @@
Skip to content

Types

This section describes the data structures used to work with n-dimensional arrays in YAXArrays.

YAXArray

An Array stores a sequence of ordered elements of the same type usually across multiple dimensions or axes. For example, one can measure temperature across all time points of the time dimension or brightness values of a picture across X and Y dimensions. A one dimensional array is called Vector and a two dimensional array is called a Matrix. In many Machine Learning libraries, arrays are also called tensors. Arrays are designed to store dense spatial-temporal data stored in a grid, whereas a collection of sparse points is usually stored in data frames or relational databases.

A DimArray as defined by DimensionalData.jl adds names to the dimensions and their axes ticks for a given Array. These names can be used to access the data, e.g., by date instead of just by integer position.

A YAXArray is a subtype of a AbstractDimArray and adds functions to load and process the named arrays. For example, it can also handle very large arrays stored on disk that are too big to fit in memory. In addition, it provides functions for parallel computation.

Dataset

A Dataset is an ordered dictionary of YAXArrays that usually share dimensions. For example, it can bundle arrays storing temperature and precipitation that are measured at the same time points and the same locations. One also can store a picture in a Dataset with three arrays containing brightness values for red green and blue, respectively. Internally, those arrays are still separated allowing to chose different element types for each array. Analog to the (NetCDF Data Model)[https://docs.unidata.ucar.edu/netcdf-c/current/netcdf_data_model.html], a Dataset usually represents variables belonging to the same group.

(Data) Cube

A (Data) Cube is just a YAXArray in which arrays from a dataset are combined together by introducing a new dimension containing labels of which array the corresponding element came from. Unlike a Dataset, all arrays must have the same element type to be converted into a cube. This data structure is useful when we want to use all variables at once. For example, the arrays temperature and precipitation which are measured at the same locations and dates can be combined into a single cube. A more formal definition of Data Cubes are given in Mahecha et al. 2020

Dimensions

A Dimension or axis as defined by DimensionalData.jl adds tick labels, e.g., to each row or column of an array. It's name is used to access particular subsets of that array.

Lon, Lat, time

For convenience, several Dimensions have been defined in YAXArrays.jl, but only a few have been exported. The remaining dimensions can be used by calling them explicitly. See the next table for an overview

Dimensionexportedusage: using YAXArrays: YAXArrays as YAX
lonlon or YAX.lon
LonLon or YAX.Lon
longitudelongitude or YAX.longitude
LongitudeLongitude or YAX.Longitude
latlat or YAX.lat
LatLat or YAX.Lat
latitudelatitude or YAX.latitude
LatitudeLatitude or YAX.Latitude
timeYAX.time
TimeYAX.Time
rlatYAX.rlat
rlonYAX.rlon
lat_cYAX.lat_c
lon_cYAX.lon_c
heightYAX.height
depthYAX.depth
VariablesVariables or YAX.Variables

INFO

If the dimension you are looking for is not in that table, you can define your own by doing

julia
using DimensionalData: @dim, XDim # If you want it to be a subtype of XDim
 @dim newDim XDim "Your newDim label"

Sometimes, when you want to operate on a specific dimension in your dataset (for example, a dimension named date), then doing

julia
groupby(ds, Dim{:date} => seasons())

should do the job.

- + \ No newline at end of file diff --git a/previews/PR484/UserGuide/write.html b/previews/PR484/UserGuide/write.html index 98743456..a56f3c13 100644 --- a/previews/PR484/UserGuide/write.html +++ b/previews/PR484/UserGuide/write.html @@ -9,11 +9,11 @@ - + - + - + @@ -43,7 +43,7 @@ savecube(ds.tos, "tos.nc", driver=:netcdf)

Save an entire Dataset to a directory:

julia
savedataset(ds, path="ds.nc", driver=:netcdf)

netcdf compression

Save a dataset to NetCDF format with compression:

julia
n = 7 # compression level, number between 0 (no compression) and 9 (max compression)
 savedataset(ds, path="ds_c.nc", driver=:netcdf, compress=n)

Comparing it to the default saved file

julia
ds_info = stat("ds.nc")
 ds_c_info = stat("ds_c.nc")
-println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

YAXArrays.Datasets.savedataset Function
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
+println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

YAXArrays.Datasets.savedataset Function
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
 savedataset(ds2, path="ds.zarr", backend=:zarr, append=true)
julia
julia> open_dataset("ds.zarr", driver=:zarr)
YAXArray Dataset
 Shared Axes:
 None
@@ -92,7 +92,7 @@
  0.716952  0.95965   0.599987   0.337016
  0.506947  0.923876  0.0940127  0.54942
  0.847062  0.298617  0.182371   0.921

indeed, those entries had been updated.

- + \ No newline at end of file diff --git a/previews/PR484/api.html b/previews/PR484/api.html index 5d181e6b..720c491a 100644 --- a/previews/PR484/api.html +++ b/previews/PR484/api.html @@ -9,11 +9,11 @@ - + - + - + @@ -21,13 +21,13 @@ -
Skip to content

API Reference

This section describes all available functions of this package.

Public API

YAXArrays.getAxis Method
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

YAXArrays.Cubes Module

The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that

source

YAXArrays.Cubes.YAXArray Type
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

YAXArrays.Cubes.caxes Function

Returns the axes of a Cube

source

YAXArrays.Cubes.caxes Method
julia
caxes

Embeds Cube inside a new Cube

source

YAXArrays.Cubes.concatenatecubes Method
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

YAXArrays.Cubes.readcubedata Method
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

YAXArrays.Cubes.setchunks Method
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

YAXArrays.Cubes.subsetcube Function

This function calculates a subset of a cube's data

source

YAXArrays.DAT.InDims Type
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

YAXArrays.DAT.MovingWindow Type
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

YAXArrays.DAT.OutDims Method
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

YAXArrays.DAT.CubeTable Method
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

YAXArrays.DAT.cubefittable Method
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

YAXArrays.DAT.fittable Method
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

YAXArrays.DAT.mapCube Method
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

YAXArrays.DAT.mapCube Method
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

YAXArrays.Datasets.Dataset Type

Dataset object which stores an OrderedDict of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.

source

YAXArrays.Datasets.Dataset Method
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

YAXArrays.Datasets.Cube Method
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

YAXArrays.Datasets.open_dataset Method
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

YAXArrays.Datasets.open_mfdataset Method
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
+    
Skip to content

API Reference

This section describes all available functions of this package.

Public API

YAXArrays.getAxis Method
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

YAXArrays.Cubes Module

The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that

source

YAXArrays.Cubes.YAXArray Type
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

YAXArrays.Cubes.caxes Function

Returns the axes of a Cube

source

YAXArrays.Cubes.caxes Method
julia
caxes

Embeds Cube inside a new Cube

source

YAXArrays.Cubes.concatenatecubes Method
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

YAXArrays.Cubes.readcubedata Method
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

YAXArrays.Cubes.setchunks Method
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

YAXArrays.Cubes.subsetcube Function

This function calculates a subset of a cube's data

source

YAXArrays.DAT.InDims Type
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

YAXArrays.DAT.MovingWindow Type
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

YAXArrays.DAT.OutDims Method
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

YAXArrays.DAT.CubeTable Method
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

YAXArrays.DAT.cubefittable Method
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

YAXArrays.DAT.fittable Method
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

YAXArrays.DAT.mapCube Method
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

YAXArrays.DAT.mapCube Method
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

YAXArrays.Datasets.Dataset Type

Dataset object which stores an OrderedDict of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.

source

YAXArrays.Datasets.Dataset Method
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

YAXArrays.Datasets.Cube Method
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

YAXArrays.Datasets.open_dataset Method
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

YAXArrays.Datasets.open_mfdataset Method
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
 open_mfdataset(DD.DimArray(files, YAX.time()))

alternatively, if the dimension to concatenate along does not exist yet, the dimension provided in the input arg is used:

julia
files = ["a.nc", "b.nc", "c.nc"]
-open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

YAXArrays.Datasets.savecube Method
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

YAXArrays.Datasets.savedataset Method
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

YAXArrays.Datasets.to_dataset Method
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

Internal API

YAXArrays.YAXDefaults Constant

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

YAXArrays.findAxis Method
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

YAXArrays.getOutAxis Method
julia
getOutAxis

source

YAXArrays.get_descriptor Method
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

YAXArrays.match_axis Method
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
+open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

YAXArrays.Datasets.savecube Method
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

YAXArrays.Datasets.savedataset Method
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

YAXArrays.Datasets.to_dataset Method
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

Internal API

YAXArrays.YAXDefaults Constant

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

YAXArrays.findAxis Method
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

YAXArrays.getOutAxis Method
julia
getOutAxis

source

YAXArrays.get_descriptor Method
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

YAXArrays.match_axis Method
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
 This is used to find different axes and to make certain axis description the same.
-For example to disregard differences of captialisation.

source

YAXArrays.Cubes.CleanMe Type
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

YAXArrays.Cubes.clean Method
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

YAXArrays.Cubes.copydata Method
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

YAXArrays.Cubes.optifunc Method
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

YAXArrays.DAT.DATConfig Type

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

YAXArrays.DAT.InputCube Type

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

YAXArrays.DAT.OutputCube Type

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

YAXArrays.DAT.YAXColumn Type
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

YAXArrays.DAT.cmpcachmisses Method

Function that compares two cache miss specifiers by their importance

source

YAXArrays.DAT.getFrontPerm Method

Calculate an axis permutation that brings the wanted dimensions to the front

source

YAXArrays.DAT.getLoopCacheSize Method

Calculate optimal Cache size to DAT operation

source

YAXArrays.DAT.getOuttype Method
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

YAXArrays.DAT.getloopchunks Method
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.
-This computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

YAXArrays.DAT.permuteloopaxes Method
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

YAXArrays.Cubes.setchunks Method
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

YAXArrays.Datasets.collectfromhandle Method

Extracts a YAXArray from a dataset handle that was just created from a arrayinfo

source

YAXArrays.Datasets.createdataset Method
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

YAXArrays.Datasets.getarrayinfo Method

Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair

source

YAXArrays.Datasets.testrange Method

Test if data in x can be approximated by a step range

source

- +For example to disregard differences of captialisation.

source

YAXArrays.Cubes.CleanMe Type
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

YAXArrays.Cubes.clean Method
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

YAXArrays.Cubes.copydata Method
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

YAXArrays.Cubes.optifunc Method
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

YAXArrays.DAT.DATConfig Type

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

YAXArrays.DAT.InputCube Type

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

YAXArrays.DAT.OutputCube Type

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

YAXArrays.DAT.YAXColumn Type
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

YAXArrays.DAT.cmpcachmisses Method

Function that compares two cache miss specifiers by their importance

source

YAXArrays.DAT.getFrontPerm Method

Calculate an axis permutation that brings the wanted dimensions to the front

source

YAXArrays.DAT.getLoopCacheSize Method

Calculate optimal Cache size to DAT operation

source

YAXArrays.DAT.getOuttype Method
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

YAXArrays.DAT.getloopchunks Method
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.
+This computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

YAXArrays.DAT.permuteloopaxes Method
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

YAXArrays.Cubes.setchunks Method
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

YAXArrays.Datasets.collectfromhandle Method

Extracts a YAXArray from a dataset handle that was just created from a arrayinfo

source

YAXArrays.Datasets.createdataset Method
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

YAXArrays.Datasets.getarrayinfo Method

Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair

source

YAXArrays.Datasets.testrange Method

Test if data in x can be approximated by a step range

source

+ \ No newline at end of file diff --git a/previews/PR484/assets/UserGuide_compute.md.kYurzz3U.js b/previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.js similarity index 97% rename from previews/PR484/assets/UserGuide_compute.md.kYurzz3U.js rename to previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.js index 21c5f3a8..494980e8 100644 --- a/previews/PR484/assets/UserGuide_compute.md.kYurzz3U.js +++ b/previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.js @@ -19,7 +19,7 @@ import{_ as i,c as a,a2 as n,o as t}from"./chunks/framework.Bl-lyKae.js";const g :origin => "user guide" ├──────────────────────────────────────────────────────────── loaded in memory ┤ data size: 35.16 KB -└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.023216805974179966
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
+└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.3906860099151811
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
   ↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
   → lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
diff --git a/previews/PR484/assets/UserGuide_compute.md.kYurzz3U.lean.js b/previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.lean.js
similarity index 97%
rename from previews/PR484/assets/UserGuide_compute.md.kYurzz3U.lean.js
rename to previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.lean.js
index 21c5f3a8..494980e8 100644
--- a/previews/PR484/assets/UserGuide_compute.md.kYurzz3U.lean.js
+++ b/previews/PR484/assets/UserGuide_compute.md.CqQWkPRZ.lean.js
@@ -19,7 +19,7 @@ import{_ as i,c as a,a2 as n,o as t}from"./chunks/framework.Bl-lyKae.js";const g
   :origin => "user guide"
 ├──────────────────────────────────────────────────────────── loaded in memory ┤
   data size: 35.16 KB
-└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.023216805974179966
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
+└──────────────────────────────────────────────────────────────────────────────┘

Modify elements of a YAXArray

julia
a[1,2,3]
0.3906860099151811
julia
a[1,2,3] = 42
42
julia
a[1,2,3]
42.0

WARNING

Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.

Arithmetics

Add a value to all elements of an array and save it as a new array:

julia
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
   ↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
   → lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
diff --git a/previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.js b/previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.js
similarity index 98%
rename from previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.js
rename to previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.js
index 7f5d8d7e..206c39af 100644
--- a/previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.js
+++ b/previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/pdifvqr.DldUI1n7.jpeg",o=JSON.parse('{"title":"Frequently Asked Questions (FAQ)","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/faq.md","filePath":"UserGuide/faq.md","lastUpdated":null}'),l={name:"UserGuide/faq.md"};function h(p,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Frequently Asked Questions (FAQ)

The purpose of this section is to do a collection of small convinient pieces of code on how to do simple things.

Extract the axes names from a Cube

julia
using YAXArrays
+import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/mmzaksu.DldUI1n7.jpeg",o=JSON.parse('{"title":"Frequently Asked Questions (FAQ)","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/faq.md","filePath":"UserGuide/faq.md","lastUpdated":null}'),l={name:"UserGuide/faq.md"};function h(p,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Frequently Asked Questions (FAQ)

The purpose of this section is to do a collection of small convinient pieces of code on how to do simple things.

Extract the axes names from a Cube

julia
using YAXArrays
 using DimensionalData
julia
julia> c = YAXArray(rand(10, 10, 5))
10×10×5 YAXArray{Float64, 3}
 ├──────────────────────────────┴───────────────────────────────────────── dims ┐
 Dim_1 Sampled{Int64} Base.OneTo(10) ForwardOrdered Regular Points,
@@ -185,15 +185,15 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
 None
 Variables with additional axes:
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
-  → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
   Variables: 
-  temperature
+  longitudes
 
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
+  → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
   Variables: 
-  longitudes
+  temperature
 
   Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
@@ -208,11 +208,6 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
 None
 Variables with additional axes:
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
-  Variables: 
-  longitudes
-
-  Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
   → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
   Variables: 
@@ -221,7 +216,12 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
   Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
   Variables: 
-  latitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
+  latitudes
+
+  Additional Axes: 
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
+  Variables: 
+  longitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
 time Sampled{Float64} 1.0:1.0:20.0 ForwardOrdered Regular Points,
 lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
diff --git a/previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.lean.js b/previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.lean.js
similarity index 98%
rename from previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.lean.js
rename to previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.lean.js
index 7f5d8d7e..206c39af 100644
--- a/previews/PR484/assets/UserGuide_faq.md.eNSC1gSe.lean.js
+++ b/previews/PR484/assets/UserGuide_faq.md.DAAqaRXV.lean.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/pdifvqr.DldUI1n7.jpeg",o=JSON.parse('{"title":"Frequently Asked Questions (FAQ)","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/faq.md","filePath":"UserGuide/faq.md","lastUpdated":null}'),l={name:"UserGuide/faq.md"};function h(p,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Frequently Asked Questions (FAQ)

The purpose of this section is to do a collection of small convinient pieces of code on how to do simple things.

Extract the axes names from a Cube

julia
using YAXArrays
+import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/mmzaksu.DldUI1n7.jpeg",o=JSON.parse('{"title":"Frequently Asked Questions (FAQ)","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/faq.md","filePath":"UserGuide/faq.md","lastUpdated":null}'),l={name:"UserGuide/faq.md"};function h(p,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Frequently Asked Questions (FAQ)

The purpose of this section is to do a collection of small convinient pieces of code on how to do simple things.

Extract the axes names from a Cube

julia
using YAXArrays
 using DimensionalData
julia
julia> c = YAXArray(rand(10, 10, 5))
10×10×5 YAXArray{Float64, 3}
 ├──────────────────────────────┴───────────────────────────────────────── dims ┐
 Dim_1 Sampled{Int64} Base.OneTo(10) ForwardOrdered Regular Points,
@@ -185,15 +185,15 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
 None
 Variables with additional axes:
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
-  → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
   Variables: 
-  temperature
+  longitudes
 
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
+  → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
   Variables: 
-  longitudes
+  temperature
 
   Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
@@ -208,11 +208,6 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
 None
 Variables with additional axes:
   Additional Axes: 
-  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
-  Variables: 
-  longitudes
-
-  Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points,
   → Time   Sampled{Date} Date("2020-01-01"):Dates.Month(1):Date("2022-12-01") ForwardOrdered Regular Points)
   Variables: 
@@ -221,7 +216,12 @@ import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t
   Additional Axes: 
   (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
   Variables: 
-  latitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
+  latitudes
+
+  Additional Axes: 
+  (↓ points Sampled{Int64} [2, 4, …, 96, 98] ForwardOrdered Irregular Points)
+  Variables: 
+  longitudes

How do I apply map algebra?

Our next step is map algebra computations. This can be done effectively using the 'map' function. For example:

Multiplying cubes with only spatio-temporal dimensions

julia
julia> map((x, y) -> x * y, ds1, ds2)
20×10×15 YAXArray{Float64, 3}
 ├───────────────────────────────┴──────────────────────────────────────── dims ┐
 time Sampled{Float64} 1.0:1.0:20.0 ForwardOrdered Regular Points,
 lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
diff --git a/previews/PR484/assets/UserGuide_group.md.B-xPhNup.js b/previews/PR484/assets/UserGuide_group.md.CcxfbNV7.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_group.md.B-xPhNup.js
rename to previews/PR484/assets/UserGuide_group.md.CcxfbNV7.js
index 0efa741f..d76c6a46 100644
--- a/previews/PR484/assets/UserGuide_group.md.B-xPhNup.js
+++ b/previews/PR484/assets/UserGuide_group.md.CcxfbNV7.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/ssvwqbb.BJNzQY3Z.png",y=JSON.parse('{"title":"Group YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/group.md","filePath":"UserGuide/group.md","lastUpdated":null}'),l={name:"UserGuide/group.md"};function p(h,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Group YAXArrays and Datasets

The following examples will use the groupby function to calculate temporal and spatial averages.

julia
using YAXArrays, DimensionalData
+import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/pdifvqr.BJNzQY3Z.png",y=JSON.parse('{"title":"Group YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/group.md","filePath":"UserGuide/group.md","lastUpdated":null}'),l={name:"UserGuide/group.md"};function p(h,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Group YAXArrays and Datasets

The following examples will use the groupby function to calculate temporal and spatial averages.

julia
using YAXArrays, DimensionalData
 using YAXArrays: YAXArrays as YAX
 using NetCDF
 using Downloads
diff --git a/previews/PR484/assets/UserGuide_group.md.B-xPhNup.lean.js b/previews/PR484/assets/UserGuide_group.md.CcxfbNV7.lean.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_group.md.B-xPhNup.lean.js
rename to previews/PR484/assets/UserGuide_group.md.CcxfbNV7.lean.js
index 0efa741f..d76c6a46 100644
--- a/previews/PR484/assets/UserGuide_group.md.B-xPhNup.lean.js
+++ b/previews/PR484/assets/UserGuide_group.md.CcxfbNV7.lean.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/ssvwqbb.BJNzQY3Z.png",y=JSON.parse('{"title":"Group YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/group.md","filePath":"UserGuide/group.md","lastUpdated":null}'),l={name:"UserGuide/group.md"};function p(h,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Group YAXArrays and Datasets

The following examples will use the groupby function to calculate temporal and spatial averages.

julia
using YAXArrays, DimensionalData
+import{_ as i,c as a,a2 as n,o as e}from"./chunks/framework.Bl-lyKae.js";const t="/YAXArrays.jl/previews/PR484/assets/pdifvqr.BJNzQY3Z.png",y=JSON.parse('{"title":"Group YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/group.md","filePath":"UserGuide/group.md","lastUpdated":null}'),l={name:"UserGuide/group.md"};function p(h,s,k,d,r,g){return e(),a("div",null,s[0]||(s[0]=[n(`

Group YAXArrays and Datasets

The following examples will use the groupby function to calculate temporal and spatial averages.

julia
using YAXArrays, DimensionalData
 using YAXArrays: YAXArrays as YAX
 using NetCDF
 using Downloads
diff --git a/previews/PR484/assets/UserGuide_read.md.Brdgq0A_.js b/previews/PR484/assets/UserGuide_read.md.CrtAcGas.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_read.md.Brdgq0A_.js
rename to previews/PR484/assets/UserGuide_read.md.CrtAcGas.js
index 2aa4e217..0e077aa0 100644
--- a/previews/PR484/assets/UserGuide_read.md.Brdgq0A_.js
+++ b/previews/PR484/assets/UserGuide_read.md.CrtAcGas.js
@@ -1,4 +1,4 @@
-import{_ as d,c as r,j as s,a,G as n,a2 as l,w as e,B as p,o}from"./chunks/framework.Bl-lyKae.js";const b=JSON.parse('{"title":"Read YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/read.md","filePath":"UserGuide/read.md","lastUpdated":null}'),g={name:"UserGuide/read.md"},E={class:"jldocstring custom-block",open:""};function c(u,i,y,F,m,C){const h=p("Badge"),t=p("PluginTabsTab"),k=p("PluginTabs");return o(),r("div",null,[i[6]||(i[6]=s("h1",{id:"Read-YAXArrays-and-Datasets",tabindex:"-1"},[a("Read YAXArrays and Datasets "),s("a",{class:"header-anchor",href:"#Read-YAXArrays-and-Datasets","aria-label":'Permalink to "Read YAXArrays and Datasets {#Read-YAXArrays-and-Datasets}"'},"​")],-1)),i[7]||(i[7]=s("p",null,"This section describes how to read files, URLs, and directories into YAXArrays and datasets.",-1)),i[8]||(i[8]=s("h2",{id:"open-dataset",tabindex:"-1"},[a("open_dataset "),s("a",{class:"header-anchor",href:"#open-dataset","aria-label":'Permalink to "open_dataset"'},"​")],-1)),i[9]||(i[9]=s("p",null,[a("The usual method for reading any format is using this function. See its "),s("code",null,"docstring"),a(" for more information.")],-1)),s("details",E,[s("summary",null,[i[0]||(i[0]=s("a",{id:"YAXArrays.Datasets.open_dataset",href:"#YAXArrays.Datasets.open_dataset"},[s("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),i[1]||(i[1]=a()),n(h,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[2]||(i[2]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),i[10]||(i[10]=l(`

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
+import{_ as d,c as r,j as s,a,G as n,a2 as l,w as e,B as p,o}from"./chunks/framework.Bl-lyKae.js";const b=JSON.parse('{"title":"Read YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/read.md","filePath":"UserGuide/read.md","lastUpdated":null}'),g={name:"UserGuide/read.md"},E={class:"jldocstring custom-block",open:""};function c(u,i,y,F,m,C){const h=p("Badge"),t=p("PluginTabsTab"),k=p("PluginTabs");return o(),r("div",null,[i[6]||(i[6]=s("h1",{id:"Read-YAXArrays-and-Datasets",tabindex:"-1"},[a("Read YAXArrays and Datasets "),s("a",{class:"header-anchor",href:"#Read-YAXArrays-and-Datasets","aria-label":'Permalink to "Read YAXArrays and Datasets {#Read-YAXArrays-and-Datasets}"'},"​")],-1)),i[7]||(i[7]=s("p",null,"This section describes how to read files, URLs, and directories into YAXArrays and datasets.",-1)),i[8]||(i[8]=s("h2",{id:"open-dataset",tabindex:"-1"},[a("open_dataset "),s("a",{class:"header-anchor",href:"#open-dataset","aria-label":'Permalink to "open_dataset"'},"​")],-1)),i[9]||(i[9]=s("p",null,[a("The usual method for reading any format is using this function. See its "),s("code",null,"docstring"),a(" for more information.")],-1)),s("details",E,[s("summary",null,[i[0]||(i[0]=s("a",{id:"YAXArrays.Datasets.open_dataset",href:"#YAXArrays.Datasets.open_dataset"},[s("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),i[1]||(i[1]=a()),n(h,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[2]||(i[2]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),i[10]||(i[10]=l(`

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
 using Zarr
 path="gs://cmip6/CMIP6/ScenarioMIP/DKRZ/MPI-ESM1-2-HR/ssp585/r1i1p1f1/3hr/tas/gn/v20190710/"
 store = zopen(path, consolidated=true)
diff --git a/previews/PR484/assets/UserGuide_read.md.Brdgq0A_.lean.js b/previews/PR484/assets/UserGuide_read.md.CrtAcGas.lean.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_read.md.Brdgq0A_.lean.js
rename to previews/PR484/assets/UserGuide_read.md.CrtAcGas.lean.js
index 2aa4e217..0e077aa0 100644
--- a/previews/PR484/assets/UserGuide_read.md.Brdgq0A_.lean.js
+++ b/previews/PR484/assets/UserGuide_read.md.CrtAcGas.lean.js
@@ -1,4 +1,4 @@
-import{_ as d,c as r,j as s,a,G as n,a2 as l,w as e,B as p,o}from"./chunks/framework.Bl-lyKae.js";const b=JSON.parse('{"title":"Read YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/read.md","filePath":"UserGuide/read.md","lastUpdated":null}'),g={name:"UserGuide/read.md"},E={class:"jldocstring custom-block",open:""};function c(u,i,y,F,m,C){const h=p("Badge"),t=p("PluginTabsTab"),k=p("PluginTabs");return o(),r("div",null,[i[6]||(i[6]=s("h1",{id:"Read-YAXArrays-and-Datasets",tabindex:"-1"},[a("Read YAXArrays and Datasets "),s("a",{class:"header-anchor",href:"#Read-YAXArrays-and-Datasets","aria-label":'Permalink to "Read YAXArrays and Datasets {#Read-YAXArrays-and-Datasets}"'},"​")],-1)),i[7]||(i[7]=s("p",null,"This section describes how to read files, URLs, and directories into YAXArrays and datasets.",-1)),i[8]||(i[8]=s("h2",{id:"open-dataset",tabindex:"-1"},[a("open_dataset "),s("a",{class:"header-anchor",href:"#open-dataset","aria-label":'Permalink to "open_dataset"'},"​")],-1)),i[9]||(i[9]=s("p",null,[a("The usual method for reading any format is using this function. See its "),s("code",null,"docstring"),a(" for more information.")],-1)),s("details",E,[s("summary",null,[i[0]||(i[0]=s("a",{id:"YAXArrays.Datasets.open_dataset",href:"#YAXArrays.Datasets.open_dataset"},[s("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),i[1]||(i[1]=a()),n(h,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[2]||(i[2]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),i[10]||(i[10]=l(`

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
+import{_ as d,c as r,j as s,a,G as n,a2 as l,w as e,B as p,o}from"./chunks/framework.Bl-lyKae.js";const b=JSON.parse('{"title":"Read YAXArrays and Datasets","description":"","frontmatter":{},"headers":[],"relativePath":"UserGuide/read.md","filePath":"UserGuide/read.md","lastUpdated":null}'),g={name:"UserGuide/read.md"},E={class:"jldocstring custom-block",open:""};function c(u,i,y,F,m,C){const h=p("Badge"),t=p("PluginTabsTab"),k=p("PluginTabs");return o(),r("div",null,[i[6]||(i[6]=s("h1",{id:"Read-YAXArrays-and-Datasets",tabindex:"-1"},[a("Read YAXArrays and Datasets "),s("a",{class:"header-anchor",href:"#Read-YAXArrays-and-Datasets","aria-label":'Permalink to "Read YAXArrays and Datasets {#Read-YAXArrays-and-Datasets}"'},"​")],-1)),i[7]||(i[7]=s("p",null,"This section describes how to read files, URLs, and directories into YAXArrays and datasets.",-1)),i[8]||(i[8]=s("h2",{id:"open-dataset",tabindex:"-1"},[a("open_dataset "),s("a",{class:"header-anchor",href:"#open-dataset","aria-label":'Permalink to "open_dataset"'},"​")],-1)),i[9]||(i[9]=s("p",null,[a("The usual method for reading any format is using this function. See its "),s("code",null,"docstring"),a(" for more information.")],-1)),s("details",E,[s("summary",null,[i[0]||(i[0]=s("a",{id:"YAXArrays.Datasets.open_dataset",href:"#YAXArrays.Datasets.open_dataset"},[s("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),i[1]||(i[1]=a()),n(h,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[2]||(i[2]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),i[10]||(i[10]=l(`

Now, let's explore different examples.

Read Zarr

Open a Zarr store as a Dataset:

julia
using YAXArrays
 using Zarr
 path="gs://cmip6/CMIP6/ScenarioMIP/DKRZ/MPI-ESM1-2-HR/ssp585/r1i1p1f1/3hr/tas/gn/v20190710/"
 store = zopen(path, consolidated=true)
diff --git a/previews/PR484/assets/UserGuide_write.md.nvwrVFgh.js b/previews/PR484/assets/UserGuide_write.md.BVly3P0r.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_write.md.nvwrVFgh.js
rename to previews/PR484/assets/UserGuide_write.md.BVly3P0r.js
index 7c3ca303..8ed474ac 100644
--- a/previews/PR484/assets/UserGuide_write.md.nvwrVFgh.js
+++ b/previews/PR484/assets/UserGuide_write.md.BVly3P0r.js
@@ -20,7 +20,7 @@ import{_ as e,c as n,a2 as a,j as i,a as l,G as p,B as h,o as k}from"./chunks/fr
 savecube(ds.tos, "tos.nc", driver=:netcdf)

Save an entire Dataset to a directory:

julia
savedataset(ds, path="ds.nc", driver=:netcdf)

netcdf compression

Save a dataset to NetCDF format with compression:

julia
n = 7 # compression level, number between 0 (no compression) and 9 (max compression)
 savedataset(ds, path="ds_c.nc", driver=:netcdf, compress=n)

Comparing it to the default saved file

julia
ds_info = stat("ds.nc")
 ds_c_info = stat("ds_c.nc")
-println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

`,29)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"YAXArrays.Datasets.savedataset",href:"#YAXArrays.Datasets.savedataset"},[i("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[1]||(s[1]=l()),p(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=a('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),s[4]||(s[4]=a(`

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
+println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

`,29)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"YAXArrays.Datasets.savedataset",href:"#YAXArrays.Datasets.savedataset"},[i("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[1]||(s[1]=l()),p(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=a('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),s[4]||(s[4]=a(`

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
 savedataset(ds2, path="ds.zarr", backend=:zarr, append=true)
julia
julia> open_dataset("ds.zarr", driver=:zarr)
YAXArray Dataset
 Shared Axes:
 None
diff --git a/previews/PR484/assets/UserGuide_write.md.nvwrVFgh.lean.js b/previews/PR484/assets/UserGuide_write.md.BVly3P0r.lean.js
similarity index 99%
rename from previews/PR484/assets/UserGuide_write.md.nvwrVFgh.lean.js
rename to previews/PR484/assets/UserGuide_write.md.BVly3P0r.lean.js
index 7c3ca303..8ed474ac 100644
--- a/previews/PR484/assets/UserGuide_write.md.nvwrVFgh.lean.js
+++ b/previews/PR484/assets/UserGuide_write.md.BVly3P0r.lean.js
@@ -20,7 +20,7 @@ import{_ as e,c as n,a2 as a,j as i,a as l,G as p,B as h,o as k}from"./chunks/fr
 savecube(ds.tos, "tos.nc", driver=:netcdf)

Save an entire Dataset to a directory:

julia
savedataset(ds, path="ds.nc", driver=:netcdf)

netcdf compression

Save a dataset to NetCDF format with compression:

julia
n = 7 # compression level, number between 0 (no compression) and 9 (max compression)
 savedataset(ds, path="ds_c.nc", driver=:netcdf, compress=n)

Comparing it to the default saved file

julia
ds_info = stat("ds.nc")
 ds_c_info = stat("ds_c.nc")
-println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

`,29)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"YAXArrays.Datasets.savedataset",href:"#YAXArrays.Datasets.savedataset"},[i("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[1]||(s[1]=l()),p(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=a('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),s[4]||(s[4]=a(`

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
+println("File size: ", "default: ", ds_info.size, " bytes", ", compress: ", ds_c_info.size, " bytes")
File size: default: 2963860 bytes, compress: 1159916 bytes

Overwrite a Dataset

If a path already exists, an error will be thrown. Set overwrite=true to delete the existing dataset

julia
savedataset(ds, path="ds.zarr", driver=:zarr, overwrite=true)

DANGER

Again, setting overwrite will delete all your previous saved data.

Look at the doc string for more information

`,29)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"YAXArrays.Datasets.savedataset",href:"#YAXArrays.Datasets.savedataset"},[i("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[1]||(s[1]=l()),p(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=a('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),s[4]||(s[4]=a(`

Append to a Dataset

New variables can be added to an existing dataset using the append=true keyword.

julia
ds2 = Dataset(z = YAXArray(rand(10,20,5)))
 savedataset(ds2, path="ds.zarr", backend=:zarr, append=true)
julia
julia> open_dataset("ds.zarr", driver=:zarr)
YAXArray Dataset
 Shared Axes:
 None
diff --git a/previews/PR484/assets/api.md.Zzab-IU-.js b/previews/PR484/assets/api.md.ukfTGbuM.js
similarity index 92%
rename from previews/PR484/assets/api.md.Zzab-IU-.js
rename to previews/PR484/assets/api.md.ukfTGbuM.js
index d5d387ba..c611138b 100644
--- a/previews/PR484/assets/api.md.Zzab-IU-.js
+++ b/previews/PR484/assets/api.md.ukfTGbuM.js
@@ -1,5 +1,5 @@
-import{_ as n,c as o,j as e,a,G as i,a2 as l,B as r,o as p}from"./chunks/framework.Bl-lyKae.js";const us=JSON.parse('{"title":"API Reference","description":"","frontmatter":{},"headers":[],"relativePath":"api.md","filePath":"api.md","lastUpdated":null}'),d={name:"api.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},b={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},A={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},j={class:"jldocstring custom-block",open:""},C={class:"jldocstring custom-block",open:""},D={class:"jldocstring custom-block",open:""},v={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},F={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},Y={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},w={class:"jldocstring custom-block",open:""},L={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},B={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},q={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},N={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},V={class:"jldocstring custom-block",open:""},G={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},K={class:"jldocstring custom-block",open:""},$={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},Z={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},_={class:"jldocstring custom-block",open:""},ss={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},as={class:"jldocstring custom-block",open:""},ts={class:"jldocstring custom-block",open:""},is={class:"jldocstring custom-block",open:""},ls={class:"jldocstring custom-block",open:""};function ns(os,s,rs,ps,ds,hs){const t=r("Badge");return p(),o("div",null,[s[157]||(s[157]=e("h1",{id:"API-Reference",tabindex:"-1"},[a("API Reference "),e("a",{class:"header-anchor",href:"#API-Reference","aria-label":'Permalink to "API Reference {#API-Reference}"'},"​")],-1)),s[158]||(s[158]=e("p",null,"This section describes all available functions of this package.",-1)),s[159]||(s[159]=e("h2",{id:"Public-API",tabindex:"-1"},[a("Public API "),e("a",{class:"header-anchor",href:"#Public-API","aria-label":'Permalink to "Public API {#Public-API}"'},"​")],-1)),e("details",h,[e("summary",null,[s[0]||(s[0]=e("a",{id:"YAXArrays.getAxis-Tuple{Any, Any}",href:"#YAXArrays.getAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getAxis")],-1)),s[1]||(s[1]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=l('
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',4))]),e("details",c,[e("summary",null,[s[3]||(s[3]=e("a",{id:"YAXArrays.Cubes",href:"#YAXArrays.Cubes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes")],-1)),s[4]||(s[4]=a()),i(t,{type:"info",class:"jlObjectType jlModule",text:"Module"})]),s[5]||(s[5]=e("p",null,"The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that",-1)),s[6]||(s[6]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L1-L4",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",u,[e("summary",null,[s[7]||(s[7]=e("a",{id:"YAXArrays.Cubes.YAXArray",href:"#YAXArrays.Cubes.YAXArray"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.YAXArray")],-1)),s[8]||(s[8]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[9]||(s[9]=l('
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

',5))]),e("details",b,[e("summary",null,[s[10]||(s[10]=e("a",{id:"YAXArrays.Cubes.caxes",href:"#YAXArrays.Cubes.caxes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[11]||(s[11]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[12]||(s[12]=e("p",null,"Returns the axes of a Cube",-1)),s[13]||(s[13]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L27",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",k,[e("summary",null,[s[14]||(s[14]=e("a",{id:"YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[15]||(s[15]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[16]||(s[16]=l('
julia
caxes

Embeds Cube inside a new Cube

source

',3))]),e("details",y,[e("summary",null,[s[17]||(s[17]=e("a",{id:"YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.concatenatecubes")],-1)),s[18]||(s[18]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[19]||(s[19]=l('
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

',3))]),e("details",g,[e("summary",null,[s[20]||(s[20]=e("a",{id:"YAXArrays.Cubes.readcubedata-Tuple{Any}",href:"#YAXArrays.Cubes.readcubedata-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.readcubedata")],-1)),s[21]||(s[21]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[22]||(s[22]=l('
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

',3))]),e("details",A,[e("summary",null,[s[23]||(s[23]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[24]||(s[24]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[25]||(s[25]=l('
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',4))]),e("details",f,[e("summary",null,[s[26]||(s[26]=e("a",{id:"YAXArrays.Cubes.subsetcube",href:"#YAXArrays.Cubes.subsetcube"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.subsetcube")],-1)),s[27]||(s[27]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[28]||(s[28]=e("p",null,"This function calculates a subset of a cube's data",-1)),s[29]||(s[29]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L22-L24",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",m,[e("summary",null,[s[30]||(s[30]=e("a",{id:"YAXArrays.DAT.InDims",href:"#YAXArrays.DAT.InDims"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InDims")],-1)),s[31]||(s[31]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[32]||(s[32]=l('
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

',5))]),e("details",E,[e("summary",null,[s[33]||(s[33]=e("a",{id:"YAXArrays.DAT.MovingWindow",href:"#YAXArrays.DAT.MovingWindow"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.MovingWindow")],-1)),s[34]||(s[34]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[35]||(s[35]=l('
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

',4))]),e("details",j,[e("summary",null,[s[36]||(s[36]=e("a",{id:"YAXArrays.DAT.OutDims-Tuple",href:"#YAXArrays.DAT.OutDims-Tuple"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutDims")],-1)),s[37]||(s[37]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[38]||(s[38]=l('
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

',4))]),e("details",C,[e("summary",null,[s[39]||(s[39]=e("a",{id:"YAXArrays.DAT.CubeTable-Tuple{}",href:"#YAXArrays.DAT.CubeTable-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.CubeTable")],-1)),s[40]||(s[40]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[41]||(s[41]=l('
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

',3))]),e("details",D,[e("summary",null,[s[42]||(s[42]=e("a",{id:"YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}",href:"#YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cubefittable")],-1)),s[43]||(s[43]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[44]||(s[44]=l('
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

',3))]),e("details",v,[e("summary",null,[s[45]||(s[45]=e("a",{id:"YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}",href:"#YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.fittable")],-1)),s[46]||(s[46]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[47]||(s[47]=l('
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

',5))]),e("details",T,[e("summary",null,[s[48]||(s[48]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[49]||(s[49]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[50]||(s[50]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

',5))]),e("details",F,[e("summary",null,[s[51]||(s[51]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[52]||(s[52]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[53]||(s[53]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

',6))]),e("details",X,[e("summary",null,[s[54]||(s[54]=e("a",{id:"YAXArrays.Datasets.Dataset",href:"#YAXArrays.Datasets.Dataset"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[55]||(s[55]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[56]||(s[56]=e("p",null,[a("Dataset object which stores an "),e("code",null,"OrderedDict"),a(" of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.")],-1)),s[57]||(s[57]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L18-L22",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Y,[e("summary",null,[s[58]||(s[58]=e("a",{id:"YAXArrays.Datasets.Dataset-Tuple{}",href:"#YAXArrays.Datasets.Dataset-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[59]||(s[59]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=l('
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

',3))]),e("details",x,[e("summary",null,[s[61]||(s[61]=e("a",{id:"YAXArrays.Datasets.Cube-Tuple{Dataset}",href:"#YAXArrays.Datasets.Cube-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Cube")],-1)),s[62]||(s[62]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=l('
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

',3))]),e("details",w,[e("summary",null,[s[64]||(s[64]=e("a",{id:"YAXArrays.Datasets.open_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.open_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),s[65]||(s[65]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),e("details",L,[e("summary",null,[s[67]||(s[67]=e("a",{id:'YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}',href:'#YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}'},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_mfdataset")],-1)),s[68]||(s[68]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=l(`
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
+import{_ as n,c as o,j as e,a,G as i,a2 as l,B as r,o as p}from"./chunks/framework.Bl-lyKae.js";const cs=JSON.parse('{"title":"API Reference","description":"","frontmatter":{},"headers":[],"relativePath":"api.md","filePath":"api.md","lastUpdated":null}'),d={name:"api.md"},h={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},b={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},A={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},j={class:"jldocstring custom-block",open:""},C={class:"jldocstring custom-block",open:""},D={class:"jldocstring custom-block",open:""},v={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},F={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},Y={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},w={class:"jldocstring custom-block",open:""},L={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},B={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},q={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},N={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},V={class:"jldocstring custom-block",open:""},G={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},K={class:"jldocstring custom-block",open:""},$={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},Z={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},_={class:"jldocstring custom-block",open:""},ss={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},as={class:"jldocstring custom-block",open:""},ts={class:"jldocstring custom-block",open:""},is={class:"jldocstring custom-block",open:""},ls={class:"jldocstring custom-block",open:""};function ns(os,s,rs,ps,ds,hs){const t=r("Badge");return p(),o("div",null,[s[157]||(s[157]=e("h1",{id:"API-Reference",tabindex:"-1"},[a("API Reference "),e("a",{class:"header-anchor",href:"#API-Reference","aria-label":'Permalink to "API Reference {#API-Reference}"'},"​")],-1)),s[158]||(s[158]=e("p",null,"This section describes all available functions of this package.",-1)),s[159]||(s[159]=e("h2",{id:"Public-API",tabindex:"-1"},[a("Public API "),e("a",{class:"header-anchor",href:"#Public-API","aria-label":'Permalink to "Public API {#Public-API}"'},"​")],-1)),e("details",h,[e("summary",null,[s[0]||(s[0]=e("a",{id:"YAXArrays.getAxis-Tuple{Any, Any}",href:"#YAXArrays.getAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getAxis")],-1)),s[1]||(s[1]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=l('
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',4))]),e("details",u,[e("summary",null,[s[3]||(s[3]=e("a",{id:"YAXArrays.Cubes",href:"#YAXArrays.Cubes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes")],-1)),s[4]||(s[4]=a()),i(t,{type:"info",class:"jlObjectType jlModule",text:"Module"})]),s[5]||(s[5]=e("p",null,"The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that",-1)),s[6]||(s[6]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L1-L4",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",c,[e("summary",null,[s[7]||(s[7]=e("a",{id:"YAXArrays.Cubes.YAXArray",href:"#YAXArrays.Cubes.YAXArray"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.YAXArray")],-1)),s[8]||(s[8]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[9]||(s[9]=l('
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

',5))]),e("details",b,[e("summary",null,[s[10]||(s[10]=e("a",{id:"YAXArrays.Cubes.caxes",href:"#YAXArrays.Cubes.caxes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[11]||(s[11]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[12]||(s[12]=e("p",null,"Returns the axes of a Cube",-1)),s[13]||(s[13]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L27",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",k,[e("summary",null,[s[14]||(s[14]=e("a",{id:"YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[15]||(s[15]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[16]||(s[16]=l('
julia
caxes

Embeds Cube inside a new Cube

source

',3))]),e("details",y,[e("summary",null,[s[17]||(s[17]=e("a",{id:"YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.concatenatecubes")],-1)),s[18]||(s[18]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[19]||(s[19]=l('
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

',3))]),e("details",g,[e("summary",null,[s[20]||(s[20]=e("a",{id:"YAXArrays.Cubes.readcubedata-Tuple{Any}",href:"#YAXArrays.Cubes.readcubedata-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.readcubedata")],-1)),s[21]||(s[21]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[22]||(s[22]=l('
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

',3))]),e("details",A,[e("summary",null,[s[23]||(s[23]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[24]||(s[24]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[25]||(s[25]=l('
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',4))]),e("details",f,[e("summary",null,[s[26]||(s[26]=e("a",{id:"YAXArrays.Cubes.subsetcube",href:"#YAXArrays.Cubes.subsetcube"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.subsetcube")],-1)),s[27]||(s[27]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[28]||(s[28]=e("p",null,"This function calculates a subset of a cube's data",-1)),s[29]||(s[29]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L22-L24",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",m,[e("summary",null,[s[30]||(s[30]=e("a",{id:"YAXArrays.DAT.InDims",href:"#YAXArrays.DAT.InDims"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InDims")],-1)),s[31]||(s[31]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[32]||(s[32]=l('
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

',5))]),e("details",E,[e("summary",null,[s[33]||(s[33]=e("a",{id:"YAXArrays.DAT.MovingWindow",href:"#YAXArrays.DAT.MovingWindow"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.MovingWindow")],-1)),s[34]||(s[34]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[35]||(s[35]=l('
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

',4))]),e("details",j,[e("summary",null,[s[36]||(s[36]=e("a",{id:"YAXArrays.DAT.OutDims-Tuple",href:"#YAXArrays.DAT.OutDims-Tuple"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutDims")],-1)),s[37]||(s[37]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[38]||(s[38]=l('
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

',4))]),e("details",C,[e("summary",null,[s[39]||(s[39]=e("a",{id:"YAXArrays.DAT.CubeTable-Tuple{}",href:"#YAXArrays.DAT.CubeTable-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.CubeTable")],-1)),s[40]||(s[40]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[41]||(s[41]=l('
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

',3))]),e("details",D,[e("summary",null,[s[42]||(s[42]=e("a",{id:"YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}",href:"#YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cubefittable")],-1)),s[43]||(s[43]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[44]||(s[44]=l('
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

',3))]),e("details",v,[e("summary",null,[s[45]||(s[45]=e("a",{id:"YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}",href:"#YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.fittable")],-1)),s[46]||(s[46]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[47]||(s[47]=l('
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

',5))]),e("details",T,[e("summary",null,[s[48]||(s[48]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[49]||(s[49]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[50]||(s[50]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

',5))]),e("details",F,[e("summary",null,[s[51]||(s[51]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[52]||(s[52]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[53]||(s[53]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

',6))]),e("details",X,[e("summary",null,[s[54]||(s[54]=e("a",{id:"YAXArrays.Datasets.Dataset",href:"#YAXArrays.Datasets.Dataset"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[55]||(s[55]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[56]||(s[56]=e("p",null,[a("Dataset object which stores an "),e("code",null,"OrderedDict"),a(" of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.")],-1)),s[57]||(s[57]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L18-L22",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Y,[e("summary",null,[s[58]||(s[58]=e("a",{id:"YAXArrays.Datasets.Dataset-Tuple{}",href:"#YAXArrays.Datasets.Dataset-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[59]||(s[59]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=l('
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

',3))]),e("details",x,[e("summary",null,[s[61]||(s[61]=e("a",{id:"YAXArrays.Datasets.Cube-Tuple{Dataset}",href:"#YAXArrays.Datasets.Cube-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Cube")],-1)),s[62]||(s[62]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=l('
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

',3))]),e("details",w,[e("summary",null,[s[64]||(s[64]=e("a",{id:"YAXArrays.Datasets.open_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.open_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),s[65]||(s[65]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),e("details",L,[e("summary",null,[s[67]||(s[67]=e("a",{id:'YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}',href:'#YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}'},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_mfdataset")],-1)),s[68]||(s[68]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=l(`
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
 open_mfdataset(DD.DimArray(files, YAX.time()))

alternatively, if the dimension to concatenate along does not exist yet, the dimension provided in the input arg is used:

julia
files = ["a.nc", "b.nc", "c.nc"]
-open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

`,6))]),e("details",M,[e("summary",null,[s[70]||(s[70]=e("a",{id:"YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}",href:"#YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savecube")],-1)),s[71]||(s[71]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=l('
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

',6))]),e("details",B,[e("summary",null,[s[73]||(s[73]=e("a",{id:"YAXArrays.Datasets.savedataset-Tuple{Dataset}",href:"#YAXArrays.Datasets.savedataset-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[74]||(s[74]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=l('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),e("details",O,[e("summary",null,[s[76]||(s[76]=e("a",{id:"YAXArrays.Datasets.to_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.to_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.to_dataset")],-1)),s[77]||(s[77]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=l('
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

',3))]),s[160]||(s[160]=e("h2",{id:"Internal-API",tabindex:"-1"},[a("Internal API "),e("a",{class:"header-anchor",href:"#Internal-API","aria-label":'Permalink to "Internal API {#Internal-API}"'},"​")],-1)),e("details",I,[e("summary",null,[s[79]||(s[79]=e("a",{id:"YAXArrays.YAXDefaults",href:"#YAXArrays.YAXDefaults"},[e("span",{class:"jlbinding"},"YAXArrays.YAXDefaults")],-1)),s[80]||(s[80]=a()),i(t,{type:"info",class:"jlObjectType jlConstant",text:"Constant"})]),s[81]||(s[81]=l('

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

',3))]),e("details",J,[e("summary",null,[s[82]||(s[82]=e("a",{id:"YAXArrays.findAxis-Tuple{Any, Any}",href:"#YAXArrays.findAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.findAxis")],-1)),s[83]||(s[83]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=l('
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',7))]),e("details",P,[e("summary",null,[s[85]||(s[85]=e("a",{id:"YAXArrays.getOutAxis-NTuple{5, Any}",href:"#YAXArrays.getOutAxis-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getOutAxis")],-1)),s[86]||(s[86]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=l('
julia
getOutAxis

source

',2))]),e("details",q,[e("summary",null,[s[88]||(s[88]=e("a",{id:"YAXArrays.get_descriptor-Tuple{String}",href:"#YAXArrays.get_descriptor-Tuple{String}"},[e("span",{class:"jlbinding"},"YAXArrays.get_descriptor")],-1)),s[89]||(s[89]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[90]||(s[90]=l('
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

',3))]),e("details",z,[e("summary",null,[s[91]||(s[91]=e("a",{id:"YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}",href:"#YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.match_axis")],-1)),s[92]||(s[92]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[93]||(s[93]=l(`
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
+open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

`,6))]),e("details",M,[e("summary",null,[s[70]||(s[70]=e("a",{id:"YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}",href:"#YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savecube")],-1)),s[71]||(s[71]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=l('
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

',6))]),e("details",B,[e("summary",null,[s[73]||(s[73]=e("a",{id:"YAXArrays.Datasets.savedataset-Tuple{Dataset}",href:"#YAXArrays.Datasets.savedataset-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[74]||(s[74]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=l('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),e("details",O,[e("summary",null,[s[76]||(s[76]=e("a",{id:"YAXArrays.Datasets.to_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.to_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.to_dataset")],-1)),s[77]||(s[77]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=l('
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

',3))]),s[160]||(s[160]=e("h2",{id:"Internal-API",tabindex:"-1"},[a("Internal API "),e("a",{class:"header-anchor",href:"#Internal-API","aria-label":'Permalink to "Internal API {#Internal-API}"'},"​")],-1)),e("details",I,[e("summary",null,[s[79]||(s[79]=e("a",{id:"YAXArrays.YAXDefaults",href:"#YAXArrays.YAXDefaults"},[e("span",{class:"jlbinding"},"YAXArrays.YAXDefaults")],-1)),s[80]||(s[80]=a()),i(t,{type:"info",class:"jlObjectType jlConstant",text:"Constant"})]),s[81]||(s[81]=l('

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

',3))]),e("details",J,[e("summary",null,[s[82]||(s[82]=e("a",{id:"YAXArrays.findAxis-Tuple{Any, Any}",href:"#YAXArrays.findAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.findAxis")],-1)),s[83]||(s[83]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=l('
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',7))]),e("details",P,[e("summary",null,[s[85]||(s[85]=e("a",{id:"YAXArrays.getOutAxis-NTuple{5, Any}",href:"#YAXArrays.getOutAxis-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getOutAxis")],-1)),s[86]||(s[86]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=l('
julia
getOutAxis

source

',2))]),e("details",q,[e("summary",null,[s[88]||(s[88]=e("a",{id:"YAXArrays.get_descriptor-Tuple{String}",href:"#YAXArrays.get_descriptor-Tuple{String}"},[e("span",{class:"jlbinding"},"YAXArrays.get_descriptor")],-1)),s[89]||(s[89]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[90]||(s[90]=l('
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

',3))]),e("details",z,[e("summary",null,[s[91]||(s[91]=e("a",{id:"YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}",href:"#YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.match_axis")],-1)),s[92]||(s[92]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[93]||(s[93]=l(`
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
 This is used to find different axes and to make certain axis description the same.
-For example to disregard differences of captialisation.

source

`,5))]),e("details",N,[e("summary",null,[s[94]||(s[94]=e("a",{id:"YAXArrays.Cubes.CleanMe",href:"#YAXArrays.Cubes.CleanMe"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.CleanMe")],-1)),s[95]||(s[95]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[96]||(s[96]=l('
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

',3))]),e("details",S,[e("summary",null,[s[97]||(s[97]=e("a",{id:"YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}",href:"#YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.clean")],-1)),s[98]||(s[98]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[99]||(s[99]=l('
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

',3))]),e("details",R,[e("summary",null,[s[100]||(s[100]=e("a",{id:"YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}",href:"#YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.copydata")],-1)),s[101]||(s[101]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[102]||(s[102]=l('
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

',3))]),e("details",V,[e("summary",null,[s[103]||(s[103]=e("a",{id:"YAXArrays.Cubes.optifunc-NTuple{7, Any}",href:"#YAXArrays.Cubes.optifunc-NTuple{7, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.optifunc")],-1)),s[104]||(s[104]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[105]||(s[105]=l('
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

',4))]),e("details",G,[e("summary",null,[s[106]||(s[106]=e("a",{id:"YAXArrays.DAT.DATConfig",href:"#YAXArrays.DAT.DATConfig"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.DATConfig")],-1)),s[107]||(s[107]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[108]||(s[108]=l('

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

',3))]),e("details",W,[e("summary",null,[s[109]||(s[109]=e("a",{id:"YAXArrays.DAT.InputCube",href:"#YAXArrays.DAT.InputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InputCube")],-1)),s[110]||(s[110]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[111]||(s[111]=l('

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

',3))]),e("details",U,[e("summary",null,[s[112]||(s[112]=e("a",{id:"YAXArrays.DAT.OutputCube",href:"#YAXArrays.DAT.OutputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutputCube")],-1)),s[113]||(s[113]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[114]||(s[114]=l('

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

',4))]),e("details",K,[e("summary",null,[s[115]||(s[115]=e("a",{id:"YAXArrays.DAT.YAXColumn",href:"#YAXArrays.DAT.YAXColumn"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.YAXColumn")],-1)),s[116]||(s[116]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[117]||(s[117]=l('
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

',4))]),e("details",$,[e("summary",null,[s[118]||(s[118]=e("a",{id:"YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}",href:"#YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cmpcachmisses")],-1)),s[119]||(s[119]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=e("p",null,"Function that compares two cache miss specifiers by their importance",-1)),s[121]||(s[121]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L958-L960",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H,[e("summary",null,[s[122]||(s[122]=e("a",{id:"YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}",href:"#YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getFrontPerm")],-1)),s[123]||(s[123]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[124]||(s[124]=e("p",null,"Calculate an axis permutation that brings the wanted dimensions to the front",-1)),s[125]||(s[125]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L1203",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Z,[e("summary",null,[s[126]||(s[126]=e("a",{id:"YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}",href:"#YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getLoopCacheSize")],-1)),s[127]||(s[127]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=e("p",null,"Calculate optimal Cache size to DAT operation",-1)),s[129]||(s[129]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L1057",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q,[e("summary",null,[s[130]||(s[130]=e("a",{id:"YAXArrays.DAT.getOuttype-Tuple{Int64, Any}",href:"#YAXArrays.DAT.getOuttype-Tuple{Int64, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getOuttype")],-1)),s[131]||(s[131]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[132]||(s[132]=l('
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

',4))]),e("details",_,[e("summary",null,[s[133]||(s[133]=e("a",{id:"YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}",href:"#YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getloopchunks")],-1)),s[134]||(s[134]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[135]||(s[135]=l('
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.\nThis computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

',4))]),e("details",ss,[e("summary",null,[s[136]||(s[136]=e("a",{id:"YAXArrays.DAT.permuteloopaxes-Tuple{Any}",href:"#YAXArrays.DAT.permuteloopaxes-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.permuteloopaxes")],-1)),s[137]||(s[137]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[138]||(s[138]=l('
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

',4))]),e("details",es,[e("summary",null,[s[139]||(s[139]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[140]||(s[140]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[141]||(s[141]=l('
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',6))]),e("details",as,[e("summary",null,[s[142]||(s[142]=e("a",{id:"YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}",href:"#YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.collectfromhandle")],-1)),s[143]||(s[143]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[144]||(s[144]=e("p",null,"Extracts a YAXArray from a dataset handle that was just created from a arrayinfo",-1)),s[145]||(s[145]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L561-L563",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ts,[e("summary",null,[s[146]||(s[146]=e("a",{id:"YAXArrays.Datasets.createdataset-Tuple{Any, Any}",href:"#YAXArrays.Datasets.createdataset-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.createdataset")],-1)),s[147]||(s[147]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=l('
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

',5))]),e("details",is,[e("summary",null,[s[149]||(s[149]=e("a",{id:"YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}",href:"#YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.getarrayinfo")],-1)),s[150]||(s[150]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[151]||(s[151]=e("p",null,"Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair",-1)),s[152]||(s[152]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L530-L532",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ls,[e("summary",null,[s[153]||(s[153]=e("a",{id:"YAXArrays.Datasets.testrange-Tuple{Any}",href:"#YAXArrays.Datasets.testrange-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.testrange")],-1)),s[154]||(s[154]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=e("p",null,"Test if data in x can be approximated by a step range",-1)),s[156]||(s[156]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L312",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const bs=n(d,[["render",ns]]);export{us as __pageData,bs as default}; +For example to disregard differences of captialisation.

source

`,5))]),e("details",N,[e("summary",null,[s[94]||(s[94]=e("a",{id:"YAXArrays.Cubes.CleanMe",href:"#YAXArrays.Cubes.CleanMe"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.CleanMe")],-1)),s[95]||(s[95]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[96]||(s[96]=l('
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

',3))]),e("details",S,[e("summary",null,[s[97]||(s[97]=e("a",{id:"YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}",href:"#YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.clean")],-1)),s[98]||(s[98]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[99]||(s[99]=l('
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

',3))]),e("details",R,[e("summary",null,[s[100]||(s[100]=e("a",{id:"YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}",href:"#YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.copydata")],-1)),s[101]||(s[101]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[102]||(s[102]=l('
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

',3))]),e("details",V,[e("summary",null,[s[103]||(s[103]=e("a",{id:"YAXArrays.Cubes.optifunc-NTuple{7, Any}",href:"#YAXArrays.Cubes.optifunc-NTuple{7, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.optifunc")],-1)),s[104]||(s[104]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[105]||(s[105]=l('
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

',4))]),e("details",G,[e("summary",null,[s[106]||(s[106]=e("a",{id:"YAXArrays.DAT.DATConfig",href:"#YAXArrays.DAT.DATConfig"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.DATConfig")],-1)),s[107]||(s[107]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[108]||(s[108]=l('

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

',3))]),e("details",W,[e("summary",null,[s[109]||(s[109]=e("a",{id:"YAXArrays.DAT.InputCube",href:"#YAXArrays.DAT.InputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InputCube")],-1)),s[110]||(s[110]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[111]||(s[111]=l('

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

',3))]),e("details",U,[e("summary",null,[s[112]||(s[112]=e("a",{id:"YAXArrays.DAT.OutputCube",href:"#YAXArrays.DAT.OutputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutputCube")],-1)),s[113]||(s[113]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[114]||(s[114]=l('

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

',4))]),e("details",K,[e("summary",null,[s[115]||(s[115]=e("a",{id:"YAXArrays.DAT.YAXColumn",href:"#YAXArrays.DAT.YAXColumn"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.YAXColumn")],-1)),s[116]||(s[116]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[117]||(s[117]=l('
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

',4))]),e("details",$,[e("summary",null,[s[118]||(s[118]=e("a",{id:"YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}",href:"#YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cmpcachmisses")],-1)),s[119]||(s[119]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=e("p",null,"Function that compares two cache miss specifiers by their importance",-1)),s[121]||(s[121]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L958-L960",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H,[e("summary",null,[s[122]||(s[122]=e("a",{id:"YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}",href:"#YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getFrontPerm")],-1)),s[123]||(s[123]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[124]||(s[124]=e("p",null,"Calculate an axis permutation that brings the wanted dimensions to the front",-1)),s[125]||(s[125]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L1203",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Z,[e("summary",null,[s[126]||(s[126]=e("a",{id:"YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}",href:"#YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getLoopCacheSize")],-1)),s[127]||(s[127]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=e("p",null,"Calculate optimal Cache size to DAT operation",-1)),s[129]||(s[129]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L1057",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q,[e("summary",null,[s[130]||(s[130]=e("a",{id:"YAXArrays.DAT.getOuttype-Tuple{Int64, Any}",href:"#YAXArrays.DAT.getOuttype-Tuple{Int64, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getOuttype")],-1)),s[131]||(s[131]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[132]||(s[132]=l('
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

',4))]),e("details",_,[e("summary",null,[s[133]||(s[133]=e("a",{id:"YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}",href:"#YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getloopchunks")],-1)),s[134]||(s[134]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[135]||(s[135]=l('
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.\nThis computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

',4))]),e("details",ss,[e("summary",null,[s[136]||(s[136]=e("a",{id:"YAXArrays.DAT.permuteloopaxes-Tuple{Any}",href:"#YAXArrays.DAT.permuteloopaxes-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.permuteloopaxes")],-1)),s[137]||(s[137]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[138]||(s[138]=l('
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

',4))]),e("details",es,[e("summary",null,[s[139]||(s[139]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[140]||(s[140]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[141]||(s[141]=l('
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',6))]),e("details",as,[e("summary",null,[s[142]||(s[142]=e("a",{id:"YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}",href:"#YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.collectfromhandle")],-1)),s[143]||(s[143]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[144]||(s[144]=e("p",null,"Extracts a YAXArray from a dataset handle that was just created from a arrayinfo",-1)),s[145]||(s[145]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L561-L563",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ts,[e("summary",null,[s[146]||(s[146]=e("a",{id:"YAXArrays.Datasets.createdataset-Tuple{Any, Any}",href:"#YAXArrays.Datasets.createdataset-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.createdataset")],-1)),s[147]||(s[147]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=l('
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

',5))]),e("details",is,[e("summary",null,[s[149]||(s[149]=e("a",{id:"YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}",href:"#YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.getarrayinfo")],-1)),s[150]||(s[150]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[151]||(s[151]=e("p",null,"Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair",-1)),s[152]||(s[152]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L530-L532",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ls,[e("summary",null,[s[153]||(s[153]=e("a",{id:"YAXArrays.Datasets.testrange-Tuple{Any}",href:"#YAXArrays.Datasets.testrange-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.testrange")],-1)),s[154]||(s[154]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=e("p",null,"Test if data in x can be approximated by a step range",-1)),s[156]||(s[156]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L312",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const bs=n(d,[["render",ns]]);export{cs as __pageData,bs as default}; diff --git a/previews/PR484/assets/api.md.Zzab-IU-.lean.js b/previews/PR484/assets/api.md.ukfTGbuM.lean.js similarity index 92% rename from previews/PR484/assets/api.md.Zzab-IU-.lean.js rename to previews/PR484/assets/api.md.ukfTGbuM.lean.js index d5d387ba..c611138b 100644 --- a/previews/PR484/assets/api.md.Zzab-IU-.lean.js +++ b/previews/PR484/assets/api.md.ukfTGbuM.lean.js @@ -1,5 +1,5 @@ -import{_ as n,c as o,j as e,a,G as i,a2 as l,B as r,o as p}from"./chunks/framework.Bl-lyKae.js";const us=JSON.parse('{"title":"API Reference","description":"","frontmatter":{},"headers":[],"relativePath":"api.md","filePath":"api.md","lastUpdated":null}'),d={name:"api.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},b={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},A={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},j={class:"jldocstring custom-block",open:""},C={class:"jldocstring custom-block",open:""},D={class:"jldocstring custom-block",open:""},v={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},F={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},Y={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},w={class:"jldocstring custom-block",open:""},L={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},B={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},q={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},N={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},V={class:"jldocstring custom-block",open:""},G={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},K={class:"jldocstring custom-block",open:""},$={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},Z={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},_={class:"jldocstring custom-block",open:""},ss={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},as={class:"jldocstring custom-block",open:""},ts={class:"jldocstring custom-block",open:""},is={class:"jldocstring custom-block",open:""},ls={class:"jldocstring custom-block",open:""};function ns(os,s,rs,ps,ds,hs){const t=r("Badge");return p(),o("div",null,[s[157]||(s[157]=e("h1",{id:"API-Reference",tabindex:"-1"},[a("API Reference "),e("a",{class:"header-anchor",href:"#API-Reference","aria-label":'Permalink to "API Reference {#API-Reference}"'},"​")],-1)),s[158]||(s[158]=e("p",null,"This section describes all available functions of this package.",-1)),s[159]||(s[159]=e("h2",{id:"Public-API",tabindex:"-1"},[a("Public API "),e("a",{class:"header-anchor",href:"#Public-API","aria-label":'Permalink to "Public API {#Public-API}"'},"​")],-1)),e("details",h,[e("summary",null,[s[0]||(s[0]=e("a",{id:"YAXArrays.getAxis-Tuple{Any, Any}",href:"#YAXArrays.getAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getAxis")],-1)),s[1]||(s[1]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=l('
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',4))]),e("details",c,[e("summary",null,[s[3]||(s[3]=e("a",{id:"YAXArrays.Cubes",href:"#YAXArrays.Cubes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes")],-1)),s[4]||(s[4]=a()),i(t,{type:"info",class:"jlObjectType jlModule",text:"Module"})]),s[5]||(s[5]=e("p",null,"The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that",-1)),s[6]||(s[6]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L1-L4",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",u,[e("summary",null,[s[7]||(s[7]=e("a",{id:"YAXArrays.Cubes.YAXArray",href:"#YAXArrays.Cubes.YAXArray"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.YAXArray")],-1)),s[8]||(s[8]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[9]||(s[9]=l('
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

',5))]),e("details",b,[e("summary",null,[s[10]||(s[10]=e("a",{id:"YAXArrays.Cubes.caxes",href:"#YAXArrays.Cubes.caxes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[11]||(s[11]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[12]||(s[12]=e("p",null,"Returns the axes of a Cube",-1)),s[13]||(s[13]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L27",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",k,[e("summary",null,[s[14]||(s[14]=e("a",{id:"YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[15]||(s[15]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[16]||(s[16]=l('
julia
caxes

Embeds Cube inside a new Cube

source

',3))]),e("details",y,[e("summary",null,[s[17]||(s[17]=e("a",{id:"YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.concatenatecubes")],-1)),s[18]||(s[18]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[19]||(s[19]=l('
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

',3))]),e("details",g,[e("summary",null,[s[20]||(s[20]=e("a",{id:"YAXArrays.Cubes.readcubedata-Tuple{Any}",href:"#YAXArrays.Cubes.readcubedata-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.readcubedata")],-1)),s[21]||(s[21]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[22]||(s[22]=l('
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

',3))]),e("details",A,[e("summary",null,[s[23]||(s[23]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[24]||(s[24]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[25]||(s[25]=l('
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',4))]),e("details",f,[e("summary",null,[s[26]||(s[26]=e("a",{id:"YAXArrays.Cubes.subsetcube",href:"#YAXArrays.Cubes.subsetcube"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.subsetcube")],-1)),s[27]||(s[27]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[28]||(s[28]=e("p",null,"This function calculates a subset of a cube's data",-1)),s[29]||(s[29]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/Cubes/Cubes.jl#L22-L24",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",m,[e("summary",null,[s[30]||(s[30]=e("a",{id:"YAXArrays.DAT.InDims",href:"#YAXArrays.DAT.InDims"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InDims")],-1)),s[31]||(s[31]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[32]||(s[32]=l('
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

',5))]),e("details",E,[e("summary",null,[s[33]||(s[33]=e("a",{id:"YAXArrays.DAT.MovingWindow",href:"#YAXArrays.DAT.MovingWindow"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.MovingWindow")],-1)),s[34]||(s[34]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[35]||(s[35]=l('
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

',4))]),e("details",j,[e("summary",null,[s[36]||(s[36]=e("a",{id:"YAXArrays.DAT.OutDims-Tuple",href:"#YAXArrays.DAT.OutDims-Tuple"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutDims")],-1)),s[37]||(s[37]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[38]||(s[38]=l('
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

',4))]),e("details",C,[e("summary",null,[s[39]||(s[39]=e("a",{id:"YAXArrays.DAT.CubeTable-Tuple{}",href:"#YAXArrays.DAT.CubeTable-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.CubeTable")],-1)),s[40]||(s[40]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[41]||(s[41]=l('
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

',3))]),e("details",D,[e("summary",null,[s[42]||(s[42]=e("a",{id:"YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}",href:"#YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cubefittable")],-1)),s[43]||(s[43]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[44]||(s[44]=l('
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

',3))]),e("details",v,[e("summary",null,[s[45]||(s[45]=e("a",{id:"YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}",href:"#YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.fittable")],-1)),s[46]||(s[46]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[47]||(s[47]=l('
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

',5))]),e("details",T,[e("summary",null,[s[48]||(s[48]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[49]||(s[49]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[50]||(s[50]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

',5))]),e("details",F,[e("summary",null,[s[51]||(s[51]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[52]||(s[52]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[53]||(s[53]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

',6))]),e("details",X,[e("summary",null,[s[54]||(s[54]=e("a",{id:"YAXArrays.Datasets.Dataset",href:"#YAXArrays.Datasets.Dataset"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[55]||(s[55]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[56]||(s[56]=e("p",null,[a("Dataset object which stores an "),e("code",null,"OrderedDict"),a(" of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.")],-1)),s[57]||(s[57]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L18-L22",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Y,[e("summary",null,[s[58]||(s[58]=e("a",{id:"YAXArrays.Datasets.Dataset-Tuple{}",href:"#YAXArrays.Datasets.Dataset-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[59]||(s[59]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=l('
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

',3))]),e("details",x,[e("summary",null,[s[61]||(s[61]=e("a",{id:"YAXArrays.Datasets.Cube-Tuple{Dataset}",href:"#YAXArrays.Datasets.Cube-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Cube")],-1)),s[62]||(s[62]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=l('
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

',3))]),e("details",w,[e("summary",null,[s[64]||(s[64]=e("a",{id:"YAXArrays.Datasets.open_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.open_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),s[65]||(s[65]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),e("details",L,[e("summary",null,[s[67]||(s[67]=e("a",{id:'YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}',href:'#YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}'},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_mfdataset")],-1)),s[68]||(s[68]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=l(`
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
+import{_ as n,c as o,j as e,a,G as i,a2 as l,B as r,o as p}from"./chunks/framework.Bl-lyKae.js";const cs=JSON.parse('{"title":"API Reference","description":"","frontmatter":{},"headers":[],"relativePath":"api.md","filePath":"api.md","lastUpdated":null}'),d={name:"api.md"},h={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},b={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},A={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},j={class:"jldocstring custom-block",open:""},C={class:"jldocstring custom-block",open:""},D={class:"jldocstring custom-block",open:""},v={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},F={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},Y={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},w={class:"jldocstring custom-block",open:""},L={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},B={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},q={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},N={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},V={class:"jldocstring custom-block",open:""},G={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},K={class:"jldocstring custom-block",open:""},$={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},Z={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},_={class:"jldocstring custom-block",open:""},ss={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},as={class:"jldocstring custom-block",open:""},ts={class:"jldocstring custom-block",open:""},is={class:"jldocstring custom-block",open:""},ls={class:"jldocstring custom-block",open:""};function ns(os,s,rs,ps,ds,hs){const t=r("Badge");return p(),o("div",null,[s[157]||(s[157]=e("h1",{id:"API-Reference",tabindex:"-1"},[a("API Reference "),e("a",{class:"header-anchor",href:"#API-Reference","aria-label":'Permalink to "API Reference {#API-Reference}"'},"​")],-1)),s[158]||(s[158]=e("p",null,"This section describes all available functions of this package.",-1)),s[159]||(s[159]=e("h2",{id:"Public-API",tabindex:"-1"},[a("Public API "),e("a",{class:"header-anchor",href:"#Public-API","aria-label":'Permalink to "Public API {#Public-API}"'},"​")],-1)),e("details",h,[e("summary",null,[s[0]||(s[0]=e("a",{id:"YAXArrays.getAxis-Tuple{Any, Any}",href:"#YAXArrays.getAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getAxis")],-1)),s[1]||(s[1]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=l('
julia
getAxis(desc, c)

Given an Axis description and a cube, returns the corresponding axis of the cube. The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',4))]),e("details",u,[e("summary",null,[s[3]||(s[3]=e("a",{id:"YAXArrays.Cubes",href:"#YAXArrays.Cubes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes")],-1)),s[4]||(s[4]=a()),i(t,{type:"info",class:"jlObjectType jlModule",text:"Module"})]),s[5]||(s[5]=e("p",null,"The functions provided by YAXArrays are supposed to work on different types of cubes. This module defines the interface for all Data types that",-1)),s[6]||(s[6]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L1-L4",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",c,[e("summary",null,[s[7]||(s[7]=e("a",{id:"YAXArrays.Cubes.YAXArray",href:"#YAXArrays.Cubes.YAXArray"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.YAXArray")],-1)),s[8]||(s[8]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[9]||(s[9]=l('
julia
YAXArray{T,N}

An array labelled with named axes that have values associated with them. It can wrap normal arrays or, more typically DiskArrays.

Fields

  • axes: Tuple of Dimensions containing the Axes of the Cube

  • data: length(axes)-dimensional array which holds the data, this can be a lazy DiskArray

  • properties: Metadata properties describing the content of the data

  • chunks: Representation of the chunking of the data

  • cleaner: Cleaner objects to track which objects to tidy up when the YAXArray goes out of scope

source

',5))]),e("details",b,[e("summary",null,[s[10]||(s[10]=e("a",{id:"YAXArrays.Cubes.caxes",href:"#YAXArrays.Cubes.caxes"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[11]||(s[11]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[12]||(s[12]=e("p",null,"Returns the axes of a Cube",-1)),s[13]||(s[13]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L27",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",k,[e("summary",null,[s[14]||(s[14]=e("a",{id:"YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.caxes-Tuple{DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.caxes")],-1)),s[15]||(s[15]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[16]||(s[16]=l('
julia
caxes

Embeds Cube inside a new Cube

source

',3))]),e("details",y,[e("summary",null,[s[17]||(s[17]=e("a",{id:"YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}",href:"#YAXArrays.Cubes.concatenatecubes-Tuple{Any, DimensionalData.Dimensions.Dimension}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.concatenatecubes")],-1)),s[18]||(s[18]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[19]||(s[19]=l('
julia
function concatenateCubes(cubelist, cataxis::CategoricalAxis)

Concatenates a vector of datacubes that have identical axes to a new single cube along the new axis cataxis

source

',3))]),e("details",g,[e("summary",null,[s[20]||(s[20]=e("a",{id:"YAXArrays.Cubes.readcubedata-Tuple{Any}",href:"#YAXArrays.Cubes.readcubedata-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.readcubedata")],-1)),s[21]||(s[21]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[22]||(s[22]=l('
julia
readcubedata(cube)

Given any array implementing the YAXArray interface it returns an in-memory YAXArray from it.

source

',3))]),e("details",A,[e("summary",null,[s[23]||(s[23]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{YAXArray, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[24]||(s[24]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[25]||(s[25]=l('
julia
setchunks(c::YAXArray,chunks)

Resets the chunks of a YAXArray and returns a new YAXArray. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savecube on the resulting array. The chunks argument can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',4))]),e("details",f,[e("summary",null,[s[26]||(s[26]=e("a",{id:"YAXArrays.Cubes.subsetcube",href:"#YAXArrays.Cubes.subsetcube"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.subsetcube")],-1)),s[27]||(s[27]=a()),i(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[28]||(s[28]=e("p",null,"This function calculates a subset of a cube's data",-1)),s[29]||(s[29]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/Cubes/Cubes.jl#L22-L24",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",m,[e("summary",null,[s[30]||(s[30]=e("a",{id:"YAXArrays.DAT.InDims",href:"#YAXArrays.DAT.InDims"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InDims")],-1)),s[31]||(s[31]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[32]||(s[32]=l('
julia
InDims(axisdesc...;...)

Creates a description of an Input Data Cube for cube operations. Takes a single or multiple axis descriptions as first arguments. Alternatively a MovingWindow(@ref) struct can be passed to include neighbour slices of one or more axes in the computation. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

Keyword arguments

  • artype how shall the array be represented in the inner function. Defaults to Array, alternatives are DataFrame or AsAxisArray

  • filter define some filter to skip the computation, e.g. when all values are missing. Defaults to AllMissing(), possible values are AnyMissing(), AnyOcean(), StdZero(), NValid(n) (for at least n non-missing elements). It is also possible to provide a custom one-argument function that takes the array and returns true if the compuation shall be skipped and false otherwise.

  • window_oob_value if one of the input dimensions is a MowingWindow, this value will be used to fill out-of-bounds areas

source

',5))]),e("details",E,[e("summary",null,[s[33]||(s[33]=e("a",{id:"YAXArrays.DAT.MovingWindow",href:"#YAXArrays.DAT.MovingWindow"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.MovingWindow")],-1)),s[34]||(s[34]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[35]||(s[35]=l('
julia
MovingWindow(desc, pre, after)

Constructs a MovingWindow object to be passed to an InDims constructor to define that the axis in desc shall participate in the inner function (i.e. shall be looped over), but inside the inner function pre values before and after values after the center value will be passed as well.

For example passing MovingWindow("Time", 2, 0) will loop over the time axis and always pass the current time step plus the 2 previous steps. So in the inner function the array will have an additional dimension of size 3.

source

',4))]),e("details",j,[e("summary",null,[s[36]||(s[36]=e("a",{id:"YAXArrays.DAT.OutDims-Tuple",href:"#YAXArrays.DAT.OutDims-Tuple"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutDims")],-1)),s[37]||(s[37]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[38]||(s[38]=l('
julia
OutDims(axisdesc;...)

Creates a description of an Output Data Cube for cube operations. Takes a single or a Vector/Tuple of axes as first argument. Axes can be specified by their name (String), through an Axis type, or by passing a concrete axis.

  • axisdesc: List of input axis names

  • backend : specifies the dataset backend to write data to, must be either :auto or a key in YAXArrayBase.backendlist

  • update : specifies wether the function operates inplace or if an output is returned

  • artype : specifies the Array type inside the inner function that is mapped over

  • chunksize: A Dict specifying the chunksizes for the output dimensions of the cube, or :input to copy chunksizes from input cube axes or :max to not chunk the inner dimensions

  • outtype: force the output type to a specific type, defaults to Any which means that the element type of the first input cube is used

source

',4))]),e("details",C,[e("summary",null,[s[39]||(s[39]=e("a",{id:"YAXArrays.DAT.CubeTable-Tuple{}",href:"#YAXArrays.DAT.CubeTable-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.CubeTable")],-1)),s[40]||(s[40]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[41]||(s[41]=l('
julia
CubeTable()

Function to turn a DataCube object into an iterable table. Takes a list of as arguments, specified as a name=cube expression. For example CubeTable(data=cube1,country=cube2) would generate a Table with the entries data and country, where data contains the values of cube1 and country the values of cube2. The cubes are matched and broadcasted along their axes like in mapCube.

source

',3))]),e("details",D,[e("summary",null,[s[42]||(s[42]=e("a",{id:"YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}",href:"#YAXArrays.DAT.cubefittable-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cubefittable")],-1)),s[43]||(s[43]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[44]||(s[44]=l('
julia
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)

Executes fittable on the CubeTable tab with the (Weighted-)OnlineStat o, looping through the values specified by fitsym. Finally, writes the results from the TableAggregator to an output data cube.

source

',3))]),e("details",v,[e("summary",null,[s[45]||(s[45]=e("a",{id:"YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}",href:"#YAXArrays.DAT.fittable-Tuple{YAXArrays.DAT.CubeIterator, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.fittable")],-1)),s[46]||(s[46]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[47]||(s[47]=l('
julia
fittable(tab,o,fitsym;by=(),weight=nothing)

Loops through an iterable table tab and thereby fitting an OnlineStat o with the values specified through fitsym. Optionally one can specify a field (or tuple) to group by. Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous function calculating the group from a table row.

For example the following would caluclate a weighted mean over a cube weighted by grid cell area and grouped by country and month:

julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))

source

',5))]),e("details",T,[e("summary",null,[s[48]||(s[48]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Dataset, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[49]||(s[49]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[50]||(s[50]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of all cubes of the dataset ds. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

For Datasets, only one output cube can be specified. In contrast to the mapCube function for cubes, additional arguments for the inner function should be set as keyword arguments.

For the specific keyword arguments see the docstring of the mapCube function for cubes.

source

',5))]),e("details",F,[e("summary",null,[s[51]||(s[51]=e("a",{id:"YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}",href:"#YAXArrays.DAT.mapCube-Tuple{Function, Tuple, Vararg{Any}}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.mapCube")],-1)),s[52]||(s[52]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[53]||(s[53]=l('
julia
mapCube(fun, cube, addargs...;kwargs...)

Map a given function fun over slices of the data cube cube. The additional arguments addargs will be forwarded to the inner function fun. Use InDims to discribe the input dimensions and OutDims to describe the output dimensions of the function.

Keyword arguments

  • max_cache=YAXDefaults.max_cache Float64 maximum size of blocks that are read into memory in bits e.g. max_cache=5.0e8. Or String. e.g. max_cache="10MB" or max_cache=1GB defaults to approx 10Mb.

  • indims::InDims List of input cube descriptors of type InDims for each input data cube.

  • outdims::OutDims List of output cube descriptors of type OutDims for each output cube.

  • inplace does the function write to an output array inplace or return a single value> defaults to true

  • ispar boolean to determine if parallelisation should be applied, defaults to true if workers are available.

  • showprog boolean indicating if a ProgressMeter shall be shown

  • include_loopvars boolean to indicate if the varoables looped over should be added as function arguments

  • nthreads number of threads for the computation, defaults to Threads.nthreads for every worker.

  • loopchunksize determines the chunk sizes of variables which are looped over, a dict

  • kwargs additional keyword arguments are passed to the inner function

The first argument is always the function to be applied, the second is the input cube or a tuple of input cubes if needed.

source

',6))]),e("details",X,[e("summary",null,[s[54]||(s[54]=e("a",{id:"YAXArrays.Datasets.Dataset",href:"#YAXArrays.Datasets.Dataset"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[55]||(s[55]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[56]||(s[56]=e("p",null,[a("Dataset object which stores an "),e("code",null,"OrderedDict"),a(" of YAXArrays with Symbol keys. A dictionary of CubeAxes and a Dictionary of general properties. A dictionary can hold cubes with differing axes. But it will share the common axes between the subcubes.")],-1)),s[57]||(s[57]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L18-L22",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Y,[e("summary",null,[s[58]||(s[58]=e("a",{id:"YAXArrays.Datasets.Dataset-Tuple{}",href:"#YAXArrays.Datasets.Dataset-Tuple{}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Dataset")],-1)),s[59]||(s[59]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=l('
julia
Dataset(; properties = Dict{String,Any}, cubes...)

Construct a YAXArray Dataset with global attributes properties a and a list of named YAXArrays cubes...

source

',3))]),e("details",x,[e("summary",null,[s[61]||(s[61]=e("a",{id:"YAXArrays.Datasets.Cube-Tuple{Dataset}",href:"#YAXArrays.Datasets.Cube-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.Cube")],-1)),s[62]||(s[62]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=l('
julia
Cube(ds::Dataset; joinname="Variables")

Construct a single YAXArray from the dataset ds by concatenating the cubes in the datset on the joinname dimension.

source

',3))]),e("details",w,[e("summary",null,[s[64]||(s[64]=e("a",{id:"YAXArrays.Datasets.open_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.open_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_dataset")],-1)),s[65]||(s[65]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=l('
julia
open_dataset(g; skip_keys=(), driver=:all)

Open the dataset at g with the given driver. The default driver will search for available drivers and tries to detect the useable driver from the filename extension.

Keyword arguments

  • skip_keys are passed as symbols, i.e., skip_keys = (:a, :b)

  • driver=:all, common options are :netcdf or :zarr.

Example:

julia
ds = open_dataset(f, driver=:zarr, skip_keys = (:c,))

source

',7))]),e("details",L,[e("summary",null,[s[67]||(s[67]=e("a",{id:'YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}',href:'#YAXArrays.Datasets.open_mfdataset-Tuple{DimensionalData.DimVector{var"#s34", D, R, A} where {var"#s34"<:AbstractString, D<:Tuple, R<:Tuple, A<:AbstractVector{var"#s34"}}}'},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.open_mfdataset")],-1)),s[68]||(s[68]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=l(`
julia
open_mfdataset(files::DD.DimVector{<:AbstractString}; kwargs...)

Opens and concatenates a list of dataset paths along the dimension specified in files. This method can be used when the generic glob-based version of open_mfdataset fails or is too slow. For example, to concatenate a list of annual NetCDF files along the time dimension, one can use:

julia
files = ["1990.nc","1991.nc","1992.nc"]
 open_mfdataset(DD.DimArray(files, YAX.time()))

alternatively, if the dimension to concatenate along does not exist yet, the dimension provided in the input arg is used:

julia
files = ["a.nc", "b.nc", "c.nc"]
-open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

`,6))]),e("details",M,[e("summary",null,[s[70]||(s[70]=e("a",{id:"YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}",href:"#YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savecube")],-1)),s[71]||(s[71]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=l('
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

',6))]),e("details",B,[e("summary",null,[s[73]||(s[73]=e("a",{id:"YAXArrays.Datasets.savedataset-Tuple{Dataset}",href:"#YAXArrays.Datasets.savedataset-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[74]||(s[74]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=l('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),e("details",O,[e("summary",null,[s[76]||(s[76]=e("a",{id:"YAXArrays.Datasets.to_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.to_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.to_dataset")],-1)),s[77]||(s[77]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=l('
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

',3))]),s[160]||(s[160]=e("h2",{id:"Internal-API",tabindex:"-1"},[a("Internal API "),e("a",{class:"header-anchor",href:"#Internal-API","aria-label":'Permalink to "Internal API {#Internal-API}"'},"​")],-1)),e("details",I,[e("summary",null,[s[79]||(s[79]=e("a",{id:"YAXArrays.YAXDefaults",href:"#YAXArrays.YAXDefaults"},[e("span",{class:"jlbinding"},"YAXArrays.YAXDefaults")],-1)),s[80]||(s[80]=a()),i(t,{type:"info",class:"jlObjectType jlConstant",text:"Constant"})]),s[81]||(s[81]=l('

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

',3))]),e("details",J,[e("summary",null,[s[82]||(s[82]=e("a",{id:"YAXArrays.findAxis-Tuple{Any, Any}",href:"#YAXArrays.findAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.findAxis")],-1)),s[83]||(s[83]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=l('
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',7))]),e("details",P,[e("summary",null,[s[85]||(s[85]=e("a",{id:"YAXArrays.getOutAxis-NTuple{5, Any}",href:"#YAXArrays.getOutAxis-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getOutAxis")],-1)),s[86]||(s[86]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=l('
julia
getOutAxis

source

',2))]),e("details",q,[e("summary",null,[s[88]||(s[88]=e("a",{id:"YAXArrays.get_descriptor-Tuple{String}",href:"#YAXArrays.get_descriptor-Tuple{String}"},[e("span",{class:"jlbinding"},"YAXArrays.get_descriptor")],-1)),s[89]||(s[89]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[90]||(s[90]=l('
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

',3))]),e("details",z,[e("summary",null,[s[91]||(s[91]=e("a",{id:"YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}",href:"#YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.match_axis")],-1)),s[92]||(s[92]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[93]||(s[93]=l(`
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
+open_mfdataset(DD.DimArray(files, DD.Dim{:NewDim}(["a","b","c"])))

source

`,6))]),e("details",M,[e("summary",null,[s[70]||(s[70]=e("a",{id:"YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}",href:"#YAXArrays.Datasets.savecube-Tuple{Any, AbstractString}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savecube")],-1)),s[71]||(s[71]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=l('
julia
savecube(cube,name::String)

Save a YAXArray to the path.

Extended Help

The keyword arguments are:

  • name:

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • max_cache: The number of bits that are used as cache for the data handling.

  • backend: The backend, that is used to save the data. Falls back to searching the backend according to the extension of the path.

  • driver: The same setting as backend.

  • overwrite::Bool=false overwrite cube if it already exists

source

',6))]),e("details",B,[e("summary",null,[s[73]||(s[73]=e("a",{id:"YAXArrays.Datasets.savedataset-Tuple{Dataset}",href:"#YAXArrays.Datasets.savedataset-Tuple{Dataset}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.savedataset")],-1)),s[74]||(s[74]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=l('
julia
savedataset(ds::Dataset; path= "", persist=nothing, overwrite=false, append=false, skeleton=false, backend=:all, driver=backend, max_cache=5e8, writefac=4.0)

Saves a Dataset into a file at path with the format given by driver, i.e., driver=:netcdf or driver=:zarr.

Warning

overwrite=true, deletes ALL your data and it will create a new file.

source

',4))]),e("details",O,[e("summary",null,[s[76]||(s[76]=e("a",{id:"YAXArrays.Datasets.to_dataset-Tuple{Any}",href:"#YAXArrays.Datasets.to_dataset-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.to_dataset")],-1)),s[77]||(s[77]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=l('
julia
to_dataset(c;datasetaxis = "Variables", layername = "layer")

Convert a Data Cube into a Dataset. It is possible to treat one of the Cube's axes as a datasetaxis i.e. the cube will be split into different parts that become variables in the Dataset. If no such axis is specified or found, there will only be a single variable in the dataset with the name layername.

source

',3))]),s[160]||(s[160]=e("h2",{id:"Internal-API",tabindex:"-1"},[a("Internal API "),e("a",{class:"header-anchor",href:"#Internal-API","aria-label":'Permalink to "Internal API {#Internal-API}"'},"​")],-1)),e("details",I,[e("summary",null,[s[79]||(s[79]=e("a",{id:"YAXArrays.YAXDefaults",href:"#YAXArrays.YAXDefaults"},[e("span",{class:"jlbinding"},"YAXArrays.YAXDefaults")],-1)),s[80]||(s[80]=a()),i(t,{type:"info",class:"jlObjectType jlConstant",text:"Constant"})]),s[81]||(s[81]=l('

Default configuration for YAXArrays, has the following fields:

  • workdir[]::String = "./" The default location for temporary cubes.

  • recal[]::Bool = false set to true if you want @loadOrGenerate to always recalculate the results.

  • chunksize[]::Any = :input Set the default output chunksize.

  • max_cache[]::Float64 = 1e8 The maximum cache used by mapCube.

  • cubedir[]::"" the default location for Cube() without an argument.

  • subsetextensions::Array{Any} = [] List of registered functions, that convert subsetting input into dimension boundaries.

source

',3))]),e("details",J,[e("summary",null,[s[82]||(s[82]=e("a",{id:"YAXArrays.findAxis-Tuple{Any, Any}",href:"#YAXArrays.findAxis-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.findAxis")],-1)),s[83]||(s[83]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=l('
julia
findAxis(desc, c)

Internal function

Extended Help

Given an Axis description and a cube return the index of the Axis.

The Axis description can be:

  • the name as a string or symbol.

  • an Axis object

source

',7))]),e("details",P,[e("summary",null,[s[85]||(s[85]=e("a",{id:"YAXArrays.getOutAxis-NTuple{5, Any}",href:"#YAXArrays.getOutAxis-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.getOutAxis")],-1)),s[86]||(s[86]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=l('
julia
getOutAxis

source

',2))]),e("details",q,[e("summary",null,[s[88]||(s[88]=e("a",{id:"YAXArrays.get_descriptor-Tuple{String}",href:"#YAXArrays.get_descriptor-Tuple{String}"},[e("span",{class:"jlbinding"},"YAXArrays.get_descriptor")],-1)),s[89]||(s[89]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[90]||(s[90]=l('
julia
get_descriptor(a)

Get the descriptor of an Axis. This is used to dispatch on the descriptor.

source

',3))]),e("details",z,[e("summary",null,[s[91]||(s[91]=e("a",{id:"YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}",href:"#YAXArrays.match_axis-Tuple{YAXArrays.ByName, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.match_axis")],-1)),s[92]||(s[92]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[93]||(s[93]=l(`
julia
match_axis

Internal function

Extended Help

Match the Axis based on the AxisDescriptor.
 This is used to find different axes and to make certain axis description the same.
-For example to disregard differences of captialisation.

source

`,5))]),e("details",N,[e("summary",null,[s[94]||(s[94]=e("a",{id:"YAXArrays.Cubes.CleanMe",href:"#YAXArrays.Cubes.CleanMe"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.CleanMe")],-1)),s[95]||(s[95]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[96]||(s[96]=l('
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

',3))]),e("details",S,[e("summary",null,[s[97]||(s[97]=e("a",{id:"YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}",href:"#YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.clean")],-1)),s[98]||(s[98]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[99]||(s[99]=l('
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

',3))]),e("details",R,[e("summary",null,[s[100]||(s[100]=e("a",{id:"YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}",href:"#YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.copydata")],-1)),s[101]||(s[101]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[102]||(s[102]=l('
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

',3))]),e("details",V,[e("summary",null,[s[103]||(s[103]=e("a",{id:"YAXArrays.Cubes.optifunc-NTuple{7, Any}",href:"#YAXArrays.Cubes.optifunc-NTuple{7, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.optifunc")],-1)),s[104]||(s[104]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[105]||(s[105]=l('
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

',4))]),e("details",G,[e("summary",null,[s[106]||(s[106]=e("a",{id:"YAXArrays.DAT.DATConfig",href:"#YAXArrays.DAT.DATConfig"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.DATConfig")],-1)),s[107]||(s[107]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[108]||(s[108]=l('

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

',3))]),e("details",W,[e("summary",null,[s[109]||(s[109]=e("a",{id:"YAXArrays.DAT.InputCube",href:"#YAXArrays.DAT.InputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InputCube")],-1)),s[110]||(s[110]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[111]||(s[111]=l('

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

',3))]),e("details",U,[e("summary",null,[s[112]||(s[112]=e("a",{id:"YAXArrays.DAT.OutputCube",href:"#YAXArrays.DAT.OutputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutputCube")],-1)),s[113]||(s[113]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[114]||(s[114]=l('

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

',4))]),e("details",K,[e("summary",null,[s[115]||(s[115]=e("a",{id:"YAXArrays.DAT.YAXColumn",href:"#YAXArrays.DAT.YAXColumn"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.YAXColumn")],-1)),s[116]||(s[116]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[117]||(s[117]=l('
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

',4))]),e("details",$,[e("summary",null,[s[118]||(s[118]=e("a",{id:"YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}",href:"#YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cmpcachmisses")],-1)),s[119]||(s[119]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=e("p",null,"Function that compares two cache miss specifiers by their importance",-1)),s[121]||(s[121]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L958-L960",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H,[e("summary",null,[s[122]||(s[122]=e("a",{id:"YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}",href:"#YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getFrontPerm")],-1)),s[123]||(s[123]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[124]||(s[124]=e("p",null,"Calculate an axis permutation that brings the wanted dimensions to the front",-1)),s[125]||(s[125]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L1203",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Z,[e("summary",null,[s[126]||(s[126]=e("a",{id:"YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}",href:"#YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getLoopCacheSize")],-1)),s[127]||(s[127]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=e("p",null,"Calculate optimal Cache size to DAT operation",-1)),s[129]||(s[129]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DAT/DAT.jl#L1057",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q,[e("summary",null,[s[130]||(s[130]=e("a",{id:"YAXArrays.DAT.getOuttype-Tuple{Int64, Any}",href:"#YAXArrays.DAT.getOuttype-Tuple{Int64, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getOuttype")],-1)),s[131]||(s[131]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[132]||(s[132]=l('
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

',4))]),e("details",_,[e("summary",null,[s[133]||(s[133]=e("a",{id:"YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}",href:"#YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getloopchunks")],-1)),s[134]||(s[134]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[135]||(s[135]=l('
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.\nThis computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

',4))]),e("details",ss,[e("summary",null,[s[136]||(s[136]=e("a",{id:"YAXArrays.DAT.permuteloopaxes-Tuple{Any}",href:"#YAXArrays.DAT.permuteloopaxes-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.permuteloopaxes")],-1)),s[137]||(s[137]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[138]||(s[138]=l('
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

',4))]),e("details",es,[e("summary",null,[s[139]||(s[139]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[140]||(s[140]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[141]||(s[141]=l('
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',6))]),e("details",as,[e("summary",null,[s[142]||(s[142]=e("a",{id:"YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}",href:"#YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.collectfromhandle")],-1)),s[143]||(s[143]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[144]||(s[144]=e("p",null,"Extracts a YAXArray from a dataset handle that was just created from a arrayinfo",-1)),s[145]||(s[145]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L561-L563",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ts,[e("summary",null,[s[146]||(s[146]=e("a",{id:"YAXArrays.Datasets.createdataset-Tuple{Any, Any}",href:"#YAXArrays.Datasets.createdataset-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.createdataset")],-1)),s[147]||(s[147]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=l('
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

',5))]),e("details",is,[e("summary",null,[s[149]||(s[149]=e("a",{id:"YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}",href:"#YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.getarrayinfo")],-1)),s[150]||(s[150]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[151]||(s[151]=e("p",null,"Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair",-1)),s[152]||(s[152]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L530-L532",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ls,[e("summary",null,[s[153]||(s[153]=e("a",{id:"YAXArrays.Datasets.testrange-Tuple{Any}",href:"#YAXArrays.Datasets.testrange-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.testrange")],-1)),s[154]||(s[154]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=e("p",null,"Test if data in x can be approximated by a step range",-1)),s[156]||(s[156]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/19da0c79301e7457f37deb749b1c9a0a0acd153c/src/DatasetAPI/Datasets.jl#L312",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const bs=n(d,[["render",ns]]);export{us as __pageData,bs as default}; +For example to disregard differences of captialisation.

source

`,5))]),e("details",N,[e("summary",null,[s[94]||(s[94]=e("a",{id:"YAXArrays.Cubes.CleanMe",href:"#YAXArrays.Cubes.CleanMe"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.CleanMe")],-1)),s[95]||(s[95]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[96]||(s[96]=l('
julia
mutable struct CleanMe

Struct which describes data paths and their persistency. Non-persistend paths/files are removed at finalize step

source

',3))]),e("details",S,[e("summary",null,[s[97]||(s[97]=e("a",{id:"YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}",href:"#YAXArrays.Cubes.clean-Tuple{YAXArrays.Cubes.CleanMe}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.clean")],-1)),s[98]||(s[98]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[99]||(s[99]=l('
julia
clean(c::CleanMe)

finalizer function for CleanMe struct. The main process removes all directories/files which are not persistent.

source

',3))]),e("details",R,[e("summary",null,[s[100]||(s[100]=e("a",{id:"YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}",href:"#YAXArrays.Cubes.copydata-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.copydata")],-1)),s[101]||(s[101]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[102]||(s[102]=l('
julia
copydata(outar, inar, copybuf)

Internal function which copies the data from the input inar into the output outar at the copybuf positions.

source

',3))]),e("details",V,[e("summary",null,[s[103]||(s[103]=e("a",{id:"YAXArrays.Cubes.optifunc-NTuple{7, Any}",href:"#YAXArrays.Cubes.optifunc-NTuple{7, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.optifunc")],-1)),s[104]||(s[104]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[105]||(s[105]=l('
julia
optifunc(s, maxbuf, incs, outcs, insize, outsize, writefac)

Internal

This function is going to be minimized to detect the best possible chunk setting for the rechunking of the data.

source

',4))]),e("details",G,[e("summary",null,[s[106]||(s[106]=e("a",{id:"YAXArrays.DAT.DATConfig",href:"#YAXArrays.DAT.DATConfig"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.DATConfig")],-1)),s[107]||(s[107]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[108]||(s[108]=l('

Configuration object of a DAT process. This holds all necessary information to perform the calculations. It contains the following fields:

  • incubes::NTuple{NIN, YAXArrays.DAT.InputCube} where NIN: The input data cubes

  • outcubes::NTuple{NOUT, YAXArrays.DAT.OutputCube} where NOUT: The output data cubes

  • allInAxes::Vector: List of all axes of the input cubes

  • LoopAxes::Vector: List of axes that are looped through

  • ispar::Bool: Flag whether the computation is parallelized

  • loopcachesize::Vector{Int64}:

  • allow_irregular_chunks::Bool:

  • max_cache::Any: Maximal size of the in memory cache

  • fu::Any: Inner function which is computed

  • inplace::Bool: Flag whether the computation happens in place

  • include_loopvars::Bool:

  • ntr::Any:

  • do_gc::Bool: Flag if GC should be called explicitly. Probably necessary for many runs in Julia 1.9

  • addargs::Any: Additional arguments for the inner function

  • kwargs::Any: Additional keyword arguments for the inner function

source

',3))]),e("details",W,[e("summary",null,[s[109]||(s[109]=e("a",{id:"YAXArrays.DAT.InputCube",href:"#YAXArrays.DAT.InputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.InputCube")],-1)),s[110]||(s[110]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[111]||(s[111]=l('

Internal representation of an input cube for DAT operations

  • cube: The input data

  • desc: The input description given by the user/registration

  • axesSmall: List of axes that were actually selected through the description

  • icolon

  • colonperm

  • loopinds: Indices of loop axes that this cube does not contain, i.e. broadcasts

  • cachesize: Number of elements to keep in cache along each axis

  • window

  • iwindow

  • windowloopinds

  • iall

source

',3))]),e("details",U,[e("summary",null,[s[112]||(s[112]=e("a",{id:"YAXArrays.DAT.OutputCube",href:"#YAXArrays.DAT.OutputCube"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.OutputCube")],-1)),s[113]||(s[113]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[114]||(s[114]=l('

Internal representation of an output cube for DAT operations

Fields

  • cube: The actual outcube cube, once it is generated

  • cube_unpermuted: The unpermuted output cube

  • desc: The description of the output axes as given by users or registration

  • axesSmall: The list of output axes determined through the description

  • allAxes: List of all the axes of the cube

  • loopinds: Index of the loop axes that are broadcasted for this output cube

  • innerchunks

  • outtype: Elementtype of the outputcube

source

',4))]),e("details",K,[e("summary",null,[s[115]||(s[115]=e("a",{id:"YAXArrays.DAT.YAXColumn",href:"#YAXArrays.DAT.YAXColumn"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.YAXColumn")],-1)),s[116]||(s[116]=a()),i(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[117]||(s[117]=l('
julia
YAXColumn

A struct representing a single column of a YAXArray partitioned Table # Fields

  • inarBC

  • inds

source

',4))]),e("details",$,[e("summary",null,[s[118]||(s[118]=e("a",{id:"YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}",href:"#YAXArrays.DAT.cmpcachmisses-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.cmpcachmisses")],-1)),s[119]||(s[119]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=e("p",null,"Function that compares two cache miss specifiers by their importance",-1)),s[121]||(s[121]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L958-L960",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H,[e("summary",null,[s[122]||(s[122]=e("a",{id:"YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}",href:"#YAXArrays.DAT.getFrontPerm-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getFrontPerm")],-1)),s[123]||(s[123]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[124]||(s[124]=e("p",null,"Calculate an axis permutation that brings the wanted dimensions to the front",-1)),s[125]||(s[125]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L1203",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Z,[e("summary",null,[s[126]||(s[126]=e("a",{id:"YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}",href:"#YAXArrays.DAT.getLoopCacheSize-NTuple{5, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getLoopCacheSize")],-1)),s[127]||(s[127]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=e("p",null,"Calculate optimal Cache size to DAT operation",-1)),s[129]||(s[129]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DAT/DAT.jl#L1057",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q,[e("summary",null,[s[130]||(s[130]=e("a",{id:"YAXArrays.DAT.getOuttype-Tuple{Int64, Any}",href:"#YAXArrays.DAT.getOuttype-Tuple{Int64, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getOuttype")],-1)),s[131]||(s[131]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[132]||(s[132]=l('
julia
getOuttype(outtype, cdata)

Internal function

Get the element type for the output cube

source

',4))]),e("details",_,[e("summary",null,[s[133]||(s[133]=e("a",{id:"YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}",href:"#YAXArrays.DAT.getloopchunks-Tuple{YAXArrays.DAT.DATConfig}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.getloopchunks")],-1)),s[134]||(s[134]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[135]||(s[135]=l('
julia
getloopchunks(dc::DATConfig)

Internal function

Returns the chunks that can be looped over toghether for all dimensions.\nThis computation of the size of the chunks is handled by [`DiskArrays.approx_chunksize`](@ref)

source

',4))]),e("details",ss,[e("summary",null,[s[136]||(s[136]=e("a",{id:"YAXArrays.DAT.permuteloopaxes-Tuple{Any}",href:"#YAXArrays.DAT.permuteloopaxes-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.DAT.permuteloopaxes")],-1)),s[137]||(s[137]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[138]||(s[138]=l('
julia
permuteloopaxes(dc)

Internal function

Permute the dimensions of the cube, so that the axes that are looped through are in the first positions. This is necessary for a faster looping through the data.

source

',4))]),e("details",es,[e("summary",null,[s[139]||(s[139]=e("a",{id:"YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}",href:"#YAXArrays.Cubes.setchunks-Tuple{Dataset, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Cubes.setchunks")],-1)),s[140]||(s[140]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[141]||(s[141]=l('
julia
setchunks(c::Dataset,chunks)

Resets the chunks of all or a subset YAXArrays in the dataset and returns a new Dataset. Note that this will not change the chunking of the underlying data itself, it will just make the data "look" like it had a different chunking. If you need a persistent on-disk representation of this chunking, use savedataset on the resulting array. The chunks argument can take one of the following forms:

  • a NamedTuple or AbstractDict mapping from variable name to a description of the desired variable chunks

  • a NamedTuple or AbstractDict mapping from dimension name to a description of the desired variable chunks

  • a description of the desired variable chunks applied to all members of the Dataset

where a description of the desired variable chunks can take one of the following forms:

  • a DiskArrays.GridChunks object

  • a tuple specifying the chunk size along each dimension

  • an AbstractDict or NamedTuple mapping one or more axis names to chunk sizes

source

',6))]),e("details",as,[e("summary",null,[s[142]||(s[142]=e("a",{id:"YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}",href:"#YAXArrays.Datasets.collectfromhandle-Tuple{Any, Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.collectfromhandle")],-1)),s[143]||(s[143]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[144]||(s[144]=e("p",null,"Extracts a YAXArray from a dataset handle that was just created from a arrayinfo",-1)),s[145]||(s[145]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L561-L563",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ts,[e("summary",null,[s[146]||(s[146]=e("a",{id:"YAXArrays.Datasets.createdataset-Tuple{Any, Any}",href:"#YAXArrays.Datasets.createdataset-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.createdataset")],-1)),s[147]||(s[147]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=l('
julia
function createdataset(DS::Type,axlist; kwargs...)

Creates a new dataset with axes specified in axlist. Each axis must be a subtype of CubeAxis. A new empty Zarr array will be created and can serve as a sink for mapCube operations.

Keyword arguments

  • path="" location where the new cube is stored

  • T=Union{Float32,Missing} data type of the target cube

  • chunksize = ntuple(i->length(axlist[i]),length(axlist)) chunk sizes of the array

  • chunkoffset = ntuple(i->0,length(axlist)) offsets of the chunks

  • persist::Bool=true shall the disk data be garbage-collected when the cube goes out of scope?

  • overwrite::Bool=false overwrite cube if it already exists

  • properties=Dict{String,Any}() additional cube properties

  • globalproperties=Dict{String,Any} global attributes to be added to the dataset

  • fillvalue= T>:Missing ? defaultfillval(Base.nonmissingtype(T)) : nothing fill value

  • datasetaxis="Variables" special treatment of a categorical axis that gets written into separate zarr arrays

  • layername="layer" Fallback name of the variable stored in the dataset if no datasetaxis is found

source

',5))]),e("details",is,[e("summary",null,[s[149]||(s[149]=e("a",{id:"YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}",href:"#YAXArrays.Datasets.getarrayinfo-Tuple{Any, Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.getarrayinfo")],-1)),s[150]||(s[150]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[151]||(s[151]=e("p",null,"Extract necessary information to create a YAXArrayBase dataset from a name and YAXArray pair",-1)),s[152]||(s[152]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L530-L532",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",ls,[e("summary",null,[s[153]||(s[153]=e("a",{id:"YAXArrays.Datasets.testrange-Tuple{Any}",href:"#YAXArrays.Datasets.testrange-Tuple{Any}"},[e("span",{class:"jlbinding"},"YAXArrays.Datasets.testrange")],-1)),s[154]||(s[154]=a()),i(t,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=e("p",null,"Test if data in x can be approximated by a step range",-1)),s[156]||(s[156]=e("p",null,[e("a",{href:"https://github.com/JuliaDataCubes/YAXArrays.jl/blob/149d6c81d1a6301bf4a49403cf1afb63534c1319/src/DatasetAPI/Datasets.jl#L312",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const bs=n(d,[["render",ns]]);export{cs as __pageData,bs as default}; diff --git a/previews/PR484/assets/app.DVCjFPlA.js b/previews/PR484/assets/app.WKPfegVc.js similarity index 95% rename from previews/PR484/assets/app.DVCjFPlA.js rename to previews/PR484/assets/app.WKPfegVc.js index 8ecb4a45..aa712f10 100644 --- a/previews/PR484/assets/app.DVCjFPlA.js +++ b/previews/PR484/assets/app.WKPfegVc.js @@ -1 +1 @@ -import{R as p}from"./chunks/theme.UIEISKWu.js";import{R as o,a6 as u,a7 as c,a8 as l,a9 as f,aa as d,ab as m,ac as h,ad as g,ae as A,af as v,d as P,u as R,v as w,s as y,ag as C,ah as b,ai as E,a5 as S}from"./chunks/framework.Bl-lyKae.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; +import{R as p}from"./chunks/theme.JyDuiASx.js";import{R as o,a6 as u,a7 as c,a8 as l,a9 as f,aa as d,ab as m,ac as h,ad as g,ae as A,af as v,d as P,u as R,v as w,s as y,ag as C,ah as b,ai as E,a5 as S}from"./chunks/framework.Bl-lyKae.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; diff --git a/previews/PR484/assets/chunks/@localSearchIndexroot.CjXaw2qO.js b/previews/PR484/assets/chunks/@localSearchIndexroot.CjXaw2qO.js deleted file mode 100644 index 3eb8e0e5..00000000 --- a/previews/PR484/assets/chunks/@localSearchIndexroot.CjXaw2qO.js +++ /dev/null @@ -1 +0,0 @@ -const e='{"documentCount":115,"nextId":115,"documentIds":{"0":"/YAXArrays.jl/previews/PR484/UserGuide/cache.html#Caching-YAXArrays","1":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunk-YAXArrays","2":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunking-YAXArrays","3":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunking-Datasets","4":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-Chunks-by-Axis","5":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-chunking-by-Variable","6":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-chunking-for-all-variables","7":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#Combine-YAXArrays","8":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#cat-along-an-existing-dimension","9":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#concatenatecubes-to-a-new-dimension","10":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Compute-YAXArrays","11":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Modify-elements-of-a-YAXArray","12":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#arithmetics","13":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#map","14":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#mapslices","15":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#mapCube","16":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Operations-over-several-YAXArrays","17":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#OutDims-and-YAXArray-Properties","18":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#One-InDims-to-many-OutDims","19":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Many-InDims-to-many-OutDims","20":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Specify-path-in-OutDims","21":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Different-InDims-names","22":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Creating-a-vector-array","23":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Distributed-Computation","24":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-YAXArrays","25":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-Base.Array","26":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-Raster","27":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-DimArray","28":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-YAXArrays-and-Datasets","29":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-a-YAXArray","30":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-a-Dataset","31":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Group-YAXArrays-and-Datasets","32":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Seasonal-Averages-from-Time-Series-of-Monthly-Means","33":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Download-the-data","34":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#GroupBy:-seasons","35":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#dropdims","36":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#seasons","37":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#GroupBy:-weight","38":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#weights","39":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#weighted-seasons","40":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-YAXArrays-and-Datasets","41":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#open-dataset","42":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-Zarr","43":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-NetCDF","44":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-GDAL-(GeoTIFF,-GeoJSON)","45":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Load-data-into-memory","46":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#readcubedata","47":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#open-mfdataset","48":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#along-a-new-dimension","49":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#along-a-existing-dimension","50":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Frequently-Asked-Questions-(FAQ)","51":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Extract-the-axes-names-from-a-Cube","52":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#rebuild","53":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Obtain-values-from-axes-and-data-from-the-cube","54":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-concatenate-cubes","55":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-subset-a-YAXArray-(-Cube-)-or-Dataset?","56":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-YAXArray","57":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset","58":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset-whose-variables-share-all-their-dimensions","59":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset-whose-variables-share-some-but-not-all-of-their-dimensions","60":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-apply-map-algebra?","61":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-use-the-CubeTable-function?","62":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-assign-variable-names-to-YAXArrays-in-a-Dataset","63":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#One-variable-name","64":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Multiple-variable-names","65":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Ho-do-I-construct-a-Dataset-from-a-TimeArray","66":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Create-a-YAXArray-with-unions-containing-Strings","67":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-YAXArrays-and-Datasets","68":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-a-YAXArray","69":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-elements","70":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-ranges","71":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Closed-and-open-intervals","72":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Get-a-dimension","73":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#types","74":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#yaxarray","75":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#dataset","76":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#(Data)-Cube","77":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#dimensions","78":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#Lon,-Lat,-time","79":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-YAXArrays-and-Datasets","80":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-Zarr","81":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#zarr-compression","82":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-NetCDF","83":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#netcdf-compression","84":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Overwrite-a-Dataset","85":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Append-to-a-Dataset","86":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Save-Skeleton","87":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Update-values-of-dataset","88":"/YAXArrays.jl/previews/PR484/api.html#API-Reference","89":"/YAXArrays.jl/previews/PR484/api.html#Public-API","90":"/YAXArrays.jl/previews/PR484/api.html#Internal-API","91":"/YAXArrays.jl/previews/PR484/development/contribute.html#Contribute-to-YAXArrays.jl","92":"/YAXArrays.jl/previews/PR484/development/contribute.html#Contribute-to-Documentation","93":"/YAXArrays.jl/previews/PR484/development/contribute.html#Build-docs-locally","94":"/YAXArrays.jl/previews/PR484/get_started.html#Getting-Started","95":"/YAXArrays.jl/previews/PR484/get_started.html#installation","96":"/YAXArrays.jl/previews/PR484/get_started.html#quickstart","97":"/YAXArrays.jl/previews/PR484/get_started.html#updates","98":"/YAXArrays.jl/previews/PR484/#How-to-Install-YAXArrays.jl?","99":"/YAXArrays.jl/previews/PR484/#Want-interoperability?","100":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Mean-Seasonal-Cycle-for-a-single-pixel","101":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Define-the-cube","102":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Plot-results:-mean-seasonal-cycle","103":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Plotting-maps","104":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Heatmap-plot","105":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Wintri-Projection","106":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Moll-projection","107":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#3D-sphere-plot","108":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#algebraofgraphics-jl","109":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#faceting","110":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#analysis","111":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Other-tutorials","112":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#General-overview-of-the-functionality-of-YAXArrays","113":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Table-style-iteration-over-YAXArrays","114":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Combining-multiple-tiff-files-into-a-zarr-based-datacube"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[2,1,86],"1":[2,1,58],"2":[2,2,57],"3":[2,2,9],"4":[4,4,76],"5":[4,4,76],"6":[5,4,81],"7":[2,1,31],"8":[5,2,82],"9":[5,2,92],"10":[2,1,119],"11":[5,2,30],"12":[1,2,72],"13":[1,2,120],"14":[1,2,88],"15":[1,2,22],"16":[4,3,211],"17":[4,3,100],"18":[5,7,128],"19":[5,7,98],"20":[4,7,90],"21":[3,3,150],"22":[4,3,245],"23":[2,2,138],"24":[2,1,52],"25":[3,2,85],"26":[2,2,41],"27":[2,2,122],"28":[4,1,14],"29":[3,4,109],"30":[3,4,45],"31":[4,1,32],"32":[8,4,35],"33":[3,4,131],"34":[2,4,170],"35":[1,6,101],"36":[1,6,48],"37":[2,4,111],"38":[1,6,84],"39":[2,6,348],"40":[4,1,14],"41":[2,4,75],"42":[2,6,187],"43":[2,6,251],"44":[5,6,90],"45":[4,6,42],"46":[1,10,142],"47":[2,4,94],"48":[4,6,87],"49":[4,6,93],"50":[5,1,19],"51":[7,5,77],"52":[1,11,90],"53":[8,5,76],"54":[5,5,90],"55":[10,5,33],"56":[3,14,142],"57":[3,14,18],"58":[9,14,69],"59":[13,14,158],"60":[7,5,113],"61":[8,5,168],"62":[11,5,1],"63":[3,15,24],"64":[3,15,59],"65":[8,5,139],"66":[7,5,79],"67":[4,1,165],"68":[3,4,105],"69":[2,4,115],"70":[2,4,129],"71":[4,4,143],"72":[3,4,71],"73":[1,1,16],"74":[1,1,113],"75":[1,1,78],"76":[3,1,70],"77":[1,1,32],"78":[3,2,100],"79":[4,1,146],"80":[2,4,19],"81":[2,5,52],"82":[2,4,20],"83":[2,5,44],"84":[3,4,73],"85":[4,4,157],"86":[2,4,154],"87":[4,4,93],"88":[2,1,10],"89":[2,2,597],"90":[2,2,463],"91":[4,1,15],"92":[3,4,40],"93":[3,5,75],"94":[2,1,1],"95":[1,2,34],"96":[1,2,199],"97":[1,2,49],"98":[6,1,37],"99":[3,1,21],"100":[7,1,73],"101":[3,7,133],"102":[5,7,48],"103":[2,1,136],"104":[2,2,21],"105":[2,1,47],"106":[2,2,34],"107":[3,2,48],"108":[2,2,158],"109":[1,4,170],"110":[1,4,39],"111":[2,1,49],"112":[6,2,12],"113":[5,2,38],"114":[9,2,1]},"averageFieldLength":[3.4260869565217393,3.921739130434781,92.69565217391305],"storedFields":{"0":{"title":"Caching YAXArrays","titles":[]},"1":{"title":"Chunk YAXArrays","titles":[]},"2":{"title":"Chunking YAXArrays","titles":["Chunk YAXArrays"]},"3":{"title":"Chunking Datasets","titles":["Chunk YAXArrays"]},"4":{"title":"Set Chunks by Axis","titles":["Chunk YAXArrays","Chunking Datasets"]},"5":{"title":"Set chunking by Variable","titles":["Chunk YAXArrays","Chunking Datasets"]},"6":{"title":"Set chunking for all variables","titles":["Chunk YAXArrays","Chunking Datasets"]},"7":{"title":"Combine YAXArrays","titles":[]},"8":{"title":"cat along an existing dimension","titles":["Combine YAXArrays"]},"9":{"title":"concatenatecubes to a new dimension","titles":["Combine YAXArrays"]},"10":{"title":"Compute YAXArrays","titles":[]},"11":{"title":"Modify elements of a YAXArray","titles":["Compute YAXArrays"]},"12":{"title":"Arithmetics","titles":["Compute YAXArrays"]},"13":{"title":"map","titles":["Compute YAXArrays"]},"14":{"title":"mapslices","titles":["Compute YAXArrays"]},"15":{"title":"mapCube","titles":["Compute YAXArrays"]},"16":{"title":"Operations over several YAXArrays","titles":["Compute YAXArrays","mapCube"]},"17":{"title":"OutDims and YAXArray Properties","titles":["Compute YAXArrays","mapCube"]},"18":{"title":"One InDims to many OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"19":{"title":"Many InDims to many OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"20":{"title":"Specify path in OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"21":{"title":"Different InDims names","titles":["Compute YAXArrays","mapCube"]},"22":{"title":"Creating a vector array","titles":["Compute YAXArrays","mapCube"]},"23":{"title":"Distributed Computation","titles":["Compute YAXArrays"]},"24":{"title":"Convert YAXArrays","titles":[]},"25":{"title":"Convert Base.Array","titles":["Convert YAXArrays"]},"26":{"title":"Convert Raster","titles":["Convert YAXArrays"]},"27":{"title":"Convert DimArray","titles":["Convert YAXArrays"]},"28":{"title":"Create YAXArrays and Datasets","titles":[]},"29":{"title":"Create a YAXArray","titles":["Create YAXArrays and Datasets"]},"30":{"title":"Create a Dataset","titles":["Create YAXArrays and Datasets"]},"31":{"title":"Group YAXArrays and Datasets","titles":[]},"32":{"title":"Seasonal Averages from Time Series of Monthly Means","titles":["Group YAXArrays and Datasets"]},"33":{"title":"Download the data","titles":["Group YAXArrays and Datasets"]},"34":{"title":"GroupBy: seasons","titles":["Group YAXArrays and Datasets"]},"35":{"title":"dropdims","titles":["Group YAXArrays and Datasets","GroupBy: seasons"]},"36":{"title":"seasons","titles":["Group YAXArrays and Datasets","GroupBy: seasons"]},"37":{"title":"GroupBy: weight","titles":["Group YAXArrays and Datasets"]},"38":{"title":"weights","titles":["Group YAXArrays and Datasets","GroupBy: weight"]},"39":{"title":"weighted seasons","titles":["Group YAXArrays and Datasets","GroupBy: weight"]},"40":{"title":"Read YAXArrays and Datasets","titles":[]},"41":{"title":"open_dataset","titles":["Read YAXArrays and Datasets"]},"42":{"title":"Read Zarr","titles":["Read YAXArrays and Datasets","open_dataset"]},"43":{"title":"Read NetCDF","titles":["Read YAXArrays and Datasets","open_dataset"]},"44":{"title":"Read GDAL (GeoTIFF, GeoJSON)","titles":["Read YAXArrays and Datasets","open_dataset"]},"45":{"title":"Load data into memory","titles":["Read YAXArrays and Datasets","open_dataset"]},"46":{"title":"readcubedata","titles":["Read YAXArrays and Datasets","open_dataset","Load data into memory"]},"47":{"title":"open_mfdataset","titles":["Read YAXArrays and Datasets"]},"48":{"title":"along a new dimension","titles":["Read YAXArrays and Datasets","open_mfdataset"]},"49":{"title":"along a existing dimension","titles":["Read YAXArrays and Datasets","open_mfdataset"]},"50":{"title":"Frequently Asked Questions (FAQ)","titles":[]},"51":{"title":"Extract the axes names from a Cube","titles":["Frequently Asked Questions (FAQ)"]},"52":{"title":"rebuild","titles":["Frequently Asked Questions (FAQ)","Extract the axes names from a Cube"]},"53":{"title":"Obtain values from axes and data from the cube","titles":["Frequently Asked Questions (FAQ)"]},"54":{"title":"How do I concatenate cubes","titles":["Frequently Asked Questions (FAQ)"]},"55":{"title":"How do I subset a YAXArray ( Cube ) or Dataset?","titles":["Frequently Asked Questions (FAQ)"]},"56":{"title":"Subsetting a YAXArray","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?"]},"57":{"title":"Subsetting a Dataset","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?"]},"58":{"title":"Subsetting a Dataset whose variables share all their dimensions","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?","Subsetting a Dataset"]},"59":{"title":"Subsetting a Dataset whose variables share some but not all of their dimensions","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?","Subsetting a Dataset"]},"60":{"title":"How do I apply map algebra?","titles":["Frequently Asked Questions (FAQ)"]},"61":{"title":"How do I use the CubeTable function?","titles":["Frequently Asked Questions (FAQ)"]},"62":{"title":"How do I assign variable names to YAXArrays in a Dataset","titles":["Frequently Asked Questions (FAQ)"]},"63":{"title":"One variable name","titles":["Frequently Asked Questions (FAQ)","How do I assign variable names to YAXArrays in a Dataset"]},"64":{"title":"Multiple variable names","titles":["Frequently Asked Questions (FAQ)","How do I assign variable names to YAXArrays in a Dataset"]},"65":{"title":"Ho do I construct a Dataset from a TimeArray","titles":["Frequently Asked Questions (FAQ)"]},"66":{"title":"Create a YAXArray with unions containing Strings","titles":["Frequently Asked Questions (FAQ)"]},"67":{"title":"Select YAXArrays and Datasets","titles":[]},"68":{"title":"Select a YAXArray","titles":["Select YAXArrays and Datasets"]},"69":{"title":"Select elements","titles":["Select YAXArrays and Datasets"]},"70":{"title":"Select ranges","titles":["Select YAXArrays and Datasets"]},"71":{"title":"Closed and open intervals","titles":["Select YAXArrays and Datasets"]},"72":{"title":"Get a dimension","titles":["Select YAXArrays and Datasets"]},"73":{"title":"Types","titles":[]},"74":{"title":"YAXArray","titles":["Types"]},"75":{"title":"Dataset","titles":["Types"]},"76":{"title":"(Data) Cube","titles":["Types"]},"77":{"title":"Dimensions","titles":["Types"]},"78":{"title":"Lon, Lat, time","titles":["Types","Dimensions"]},"79":{"title":"Write YAXArrays and Datasets","titles":[]},"80":{"title":"Write Zarr","titles":["Write YAXArrays and Datasets"]},"81":{"title":"zarr compression","titles":["Write YAXArrays and Datasets","Write Zarr"]},"82":{"title":"Write NetCDF","titles":["Write YAXArrays and Datasets"]},"83":{"title":"netcdf compression","titles":["Write YAXArrays and Datasets","Write NetCDF"]},"84":{"title":"Overwrite a Dataset","titles":["Write YAXArrays and Datasets"]},"85":{"title":"Append to a Dataset","titles":["Write YAXArrays and Datasets"]},"86":{"title":"Save Skeleton","titles":["Write YAXArrays and Datasets"]},"87":{"title":"Update values of dataset","titles":["Write YAXArrays and Datasets"]},"88":{"title":"API Reference","titles":[]},"89":{"title":"Public API","titles":["API Reference"]},"90":{"title":"Internal API","titles":["API Reference"]},"91":{"title":"Contribute to YAXArrays.jl","titles":[]},"92":{"title":"Contribute to Documentation","titles":["Contribute to YAXArrays.jl"]},"93":{"title":"Build docs locally","titles":["Contribute to YAXArrays.jl","Contribute to Documentation"]},"94":{"title":"Getting Started","titles":[]},"95":{"title":"Installation","titles":["Getting Started"]},"96":{"title":"Quickstart","titles":["Getting Started"]},"97":{"title":"Updates","titles":["Getting Started"]},"98":{"title":"How to Install YAXArrays.jl?","titles":[]},"99":{"title":"Want interoperability?","titles":[]},"100":{"title":"Mean Seasonal Cycle for a single pixel","titles":[]},"101":{"title":"Define the cube","titles":["Mean Seasonal Cycle for a single pixel"]},"102":{"title":"Plot results: mean seasonal cycle","titles":["Mean Seasonal Cycle for a single pixel"]},"103":{"title":"Plotting maps","titles":[]},"104":{"title":"Heatmap plot","titles":["Plotting maps"]},"105":{"title":"Wintri Projection","titles":[]},"106":{"title":"Moll projection","titles":["Wintri Projection"]},"107":{"title":"3D sphere plot","titles":["Wintri Projection"]},"108":{"title":"AlgebraOfGraphics.jl","titles":["Wintri Projection"]},"109":{"title":"Faceting","titles":["Wintri Projection","AlgebraOfGraphics.jl"]},"110":{"title":"Analysis","titles":["Wintri Projection","AlgebraOfGraphics.jl"]},"111":{"title":"Other tutorials","titles":[]},"112":{"title":"General overview of the functionality of YAXArrays","titles":["Other tutorials"]},"113":{"title":"Table-style iteration over YAXArrays","titles":["Other tutorials"]},"114":{"title":"Combining multiple tiff files into a zarr based datacube","titles":["Other tutorials"]}},"dirtCount":0,"index":[["δlon",{"2":{"105":1}}],["✘",{"2":{"78":8}}],["✔",{"2":{"78":9}}],["├──────────────────────┴────────────────────────────────────────",{"2":{"66":1}}],["├──────────────────────────┴─────────────────────────",{"2":{"56":1}}],["├──────────────────────────┴────────────────────────────────────",{"2":{"96":1}}],["├──────────────────────────┴─────────────────────────────────────",{"2":{"52":1}}],["├──────────────────────────┴─────────────────────────────────────────────",{"2":{"53":1,"61":1}}],["├──────────────────────────┴────────────────────────────────────────",{"2":{"19":1}}],["├──────────────────────────┴─────────────────────────────────",{"2":{"27":2}}],["├──────────────────────────┴────────────────────────────────",{"2":{"9":1}}],["├───────────────────────────┴───────────────────────────────────",{"2":{"25":1}}],["├───────────────────────────┴────────────────────────────────────────────",{"2":{"22":1,"56":1}}],["├─────────────────────────────┴──────────────────────────────────────────",{"2":{"56":2}}],["├──────────────────────────────┴─────────────────────────────────",{"2":{"29":1}}],["├──────────────────────────────┴─────────────────────────────────────────",{"2":{"16":1,"51":1}}],["├────────────────────────────────┴───────────────────────────────────────",{"2":{"38":1,"109":1}}],["├───────────────────────────────────┴────────────────────────────────────",{"2":{"101":1}}],["├───────────────────────────────────────┴───────────────────────",{"2":{"66":1}}],["├────────────────────────────────────────",{"2":{"56":1}}],["├───────────────────────────────────────────┴────────────────────────────",{"2":{"22":1,"61":1}}],["├──────────────────────────────────────────────┴────────────────",{"2":{"69":1}}],["├────────────────────────────────────────────────┴───────────────────────",{"2":{"37":1,"61":1,"70":1,"71":5}}],["├────────────────────────────────────────────────",{"2":{"27":1,"56":1}}],["├─────────────────────────────────────────────────",{"2":{"21":1}}],["├─────────────────────────────────────────────────┴──────────────────────",{"2":{"14":1,"43":1,"46":3,"68":2,"69":2}}],["├──────────────────────────────────────────────────┴─────────────────────",{"2":{"34":1}}],["├────────────────────────────────────────────────────",{"2":{"29":1,"52":1}}],["├────────────────────────────────────────────────────────",{"2":{"27":2}}],["├───────────────────────────────────────────────────────────",{"2":{"25":1,"66":2,"96":1}}],["├────────────────────────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"14":2,"16":3,"17":1,"18":1,"21":2,"22":2,"29":2,"33":1,"37":1,"46":3,"51":1,"52":3,"53":1,"56":4,"60":3,"61":3,"86":1,"96":1,"101":1}}],["├─────────────────────────────────────────────────────────────────",{"2":{"69":1}}],["├──────────────────────────────────────────────────────────────────",{"2":{"34":1,"37":1}}],["├─────────────────────────────────────────────────────────────────────┴",{"2":{"69":1}}],["├────────────────────────────────────────────────────────────────────────",{"2":{"34":1,"35":1,"37":1,"38":1,"39":3}}],["├────────────────────────────────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"21":2,"22":3,"29":1,"33":2,"34":2,"35":1,"37":3,"38":2,"39":3,"42":1,"43":1,"46":3,"47":1,"51":1,"52":2,"53":1,"54":1,"56":4,"60":3,"61":3,"68":2,"69":2,"70":3,"71":5,"86":1,"96":1,"101":1,"109":1}}],["├───────────────────────────────────────────────────────────────",{"2":{"16":2,"19":1,"33":1,"42":1,"43":1,"47":1,"54":1,"68":2,"69":2,"70":3,"71":5,"109":1}}],["├─────────────────────────────────────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────────────────────────────",{"2":{"9":1,"19":1}}],["├─────────────────────────────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────────────────────────",{"2":{"25":1,"66":2,"96":1}}],["├──────────────────────────────────────────────────",{"2":{"9":1}}],["├───────────────────────────────────────────────┴────────────────────────",{"2":{"16":2,"60":1,"70":2}}],["├────────────────────────────────────────────┴───────────────────────────",{"2":{"14":1,"18":1,"21":1,"86":1}}],["├─────────────────────────────────────────",{"2":{"21":1}}],["├─────────────────────────────────────┴──────────────────────────────────",{"2":{"42":1}}],["├──────────────────────────────────┴────────────────────────────",{"2":{"72":1}}],["├─────────────────────────────────┴──────────────────────────────────────",{"2":{"33":2,"54":1,"96":1}}],["├─────────────────────────────────┴───────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────┴────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"16":2,"22":1,"29":1,"37":1,"60":2}}],["├────────────────────────────┴────────────────────────",{"2":{"21":1}}],["├────────────────────────────┴───────────────────────────────────────────",{"2":{"17":1,"21":1,"22":1,"47":1,"52":2,"56":1}}],["π",{"2":{"60":2,"100":1,"102":1}}],[">var",{"2":{"101":1}}],[">dates",{"2":{"101":1}}],[">month",{"2":{"89":1}}],[">abs",{"2":{"89":1}}],[">=",{"2":{"59":4}}],[">",{"2":{"59":2,"60":2,"101":1}}],["└──────────────────────────────────────────────────────────┘",{"2":{"56":1}}],["└───────────────────────────────────────────────────────────┘",{"2":{"21":1}}],["└──────────────────────────────────────────────────────────────────┘",{"2":{"27":2}}],["└──────────────────────────────────────────────────────────────────────┘",{"2":{"29":1,"52":1}}],["└────────────────────────────────────────────────────────────────────────────────┘",{"2":{"69":1}}],["└──────────────────────────────────────────────────────────────────────────────┘",{"2":{"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"21":2,"22":4,"29":1,"33":2,"34":2,"35":1,"37":3,"38":2,"39":3,"42":1,"43":1,"46":3,"47":1,"51":1,"52":2,"53":1,"54":1,"56":4,"60":3,"61":3,"68":2,"69":2,"70":3,"71":5,"86":1,"96":1,"101":1,"109":1}}],["└─────────────────────────────────────────────────────────────────────────┘",{"2":{"19":1}}],["└───────────────────────────────────────────────────────────────────────┘",{"2":{"8":1}}],["└─────────────────────────────────────────────────────────────────────┘",{"2":{"25":1,"66":2,"72":1,"96":1}}],["└─────────────────────────────────────────────────────────────────┘",{"2":{"9":1}}],["`diskarrays",{"2":{"90":1}}],["`a",{"2":{"56":1}}],["`layer`",{"2":{"18":1}}],["quickstart",{"0":{"96":1}}],["query",{"2":{"67":1}}],["querying",{"2":{"46":1}}],["questions",{"0":{"50":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1}}],["quot",{"2":{"16":2,"61":2,"86":4,"89":8,"90":12,"108":2}}],["jj+1",{"2":{"43":1,"67":1,"79":1,"85":1}}],["jj",{"2":{"43":1,"67":1,"79":1,"85":1}}],["joinname",{"2":{"89":1}}],["joinname=",{"2":{"89":1}}],["job",{"2":{"78":1}}],["journal",{"2":{"43":1,"67":1,"79":1,"85":1}}],["joe",{"2":{"32":1,"39":1}}],["j",{"2":{"39":8}}],["jan",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["jl",{"0":{"91":1,"98":1,"108":1},"1":{"92":1,"93":1,"109":1,"110":1},"2":{"26":1,"27":1,"33":1,"34":1,"39":1,"61":1,"65":2,"74":1,"77":1,"78":1,"91":1,"93":2,"95":1,"96":2,"97":3,"98":2,"108":2,"110":1,"113":1}}],["jussieu",{"2":{"43":1,"67":1,"79":1,"85":1}}],["just",{"2":{"22":1,"74":1,"76":1,"89":1,"90":2}}],["jul",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["juliaδlon",{"2":{"105":1}}],["juliax",{"2":{"100":1}}],["juliaplt",{"2":{"108":1,"109":4}}],["juliapkg>",{"2":{"95":1,"97":1,"98":1}}],["juliapermuteloopaxes",{"2":{"90":1}}],["juliaproperties",{"2":{"19":1}}],["juliacopydata",{"2":{"90":1}}],["juliacollect",{"2":{"53":1,"72":1}}],["juliaclean",{"2":{"90":1}}],["juliacube",{"2":{"89":1}}],["juliacubefittable",{"2":{"89":1}}],["juliacubetable",{"2":{"89":1}}],["juliacaxes",{"2":{"89":1}}],["julian",{"2":{"81":1,"83":1}}],["juliaspecs",{"2":{"110":1}}],["juliastore",{"2":{"108":1}}],["juliasavecube",{"2":{"89":1}}],["juliasavedataset",{"2":{"80":1,"82":1,"84":2,"89":1}}],["juliasetchunks",{"2":{"89":1,"90":1}}],["juliaseasons",{"2":{"36":1}}],["juliaglmakie",{"2":{"104":1}}],["juliagroupby",{"2":{"78":1}}],["juliagetloopchunks",{"2":{"90":1}}],["juliagetouttype",{"2":{"90":1}}],["juliagetoutaxis",{"2":{"90":1}}],["juliaget",{"2":{"90":1}}],["juliagetaxis",{"2":{"89":1}}],["juliagettarrayaxes",{"2":{"65":1}}],["juliagen",{"2":{"16":1}}],["julialon",{"2":{"103":1}}],["julialookup",{"2":{"72":1}}],["julialatitudes",{"2":{"59":1}}],["juliakeylist",{"2":{"64":1}}],["juliaylonlat",{"2":{"56":1}}],["juliaytime3",{"2":{"56":1}}],["juliaytime2",{"2":{"56":1}}],["juliaytime",{"2":{"56":1}}],["juliay",{"2":{"56":1}}],["juliayaxcolumn",{"2":{"90":1}}],["juliayaxarray",{"2":{"89":1}}],["juliayax",{"2":{"0":1,"65":2}}],["juliaoptifunc",{"2":{"90":1}}],["juliaopen",{"2":{"41":1,"89":2}}],["juliaoutdims",{"2":{"89":1}}],["juliaoffset",{"2":{"13":1}}],["juliawith",{"2":{"39":1}}],["julia>",{"2":{"39":1,"93":1,"98":2,"101":2}}],["juliato",{"2":{"89":1}}],["juliatos",{"2":{"68":2,"69":2,"70":3,"71":1,"72":1}}],["juliatest",{"2":{"66":2}}],["juliatempo",{"2":{"37":1}}],["juliat",{"2":{"56":1,"61":1,"100":1}}],["juliatspan",{"2":{"16":1}}],["juliaurl",{"2":{"33":1}}],["juliausing",{"2":{"0":1,"2":1,"4":1,"5":1,"6":1,"8":1,"9":1,"10":1,"16":1,"17":1,"22":1,"23":2,"25":1,"26":1,"27":1,"29":2,"31":1,"39":1,"42":1,"43":1,"44":1,"47":1,"48":1,"49":1,"51":1,"52":1,"54":1,"56":1,"58":1,"59":1,"61":2,"65":1,"67":1,"69":1,"71":1,"78":1,"79":1,"80":1,"82":1,"86":1,"96":1,"99":4,"100":1,"103":1,"107":1,"108":1,"109":1}}],["juliamutable",{"2":{"90":1}}],["juliamatch",{"2":{"90":1}}],["juliamapcube",{"2":{"89":2}}],["juliamapslices",{"2":{"14":1,"23":1}}],["juliamovingwindow",{"2":{"89":1}}],["juliamy",{"2":{"43":1}}],["juliamean",{"2":{"39":1}}],["juliam2",{"2":{"25":1}}],["julia",{"2":{"24":1,"33":1,"43":1,"90":1,"93":1,"95":2,"96":1,"97":2,"98":2}}],["juliavector",{"2":{"22":1}}],["juliadata",{"2":{"108":1}}],["juliadataset",{"2":{"89":1}}],["juliadata3",{"2":{"30":1}}],["juliadim",{"2":{"27":1,"108":1,"109":1}}],["juliadimarray",{"2":{"22":1}}],["juliads2",{"2":{"85":1}}],["juliads",{"2":{"18":2,"20":2,"21":1,"41":1,"42":1,"43":1,"46":2,"58":1,"59":1,"83":1,"86":2,"87":3,"89":1}}],["juliar",{"2":{"86":1}}],["juliareadcubedata",{"2":{"46":1,"89":1}}],["juliaregions",{"2":{"22":2}}],["juliaras2",{"2":{"26":1}}],["juliarandom",{"2":{"21":2}}],["juliaindims",{"2":{"18":1,"20":1,"89":1}}],["juliaimport",{"2":{"14":1,"95":1}}],["juliajulia>",{"2":{"16":5,"34":2,"35":1,"37":2,"38":2,"39":3,"49":1,"51":3,"52":2,"53":1,"54":1,"60":3,"61":3,"63":1,"64":1,"65":2,"71":4,"85":1,"86":1,"98":1,"101":2,"103":3}}],["juliaall",{"2":{"86":1}}],["juliaaxes",{"2":{"56":1}}],["juliaa2",{"2":{"12":2,"29":2,"96":1}}],["juliaa",{"2":{"2":1,"11":3}}],["juliafig",{"2":{"100":1,"102":1,"105":1,"106":1}}],["juliafindaxis",{"2":{"90":1}}],["juliafittable",{"2":{"89":2}}],["juliafiles",{"2":{"48":2,"89":2}}],["juliafunction",{"2":{"16":1,"18":1,"19":1,"21":1,"34":1,"89":1,"90":1,"101":1}}],["juliaf",{"2":{"2":1,"4":1,"5":1,"6":1,"16":1}}],["jun",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["∘",{"2":{"23":1}}],["|>",{"2":{"22":2,"108":1}}],["⋱",{"2":{"22":1}}],["⋮",{"2":{"22":2,"72":1,"101":1}}],["^2",{"2":{"21":1}}],["⬔",{"2":{"17":1,"18":1,"48":1,"54":1,"96":1}}],["921",{"2":{"87":2}}],["923876",{"2":{"87":2}}],["926096",{"2":{"27":1}}],["991508",{"2":{"87":2}}],["957463",{"2":{"96":1}}],["952795",{"2":{"96":1}}],["958973",{"2":{"96":1}}],["95",{"2":{"39":1}}],["959705",{"2":{"96":1}}],["95965",{"2":{"87":2}}],["959",{"2":{"39":1}}],["953391",{"2":{"27":1}}],["982108",{"2":{"96":1}}],["98",{"2":{"59":6}}],["986",{"2":{"39":1}}],["984803",{"2":{"22":1}}],["97",{"2":{"109":1}}],["97643",{"2":{"96":1}}],["97649",{"2":{"39":1}}],["973442",{"2":{"96":1}}],["973332",{"2":{"27":1}}],["97047",{"2":{"39":1}}],["900",{"2":{"109":1}}],["908084",{"2":{"96":1}}],["903079",{"2":{"96":1}}],["90365",{"2":{"39":1}}],["90",{"2":{"44":1,"59":2,"71":5,"108":2,"109":2}}],["90712",{"2":{"39":1}}],["94534",{"2":{"39":1}}],["9404",{"2":{"34":1,"35":1}}],["9432",{"2":{"34":1,"35":1}}],["949935",{"2":{"25":1}}],["91",{"2":{"51":1,"71":5}}],["9122",{"2":{"44":1}}],["9192",{"2":{"39":1}}],["916686",{"2":{"27":1}}],["918555",{"2":{"25":1}}],["9375",{"2":{"42":2,"103":1,"109":1}}],["93743",{"2":{"39":1}}],["9362",{"2":{"39":1}}],["935631",{"2":{"25":1}}],["93986",{"2":{"22":1}}],["9",{"2":{"16":14,"22":2,"33":2,"37":4,"53":1,"56":1,"70":4,"81":2,"83":1,"90":1}}],["96x71x19",{"2":{"43":1,"67":1,"79":1,"85":1}}],["96f0",{"2":{"43":1,"67":1,"79":1}}],["9682",{"2":{"34":1,"35":1}}],["96921e36",{"2":{"33":2}}],["960",{"2":{"17":1,"18":1,"22":1}}],["96",{"2":{"8":1,"9":1,"59":6,"69":2,"85":1}}],["88",{"2":{"42":4,"54":1,"72":2,"96":1,"103":2,"109":2}}],["889583",{"2":{"22":1}}],["85",{"2":{"72":2,"105":1,"106":1}}],["85ºn",{"2":{"59":1}}],["850",{"2":{"39":1}}],["85714",{"2":{"22":1}}],["8901",{"2":{"44":1}}],["89",{"2":{"42":4,"43":2,"44":1,"46":3,"67":1,"68":2,"69":1,"70":1,"71":5,"72":3,"79":1,"85":1,"103":2,"109":2}}],["8984",{"2":{"39":1}}],["89237",{"2":{"39":1}}],["86",{"2":{"72":2}}],["86457",{"2":{"39":1}}],["862644",{"2":{"27":1}}],["81",{"2":{"29":1}}],["833498",{"2":{"96":1}}],["831968",{"2":{"87":2}}],["830391",{"2":{"25":1}}],["83556",{"2":{"25":1}}],["879677",{"2":{"96":1}}],["87",{"2":{"72":2}}],["87705",{"2":{"39":1}}],["872575",{"2":{"27":1}}],["870826",{"2":{"25":1}}],["875658",{"2":{"22":1}}],["847062",{"2":{"87":2}}],["840",{"2":{"47":1}}],["840389",{"2":{"22":1}}],["84",{"2":{"44":2}}],["845983",{"2":{"25":1}}],["828388",{"2":{"96":1}}],["825496",{"2":{"96":1}}],["827727",{"2":{"96":1}}],["82421875",{"2":{"44":2}}],["824354",{"2":{"22":1}}],["829062",{"2":{"22":1}}],["8",{"2":{"16":12,"22":2,"43":2,"46":3,"53":1,"56":1,"67":1,"68":2,"79":1,"85":1,"101":1}}],["80871",{"2":{"96":1}}],["800",{"2":{"52":3,"53":1,"56":1}}],["80759",{"2":{"39":1}}],["80",{"2":{"16":1,"59":2}}],["voilà",{"2":{"65":1}}],["volume",{"2":{"65":4}}],["vol",{"2":{"43":1,"67":1,"79":1,"85":1}}],["v",{"2":{"43":1,"67":1,"79":1,"85":1}}],["v1",{"2":{"43":2,"67":2,"79":2,"85":2,"95":1}}],["v20190710",{"2":{"42":1,"103":2,"108":1}}],["video",{"2":{"111":1}}],["videos",{"2":{"111":1}}],["visit",{"2":{"110":1}}],["visual",{"2":{"108":2,"109":4,"110":1}}],["visualizations",{"2":{"108":1}}],["visualization",{"2":{"61":1}}],["via",{"2":{"34":1}}],["vice",{"2":{"24":1}}],["view",{"2":{"22":1,"96":1}}],["version",{"2":{"42":1,"43":1,"67":1,"79":1,"85":1,"89":1,"97":2,"98":1,"103":1}}],["versa",{"2":{"24":1}}],["verify",{"2":{"38":1,"87":1}}],["very",{"2":{"13":1,"61":1,"74":1}}],["vector",{"0":{"22":1},"2":{"22":4,"34":1,"36":1,"37":3,"38":2,"39":1,"49":1,"53":1,"66":1,"74":1,"89":2,"90":3}}],["val",{"2":{"53":2,"72":1}}],["vals",{"2":{"22":1}}],["value",{"2":{"12":1,"14":3,"16":2,"43":1,"46":3,"60":1,"68":2,"69":3,"70":3,"71":5,"89":4,"90":1,"108":2,"109":6,"110":1}}],["values=ds1",{"2":{"61":1}}],["values",{"0":{"53":1,"87":1},"2":{"9":1,"20":1,"21":1,"22":2,"28":1,"29":2,"48":2,"49":1,"51":2,"52":1,"53":1,"59":3,"61":4,"64":1,"65":2,"70":1,"72":2,"74":1,"75":1,"86":1,"87":3,"89":9,"96":1,"103":1}}],["varoables",{"2":{"89":1}}],["varlist",{"2":{"64":2}}],["var2=var2",{"2":{"58":1}}],["var2",{"2":{"54":2,"58":3,"60":1}}],["var1=var1",{"2":{"58":1}}],["var1",{"2":{"54":2,"58":3,"60":1}}],["variant",{"2":{"42":1,"103":1}}],["variable",{"0":{"5":1,"62":1,"63":1,"64":1},"1":{"63":1,"64":1},"2":{"5":1,"9":1,"42":1,"46":2,"59":3,"86":2,"89":1,"90":6,"96":1,"100":1,"101":1,"102":1,"103":1}}],["variables=at",{"2":{"60":2,"96":1}}],["variables",{"0":{"6":1,"58":1,"59":1},"2":{"4":5,"5":4,"6":2,"9":4,"17":2,"18":1,"19":1,"20":1,"21":1,"24":1,"30":1,"42":4,"43":1,"44":1,"45":1,"46":1,"48":3,"49":1,"54":2,"57":1,"58":2,"59":11,"63":1,"64":4,"65":11,"67":1,"75":1,"76":1,"78":3,"79":1,"85":4,"86":1,"89":5,"90":1,"96":2,"103":4}}],["var",{"2":{"9":2,"100":2,"101":2,"102":2}}],["uv",{"2":{"107":1}}],["u",{"2":{"101":1}}],["up",{"2":{"89":1}}],["update=false",{"2":{"107":1}}],["updates",{"0":{"97":1}}],["updated",{"2":{"87":1}}],["update",{"0":{"87":1},"2":{"87":2,"89":1}}],["updating",{"2":{"31":1,"87":1}}],["ucar",{"2":{"43":1,"67":1,"75":1,"79":1}}],["urls",{"2":{"40":1}}],["url",{"2":{"33":1,"42":1}}],["unreleased",{"2":{"98":1}}],["unpermuted",{"2":{"90":2}}],["unpractical",{"2":{"33":1}}],["underlying",{"2":{"89":1,"90":1,"97":1}}],["unlike",{"2":{"76":1}}],["unordered",{"2":{"34":2,"35":1,"36":1,"37":2,"38":2,"39":3,"65":4}}],["unweighted",{"2":{"34":1,"39":1}}],["unique",{"2":{"101":1}}],["unidata",{"2":{"43":1,"67":1,"75":1,"79":1}}],["unit",{"2":{"44":1}}],["unitrange",{"2":{"34":2,"35":2,"39":6}}],["units",{"2":{"33":2,"42":1,"43":2,"46":6,"68":4,"69":6,"70":6,"71":10,"109":1}}],["unions",{"0":{"66":1}}],["union",{"2":{"14":2,"16":4,"18":2,"20":1,"21":1,"22":1,"43":1,"46":3,"60":1,"61":2,"66":2,"68":2,"69":3,"70":3,"71":5,"86":2,"87":1}}],["unnecessary",{"2":{"22":1}}],["unchanged",{"2":{"13":1}}],["usage",{"2":{"78":1}}],["usually",{"2":{"42":1,"74":2,"75":2,"109":1}}],["usual",{"2":{"34":1,"41":1}}],["us",{"2":{"22":1,"49":1}}],["useable",{"2":{"41":1,"89":1}}],["used",{"2":{"22":1,"23":1,"34":1,"56":1,"67":1,"72":1,"73":1,"74":1,"77":1,"78":1,"89":6,"90":3,"108":1}}],["uses",{"2":{"20":1,"43":1,"61":1}}],["userguide",{"2":{"92":2}}],["users",{"2":{"90":1}}],["user",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1,"90":1}}],["use",{"0":{"61":1},"2":{"0":1,"8":1,"9":1,"10":4,"13":1,"23":2,"31":1,"33":1,"35":1,"45":1,"47":1,"49":1,"51":2,"56":1,"58":1,"59":1,"60":1,"61":2,"65":2,"71":2,"76":1,"81":1,"86":1,"89":4,"90":1,"98":1,"103":2,"111":1,"113":1}}],["useful",{"2":{"0":1,"76":1}}],["using",{"2":{"0":1,"8":2,"9":2,"10":2,"16":3,"17":4,"22":3,"23":8,"27":1,"29":1,"31":5,"41":1,"42":2,"43":3,"44":2,"45":1,"47":1,"48":1,"49":1,"51":1,"52":2,"54":2,"56":2,"58":2,"59":2,"60":1,"61":1,"65":3,"67":2,"69":3,"70":2,"78":1,"79":2,"85":1,"86":3,"96":1,"97":1,"98":1,"100":2,"101":2,"103":3,"107":1,"108":6}}],["+proj=moll",{"2":{"106":1}}],["+",{"2":{"12":2,"13":1,"16":2,"18":2,"21":1,"47":2,"48":1,"100":1,"105":1,"108":1,"110":1}}],["kwargs",{"2":{"89":5,"90":2}}],["know",{"2":{"46":1}}],["k",{"2":{"42":1,"43":1,"46":3,"65":5,"68":2,"69":3,"70":3,"71":5,"109":1}}],["keylist",{"2":{"64":1}}],["keyset",{"2":{"65":1}}],["keys",{"2":{"41":3,"65":7,"89":4}}],["keys=",{"2":{"41":1,"89":1}}],["keyword",{"2":{"41":1,"85":1,"89":7,"90":2}}],["key",{"2":{"31":1,"89":1}}],["keeps",{"2":{"13":1}}],["keep",{"2":{"0":1,"90":1,"108":1}}],["kb",{"2":{"10":1,"12":1,"13":1,"14":1,"16":2,"22":1,"29":2,"51":1,"54":1,"56":4,"60":3,"61":1,"69":1,"70":3,"71":5,"96":1,"101":1}}],["↗",{"2":{"10":1,"12":1,"13":1,"16":2,"17":1,"18":1,"19":1,"20":1,"21":3,"22":1,"29":3,"30":1,"33":2,"34":1,"42":2,"43":2,"46":3,"47":1,"48":3,"49":1,"51":3,"54":1,"56":5,"58":2,"60":3,"67":1,"68":2,"70":3,"71":5,"79":1,"85":2,"86":2,"96":1,"103":1,"109":1}}],["0e8",{"2":{"89":1}}],["0ºe",{"2":{"59":1}}],["0436",{"2":{"96":1}}],["04t00",{"2":{"48":1,"49":1}}],["0465",{"2":{"39":1}}],["0f20",{"2":{"42":1,"43":2,"46":6,"68":4,"69":6,"70":6,"71":10,"109":1}}],["0f32",{"2":{"16":2}}],["039451611552802975",{"2":{"101":1}}],["03528277758302477",{"2":{"101":1}}],["0358348",{"2":{"25":1}}],["03t00",{"2":{"49":1}}],["03",{"2":{"48":2}}],["03361",{"2":{"39":1}}],["06417594925348342",{"2":{"101":1}}],["06159722707791853",{"2":{"101":1}}],["06t00",{"2":{"49":1}}],["062270000476910094",{"2":{"101":1}}],["0625",{"2":{"42":2,"103":1,"109":1}}],["0620649",{"2":{"27":1}}],["06755",{"2":{"39":1}}],["08158557886952912",{"2":{"101":1}}],["08058305464254185",{"2":{"101":1}}],["0833026",{"2":{"96":1}}],["08",{"2":{"33":2,"37":1}}],["09689360224777122",{"2":{"101":1}}],["0962708",{"2":{"96":1}}],["0940127",{"2":{"87":2}}],["09",{"2":{"33":2,"37":1}}],["0750790675265741",{"2":{"101":1}}],["07t00",{"2":{"49":2}}],["07",{"2":{"42":2,"47":1,"103":1,"109":1}}],["0702532",{"2":{"27":1}}],["0723492",{"2":{"22":1}}],["029247418895843032",{"2":{"101":1}}],["022312156353890087",{"2":{"101":1}}],["02345835017256051",{"2":{"101":1}}],["023216805974179966",{"2":{"11":1}}],["0247931",{"2":{"96":1}}],["02t00",{"2":{"48":1,"49":2}}],["02",{"2":{"42":1,"48":2}}],["0210077",{"2":{"25":1}}],["0214057",{"2":{"25":1}}],["00722034",{"2":{"39":1}}],["00709111",{"2":{"39":1}}],["00684233",{"2":{"39":1}}],["00693713",{"2":{"39":1}}],["00990356",{"2":{"39":1}}],["0057",{"2":{"39":1}}],["00388",{"2":{"39":1}}],["00",{"2":{"20":4,"33":8,"37":4,"42":9,"43":8,"46":12,"48":4,"49":16,"65":16,"67":4,"68":8,"69":8,"70":12,"71":20,"79":4,"85":4,"103":5,"109":6}}],["05742042630154354",{"2":{"101":1}}],["0571978",{"2":{"96":1}}],["05611581504766607",{"2":{"101":1}}],["0566881",{"2":{"27":1}}],["05846",{"2":{"39":1}}],["0537",{"2":{"34":1,"35":1}}],["052264",{"2":{"27":1}}],["05t00",{"2":{"20":1,"49":1}}],["05",{"2":{"17":2,"18":1,"21":3,"47":1,"56":3}}],["01t21",{"2":{"109":2}}],["01t03",{"2":{"42":2,"103":1,"109":1}}],["01t00",{"2":{"20":1,"42":2,"65":4,"103":1}}],["0174532925199433",{"2":{"44":1}}],["0178074",{"2":{"39":1}}],["0114824",{"2":{"96":1}}],["0117519",{"2":{"39":1}}],["0115514",{"2":{"39":1}}],["0127077",{"2":{"39":1}}],["0123091",{"2":{"39":1}}],["0121037",{"2":{"39":1}}],["019016",{"2":{"39":1}}],["018571",{"2":{"39":1}}],["0182373",{"2":{"39":1}}],["0180572",{"2":{"39":1}}],["0183003",{"2":{"39":1}}],["018",{"2":{"34":1,"35":1}}],["01",{"2":{"10":6,"12":3,"13":3,"14":3,"16":12,"17":6,"18":3,"20":2,"21":9,"22":9,"23":3,"29":9,"30":3,"42":5,"43":4,"46":6,"47":2,"48":6,"49":8,"56":22,"58":8,"59":11,"65":8,"67":2,"68":4,"69":6,"70":6,"71":10,"79":2,"85":2,"100":2,"101":4,"103":5,"109":5}}],["0",{"2":{"8":1,"9":1,"10":6,"11":2,"12":6,"13":6,"14":7,"16":303,"17":7,"18":7,"19":7,"20":6,"21":10,"22":75,"25":36,"27":45,"29":12,"30":6,"37":2,"38":40,"39":19,"42":7,"43":10,"44":6,"46":12,"47":1,"52":3,"53":1,"54":9,"56":1,"59":4,"60":27,"61":11,"66":2,"67":6,"68":8,"69":6,"70":14,"71":20,"72":7,"79":6,"81":1,"83":1,"84":1,"85":6,"86":1,"87":40,"89":2,"90":1,"96":80,"97":1,"100":2,"101":19,"102":1,"103":4,"105":2,"106":2,"107":2,"108":1,"109":4}}],["┤",{"2":{"8":2,"9":2,"10":2,"12":2,"13":2,"14":4,"16":10,"17":2,"18":2,"19":2,"21":6,"22":5,"25":2,"27":3,"29":4,"33":4,"34":4,"35":2,"37":6,"38":3,"39":6,"42":2,"43":2,"46":6,"47":2,"51":2,"52":6,"53":2,"54":2,"56":10,"60":6,"61":6,"66":4,"68":4,"69":5,"70":6,"71":10,"86":2,"96":4,"101":2,"109":2}}],["┐",{"2":{"8":2,"9":2,"10":2,"12":2,"13":2,"14":4,"16":10,"17":2,"18":2,"19":2,"21":6,"22":8,"25":2,"27":4,"29":4,"33":4,"34":3,"35":1,"37":5,"38":3,"39":3,"42":2,"43":2,"46":6,"47":2,"51":2,"52":6,"53":2,"54":2,"56":10,"60":6,"61":6,"66":4,"68":4,"69":7,"70":6,"71":10,"72":2,"86":2,"96":4,"101":2,"109":2}}],["┌",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":4,"25":1,"27":2,"29":2,"33":2,"34":2,"35":1,"37":3,"38":2,"39":3,"42":1,"43":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":1,"56":5,"60":3,"61":3,"66":2,"68":2,"69":3,"70":3,"71":5,"72":1,"86":1,"96":2,"101":1,"109":1}}],["76",{"2":{"72":2}}],["700",{"2":{"110":1}}],["70",{"2":{"70":3}}],["7030",{"2":{"44":1}}],["701332",{"2":{"22":1}}],["730",{"2":{"102":1}}],["7341",{"2":{"39":1}}],["73",{"2":{"39":1}}],["731779",{"2":{"27":1}}],["790617",{"2":{"96":1}}],["79472",{"2":{"96":1}}],["79",{"2":{"43":2,"46":3,"67":1,"68":2,"69":2,"70":4,"71":5,"72":3,"79":1,"85":1}}],["79502",{"2":{"39":1}}],["796375",{"2":{"27":1}}],["757781",{"2":{"96":1}}],["75",{"2":{"72":2}}],["7593",{"2":{"39":1}}],["75891",{"2":{"39":1}}],["75269",{"2":{"25":1}}],["752417",{"2":{"22":1}}],["776172",{"2":{"96":1}}],["77687",{"2":{"39":1}}],["77",{"2":{"72":2}}],["77587",{"2":{"39":1}}],["770949",{"2":{"27":1}}],["743343",{"2":{"96":1}}],["748725",{"2":{"96":1}}],["746259",{"2":{"87":2}}],["74",{"2":{"72":2}}],["744521",{"2":{"27":1}}],["74732",{"2":{"25":1}}],["716721",{"2":{"96":1}}],["716952",{"2":{"87":2}}],["717",{"2":{"71":5}}],["71",{"2":{"70":1}}],["7158",{"2":{"34":1,"35":1}}],["7119",{"2":{"34":1,"35":1}}],["718667",{"2":{"27":1}}],["71314",{"2":{"27":1}}],["71429",{"2":{"22":2}}],["78064",{"2":{"96":1}}],["783779",{"2":{"96":1}}],["787476",{"2":{"96":1}}],["78",{"2":{"70":1,"72":2}}],["78467",{"2":{"25":1}}],["789891",{"2":{"25":1}}],["781773",{"2":{"22":1}}],["7",{"2":{"8":1,"16":10,"21":3,"22":1,"29":1,"33":2,"42":1,"47":9,"48":3,"49":1,"53":1,"83":1,"103":1,"109":1}}],["→",{"2":{"4":1,"5":1,"6":1,"9":1,"10":1,"12":1,"13":1,"14":1,"16":2,"17":1,"18":1,"19":1,"20":1,"21":3,"22":6,"25":1,"27":3,"29":3,"30":1,"33":2,"34":1,"42":2,"43":2,"44":1,"46":3,"47":1,"48":3,"49":1,"51":3,"52":3,"53":1,"54":1,"56":6,"58":2,"59":2,"60":3,"61":2,"64":2,"65":4,"66":2,"67":1,"68":2,"69":1,"70":3,"71":5,"79":1,"85":2,"86":2,"96":2,"103":1,"109":1}}],["↓",{"2":{"4":3,"5":3,"6":1,"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"20":1,"21":3,"22":6,"25":1,"27":3,"29":3,"30":1,"33":2,"34":3,"35":1,"37":4,"38":2,"39":3,"42":2,"43":2,"44":1,"46":3,"47":1,"48":3,"49":1,"51":3,"52":3,"53":1,"54":1,"56":6,"58":2,"59":8,"60":3,"61":3,"63":1,"64":3,"65":4,"66":2,"67":1,"68":2,"69":3,"70":3,"71":5,"72":1,"79":1,"85":2,"86":2,"96":2,"101":2,"103":1,"109":1}}],["45×170×24",{"2":{"71":5}}],["456765",{"2":{"25":1}}],["40",{"2":{"59":2}}],["400",{"2":{"25":1,"86":1,"100":1,"102":1,"108":1,"109":2,"110":1}}],["44",{"2":{"56":1,"60":3}}],["415137",{"2":{"96":1}}],["4198",{"2":{"39":1}}],["41241",{"2":{"39":1}}],["41049",{"2":{"39":1}}],["41634",{"2":{"39":1}}],["417937",{"2":{"22":1}}],["487093",{"2":{"96":1}}],["487315",{"2":{"96":1}}],["48367",{"2":{"39":1}}],["48",{"2":{"33":2,"96":1}}],["480",{"2":{"21":2,"61":1}}],["496429",{"2":{"96":1}}],["499743",{"2":{"96":1}}],["49909",{"2":{"39":1}}],["4947",{"2":{"39":1}}],["492817",{"2":{"27":1}}],["497189",{"2":{"22":1}}],["4326",{"2":{"44":1}}],["43254",{"2":{"39":1}}],["4325",{"2":{"34":1,"35":1}}],["432286",{"2":{"22":1}}],["435994",{"2":{"27":1}}],["475725",{"2":{"27":1}}],["472308",{"2":{"22":1}}],["4×30",{"2":{"22":1}}],["4×3×7",{"2":{"21":1}}],["4×3×2",{"2":{"19":1}}],["46",{"2":{"54":1,"96":1}}],["46506",{"2":{"39":1}}],["465103",{"2":{"22":1}}],["463503",{"2":{"22":1}}],["426519",{"2":{"25":1}}],["42857",{"2":{"22":2}}],["42",{"2":{"11":3}}],["4",{"2":{"4":4,"5":4,"16":4,"17":4,"18":2,"19":2,"20":1,"21":8,"22":9,"27":1,"34":2,"35":1,"36":1,"37":2,"38":2,"39":4,"47":1,"53":1,"54":1,"59":6,"86":3,"87":2,"96":3,"100":1,"102":1}}],["3d",{"0":{"107":1}}],["3×3",{"2":{"66":1}}],["3×20",{"2":{"61":1}}],["3hr",{"2":{"42":2,"103":3,"108":1}}],["384×192×7",{"2":{"109":1}}],["384×192×251288",{"2":{"42":1}}],["38",{"2":{"56":1,"70":3}}],["3866",{"2":{"39":1}}],["38364",{"2":{"39":1}}],["3835",{"2":{"34":1,"35":1}}],["34818",{"2":{"39":1}}],["34832",{"2":{"39":1}}],["348362",{"2":{"25":1}}],["34549",{"2":{"39":1}}],["34218",{"2":{"39":1}}],["31",{"2":{"56":2,"58":1,"59":1,"100":1,"101":2}}],["312",{"2":{"39":1}}],["31753",{"2":{"39":1}}],["3169",{"2":{"39":1}}],["3188",{"2":{"39":1}}],["337016",{"2":{"87":2}}],["337926",{"2":{"25":1}}],["33565",{"2":{"39":1}}],["320869",{"2":{"96":1}}],["320052",{"2":{"96":1}}],["32555",{"2":{"39":1}}],["3252",{"2":{"34":1,"35":1}}],["32149",{"2":{"39":1}}],["360",{"2":{"108":1,"109":1}}],["3600",{"2":{"56":1,"58":2}}],["366",{"2":{"102":1}}],["366625",{"2":{"27":1}}],["365×1",{"2":{"101":1}}],["365",{"2":{"101":1,"102":4}}],["369",{"2":{"59":1}}],["36126",{"2":{"39":1}}],["36142",{"2":{"39":1}}],["36836",{"2":{"39":1}}],["36",{"2":{"37":1,"56":1,"58":2,"59":1}}],["364288",{"2":{"25":1}}],["374138",{"2":{"96":1}}],["37",{"2":{"43":2,"46":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["372",{"2":{"39":1}}],["372761",{"2":{"22":1}}],["37878",{"2":{"39":1}}],["376135",{"2":{"22":1}}],["35762",{"2":{"87":2}}],["35700351866494",{"2":{"42":4,"103":2,"109":2}}],["359",{"2":{"42":2,"43":2,"46":3,"59":1,"67":1,"68":2,"69":1,"72":2,"79":1,"85":1,"103":1,"109":1}}],["35432",{"2":{"39":1}}],["35483",{"2":{"39":1}}],["35",{"2":{"10":1,"12":1,"13":1,"22":1,"29":1}}],["303359",{"2":{"96":1}}],["309666",{"2":{"96":1}}],["307f8f0e584a39a050c042849004e6a2bd674f99",{"2":{"44":1}}],["3069",{"2":{"39":1}}],["30018",{"2":{"39":1}}],["30142",{"2":{"39":1}}],["30113",{"2":{"39":1}}],["30×15×10",{"2":{"16":1}}],["30×10×15",{"2":{"10":1,"12":1,"13":1,"22":1,"29":1}}],["30",{"2":{"10":3,"12":1,"13":1,"14":2,"16":5,"22":5,"23":2,"26":2,"29":4,"30":2,"39":2,"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"103":1}}],["39",{"2":{"10":1,"16":3,"18":1,"19":1,"39":1,"41":1,"45":1,"46":1,"52":1,"54":1,"56":1,"58":1,"59":1,"60":2,"67":1,"77":1,"81":1,"89":2,"92":4,"101":3,"108":4,"109":2}}],["3",{"2":{"4":8,"5":8,"6":10,"10":1,"11":3,"12":3,"13":2,"16":4,"17":3,"18":1,"19":3,"20":1,"21":14,"22":6,"27":1,"29":3,"33":2,"34":2,"39":31,"42":1,"43":1,"46":3,"47":5,"51":5,"53":1,"56":4,"60":4,"61":5,"65":1,"66":2,"68":2,"70":4,"71":5,"85":1,"86":3,"89":1,"96":3,"100":2,"109":1}}],["zoom",{"2":{"107":1}}],["zopen",{"2":{"42":1,"87":1,"103":1,"108":1}}],["zeros",{"2":{"86":3,"101":1}}],["z",{"2":{"4":2,"5":3,"6":2,"85":2}}],["zarray",{"2":{"87":1}}],["zarr",{"0":{"42":1,"80":1,"81":1,"114":1},"1":{"81":1},"2":{"0":1,"2":2,"4":2,"5":2,"6":2,"16":5,"17":1,"20":2,"23":1,"27":1,"41":2,"42":3,"66":1,"80":5,"81":5,"84":3,"85":4,"86":6,"87":2,"89":4,"90":2,"99":2,"103":1,"108":1}}],["xticklabelalign",{"2":{"100":1,"102":1}}],["xticklabelrotation",{"2":{"100":1,"102":1}}],["xlabel=",{"2":{"100":1,"102":1}}],["xdim",{"2":{"78":3}}],["xx",{"2":{"43":1,"67":1,"79":1,"85":1}}],["xc",{"2":{"33":2}}],["xarray",{"2":{"32":1,"33":1}}],["x26",{"2":{"22":12,"59":12}}],["x3c",{"2":{"22":12,"59":4,"89":1}}],["xyz",{"2":{"21":2}}],["xy",{"2":{"19":2}}],["xyt",{"2":{"19":2,"21":2}}],["xin",{"2":{"18":8,"19":11,"21":8,"22":3,"60":3}}],["xout",{"2":{"16":2,"18":6,"19":6,"21":2,"22":3}}],["x",{"2":{"4":2,"5":3,"6":2,"13":2,"26":1,"27":3,"33":2,"34":2,"35":1,"39":3,"44":1,"60":4,"66":2,"74":1,"87":2,"90":1,"96":3,"100":1,"101":6}}],["ndata",{"2":{"105":2,"106":1,"107":1}}],["ndays",{"2":{"101":4}}],["nlon",{"2":{"105":2,"106":1}}],["npy",{"2":{"100":2,"101":2}}],["nin",{"2":{"90":2}}],["ntr",{"2":{"90":1}}],["ntuple",{"2":{"90":4}}],["nthreads",{"2":{"89":2}}],["nvalid",{"2":{"89":1}}],["n",{"2":{"73":1,"89":3}}],["n256",{"2":{"39":1}}],["nan",{"2":{"33":2,"34":48,"35":48,"39":384}}],["name=cube",{"2":{"89":1}}],["named",{"2":{"67":1,"69":1,"70":1,"74":1,"78":1,"89":2,"97":1}}],["namedtuple",{"2":{"18":1,"20":1,"89":1,"90":3}}],["names",{"0":{"21":1,"51":1,"62":1,"64":1},"1":{"52":1,"63":1,"64":1},"2":{"29":2,"36":1,"65":1,"74":2,"89":2,"90":1}}],["namely",{"2":{"16":1,"17":1}}],["name",{"0":{"63":1},"2":{"2":1,"18":4,"20":1,"33":4,"34":1,"39":1,"42":3,"43":4,"46":12,"48":1,"64":1,"68":8,"69":12,"70":12,"71":20,"77":1,"86":2,"89":6,"90":5,"96":1,"109":3}}],["nc",{"2":{"33":2,"43":2,"47":4,"48":6,"49":2,"67":2,"79":2,"82":2,"83":3,"89":6}}],["number",{"2":{"32":1,"37":1,"81":1,"83":1,"89":2,"90":1,"101":1}}],["numbers",{"2":{"10":1,"96":1}}],["nout",{"2":{"90":2}}],["normal",{"2":{"89":1,"107":1}}],["north",{"2":{"44":1}}],["nometadata",{"2":{"34":3,"35":2,"37":3,"38":1,"39":10}}],["november",{"2":{"43":1,"67":1,"79":1,"85":1}}],["nov",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["nonnumeric",{"2":{"109":3,"110":1}}],["nonmissingtype",{"2":{"90":1}}],["none",{"2":{"42":1,"59":2,"64":1,"65":1,"85":1,"103":1}}],["non",{"2":{"23":1,"89":1,"90":1,"100":1}}],["now",{"2":{"16":3,"18":1,"22":1,"34":1,"35":1,"37":1,"39":1,"41":1,"52":1,"54":1,"56":1,"61":1,"65":1,"86":2,"87":1,"93":1,"108":2}}],["no",{"2":{"14":1,"21":1,"27":1,"55":1,"81":1,"83":1,"86":1,"89":1,"90":1}}],["notice",{"2":{"81":1}}],["notation",{"2":{"56":1,"71":1}}],["nothing",{"2":{"18":1,"19":1,"21":1,"34":2,"37":4,"38":2,"39":5,"90":1}}],["note",{"2":{"9":1,"13":1,"16":4,"18":1,"21":1,"22":1,"34":1,"35":1,"43":1,"46":1,"48":1,"52":1,"59":1,"66":1,"86":1,"89":1,"90":1,"108":1}}],["not",{"0":{"59":1},"2":{"0":1,"1":1,"13":1,"33":1,"43":1,"55":1,"59":3,"64":1,"65":2,"66":1,"78":1,"86":2,"89":3,"90":3,"108":1}}],["neighbour",{"2":{"89":1}}],["neighboring",{"2":{"13":1}}],["needed",{"2":{"89":1}}],["need",{"2":{"64":1,"87":1,"89":1,"90":1,"92":1}}],["near",{"2":{"42":2,"71":1,"103":1,"109":2}}],["next",{"2":{"36":1,"60":1,"61":1,"78":1,"93":2}}],["netcdf4",{"2":{"43":1}}],["netcdf",{"0":{"43":1,"82":1,"83":1},"1":{"83":1},"2":{"27":1,"31":2,"41":1,"43":4,"45":1,"47":3,"48":1,"49":1,"66":1,"67":2,"75":3,"79":2,"82":3,"83":2,"84":1,"89":3,"99":2}}],["necessary",{"2":{"16":1,"32":1,"33":1,"87":1,"90":4}}],["newdim",{"2":{"78":2,"89":1}}],["new",{"0":{"9":1,"48":1},"2":{"10":1,"12":1,"16":1,"29":1,"31":1,"36":1,"47":1,"48":2,"51":1,"52":3,"76":1,"84":1,"85":1,"86":1,"89":5,"90":4,"92":6,"101":1}}],["bits",{"2":{"89":2}}],["big",{"2":{"74":1}}],["black",{"2":{"102":1}}],["blocks",{"2":{"89":1}}],["blosccompressor",{"2":{"81":1}}],["blue",{"2":{"44":1,"75":1}}],["b`",{"2":{"56":1}}],["built",{"2":{"108":1}}],["build",{"0":{"93":1},"2":{"51":1,"93":1}}],["bug",{"2":{"91":1}}],["bundle",{"2":{"75":1}}],["but",{"0":{"59":1},"2":{"8":1,"16":2,"43":1,"51":1,"52":2,"59":2,"64":1,"65":2,"69":1,"70":1,"78":1,"89":2}}],["boundaries",{"2":{"90":1}}],["bounds",{"2":{"89":1}}],["bool=true",{"2":{"90":1}}],["bool=false",{"2":{"89":1,"90":1}}],["boolean",{"2":{"89":3}}],["bool",{"2":{"66":3,"90":6}}],["both",{"2":{"49":1}}],["bold",{"2":{"39":1}}],["broad",{"2":{"112":1}}],["broadcasts",{"2":{"90":1}}],["broadcast",{"2":{"34":1,"39":1}}],["broadcasted",{"2":{"16":2,"89":1,"90":1}}],["brown",{"2":{"102":1}}],["browser",{"2":{"93":1}}],["brightness",{"2":{"74":1,"75":1}}],["brings",{"2":{"90":1}}],["bring",{"2":{"53":1}}],["branch",{"2":{"42":1,"103":1}}],["bwr",{"2":{"39":1}}],["b",{"2":{"17":2,"18":1,"19":1,"20":1,"22":13,"41":1,"64":2,"71":2,"89":3}}],["basic",{"2":{"110":1}}],["based",{"0":{"114":1},"2":{"89":1,"90":1}}],["base",{"0":{"25":1},"2":{"4":4,"5":4,"6":2,"18":1,"20":1,"25":4,"29":3,"34":1,"51":9,"52":6,"63":1,"64":5,"66":4,"86":6,"90":1,"96":2}}],["backgroundcolor=",{"2":{"107":1}}],["back",{"2":{"89":1}}],["backend",{"2":{"89":6}}],["backendlist",{"2":{"31":1,"89":1}}],["backend=",{"2":{"2":1,"16":2,"84":1,"85":1,"89":1}}],["by=",{"2":{"61":2,"89":2}}],["bytes",{"2":{"8":1,"9":1,"14":1,"16":3,"17":1,"18":1,"19":1,"21":3,"22":1,"25":1,"27":1,"37":1,"47":1,"52":3,"53":1,"56":1,"61":2,"66":2,"69":2,"83":4,"86":1,"96":1}}],["by",{"0":{"4":1,"5":1},"2":{"2":1,"10":2,"14":1,"16":1,"22":1,"28":1,"29":1,"32":1,"33":1,"36":1,"37":1,"38":1,"39":1,"42":1,"43":1,"52":1,"55":1,"56":6,"59":2,"61":1,"74":3,"76":1,"77":1,"78":2,"84":1,"87":2,"89":12,"90":6,"92":1,"93":1,"95":1,"101":1,"109":1}}],["beware",{"2":{"111":1}}],["best",{"2":{"90":1,"113":1}}],["become",{"2":{"89":1}}],["because",{"2":{"1":1,"13":1,"14":1,"16":1}}],["before",{"2":{"86":1,"89":1,"93":1}}],["belonging",{"2":{"75":1}}],["belongs",{"2":{"22":1}}],["being",{"2":{"65":1,"108":1}}],["been",{"2":{"59":1,"78":2,"87":1}}],["between",{"2":{"26":1,"27":1,"56":1,"58":1,"59":2,"71":1,"81":1,"83":1,"89":1}}],["begin",{"2":{"23":1}}],["be",{"2":{"0":5,"2":1,"3":1,"4":1,"13":1,"15":1,"16":2,"22":1,"24":1,"33":1,"42":2,"43":1,"44":1,"45":2,"46":1,"56":1,"59":1,"60":1,"61":2,"64":1,"65":1,"72":1,"74":1,"76":2,"78":2,"84":1,"85":1,"86":1,"89":23,"90":9,"92":1,"97":1,"98":1,"103":1,"110":1,"111":1}}],["623962",{"2":{"96":1}}],["622774",{"2":{"96":1}}],["666534",{"2":{"96":1}}],["665274",{"2":{"96":1}}],["665723",{"2":{"25":1}}],["6326",{"2":{"44":1}}],["6378137",{"2":{"44":1}}],["63006",{"2":{"39":1}}],["69",{"2":{"42":1}}],["69085",{"2":{"39":1}}],["600",{"2":{"100":1,"102":1,"104":1,"105":1,"106":1,"108":1,"109":1}}],["60764",{"2":{"96":1}}],["60265",{"2":{"42":1,"103":1}}],["60918",{"2":{"39":1}}],["60175",{"2":{"39":1}}],["650",{"2":{"109":2}}],["65105",{"2":{"39":1}}],["652339",{"2":{"25":1}}],["645512",{"2":{"96":1}}],["645758",{"2":{"25":1}}],["64976",{"2":{"39":1}}],["642",{"2":{"33":1}}],["6122",{"2":{"39":1}}],["61197",{"2":{"39":1}}],["611084",{"2":{"25":1}}],["619",{"2":{"34":1,"35":1}}],["617023",{"2":{"27":1}}],["673373",{"2":{"25":1}}],["671662",{"2":{"22":1}}],["672",{"2":{"21":1}}],["683599",{"2":{"96":1}}],["687891",{"2":{"27":1}}],["684389",{"2":{"22":1}}],["685454",{"2":{"22":1}}],["6×2",{"2":{"9":1}}],["6",{"2":{"2":6,"4":6,"5":6,"6":6,"8":4,"9":5,"16":8,"22":1,"42":1,"49":1,"53":1,"56":1,"103":1}}],["1e8",{"2":{"90":1}}],["1f2",{"2":{"66":1}}],["191898",{"2":{"96":1}}],["1992",{"2":{"89":1}}],["1991",{"2":{"89":1}}],["1990",{"2":{"89":1}}],["198806",{"2":{"96":1}}],["1984",{"2":{"44":1}}],["1983",{"2":{"33":2,"37":1}}],["1980",{"2":{"33":2,"37":1}}],["193109",{"2":{"27":1}}],["197238",{"2":{"25":1}}],["19241",{"2":{"39":1}}],["192",{"2":{"19":1,"105":1}}],["19",{"2":{"16":16,"70":3,"71":5}}],["182371",{"2":{"87":2}}],["180×170",{"2":{"69":1}}],["180×170×24",{"2":{"43":1,"46":3,"68":2}}],["180ºe",{"2":{"59":1}}],["180",{"2":{"44":1,"59":2,"71":5,"105":1}}],["18583",{"2":{"39":1}}],["18892",{"2":{"39":1}}],["18434",{"2":{"39":1}}],["18",{"2":{"16":18}}],["14715175267308206",{"2":{"101":1}}],["1437",{"2":{"39":1}}],["145747",{"2":{"22":1}}],["14286",{"2":{"22":1}}],["14",{"2":{"16":20,"27":1}}],["137114",{"2":{"96":1}}],["1372",{"2":{"34":1,"35":1}}],["136",{"2":{"43":1,"67":1,"79":1,"85":1}}],["1363",{"2":{"34":1,"35":1}}],["13z",{"2":{"42":2,"103":1,"109":1}}],["13205",{"2":{"27":1}}],["13",{"2":{"16":20,"27":1,"43":1,"67":1,"79":1,"85":1}}],["170",{"2":{"72":1}}],["172",{"2":{"66":1}}],["179919",{"2":{"96":1}}],["179",{"2":{"44":1,"71":5}}],["17578125",{"2":{"44":2}}],["17593",{"2":{"22":1}}],["17434",{"2":{"39":1}}],["174934",{"2":{"25":1}}],["17852",{"2":{"39":1}}],["17863",{"2":{"39":1}}],["178603",{"2":{"22":1}}],["17647",{"2":{"39":1}}],["1762",{"2":{"34":1,"35":1}}],["17t00",{"2":{"33":2,"37":1}}],["17",{"2":{"14":1,"16":22,"61":1,"70":1}}],["16t00",{"2":{"43":4,"46":6,"67":2,"68":4,"69":4,"70":6,"71":10,"79":2,"85":2}}],["16t12",{"2":{"33":2,"37":1}}],["1644",{"2":{"39":1}}],["16824",{"2":{"39":1}}],["16581",{"2":{"39":1}}],["16631",{"2":{"39":1}}],["166212",{"2":{"25":1}}],["16713",{"2":{"39":1}}],["167676",{"2":{"22":1}}],["16258",{"2":{"39":1}}],["169284",{"2":{"25":1}}],["16",{"2":{"10":1,"12":1,"13":1,"16":20,"22":1,"29":1,"43":2,"46":3,"67":1,"68":2,"69":4,"70":3,"71":5,"79":1,"85":1}}],["155874",{"2":{"96":1}}],["15532",{"2":{"39":1}}],["158741",{"2":{"87":2}}],["159",{"2":{"70":1}}],["15644",{"2":{"39":1}}],["151146",{"2":{"25":1}}],["152534",{"2":{"25":1}}],["15394",{"2":{"22":1}}],["15×10×30",{"2":{"16":1}}],["15×10",{"2":{"16":2}}],["15",{"2":{"10":1,"16":25,"22":6,"23":1,"27":4,"29":1,"30":1,"33":2,"54":2,"61":1,"96":1}}],["128",{"2":{"107":1}}],["128204",{"2":{"25":1}}],["121",{"2":{"66":1}}],["121947",{"2":{"22":1}}],["1242",{"2":{"39":1}}],["12575",{"2":{"39":1}}],["12370988510072528",{"2":{"101":1}}],["123",{"2":{"17":1,"21":2}}],["1200",{"2":{"104":1,"105":1,"106":1}}],["120997",{"2":{"22":1}}],["120",{"2":{"16":1}}],["12",{"2":{"8":4,"16":20,"27":1,"43":2,"46":3,"56":10,"58":3,"59":4,"67":1,"68":2,"69":2,"70":3,"71":5,"79":1,"85":1,"100":1,"101":2}}],["1=5",{"2":{"2":1}}],["11391077060238619",{"2":{"101":1}}],["113553",{"2":{"38":3}}],["111379",{"2":{"96":1}}],["1159916",{"2":{"83":1}}],["119",{"2":{"69":1}}],["1181",{"2":{"39":1}}],["112319",{"2":{"38":12}}],["114815",{"2":{"38":6}}],["11",{"2":{"2":6,"4":6,"5":6,"6":6,"8":1,"16":18,"27":1,"34":4,"35":4,"39":4,"43":2,"46":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["1",{"2":{"2":12,"4":19,"5":20,"6":22,"8":5,"9":3,"10":8,"11":3,"12":7,"13":5,"14":6,"16":24,"17":10,"18":9,"19":8,"20":5,"21":17,"22":34,"23":3,"25":1,"26":2,"27":6,"29":15,"30":4,"33":4,"34":4,"35":2,"37":6,"38":10,"39":54,"42":4,"43":12,"46":12,"47":17,"48":17,"49":4,"51":3,"52":3,"53":8,"54":8,"56":23,"58":10,"59":8,"60":15,"61":14,"63":1,"64":3,"65":1,"66":5,"67":4,"68":8,"69":13,"70":18,"71":15,"72":4,"79":4,"85":11,"86":2,"87":2,"90":1,"96":11,"100":2,"101":5,"102":5,"103":3,"105":4,"106":2,"107":5,"109":2}}],["10291543325743235",{"2":{"101":1}}],["1095",{"2":{"101":1}}],["10989",{"2":{"38":6}}],["10mb",{"2":{"89":2}}],["1083",{"2":{"39":1}}],["108696",{"2":{"38":6}}],["103704",{"2":{"38":3}}],["10×170×24",{"2":{"70":1}}],["10×10×24",{"2":{"70":2}}],["10×10×8",{"2":{"56":1}}],["10×10×12",{"2":{"56":1}}],["10×10×36",{"2":{"56":1}}],["10×10×5",{"2":{"51":1}}],["10×10",{"2":{"52":3,"53":1,"56":1}}],["10×15×20",{"2":{"60":1}}],["10×15",{"2":{"14":1,"22":2,"61":1,"96":1}}],["10×20×5",{"2":{"29":1}}],["100",{"2":{"59":7,"109":1}}],["100622",{"2":{"27":1}}],["1000",{"2":{"0":1,"105":1,"106":1}}],["10x15",{"2":{"22":1}}],["101524",{"2":{"22":1}}],["10",{"2":{"2":14,"4":16,"5":18,"6":17,"10":3,"12":1,"13":1,"14":1,"16":21,"22":15,"23":3,"25":2,"27":4,"29":6,"30":2,"42":1,"43":2,"46":3,"51":8,"52":12,"53":5,"54":4,"56":16,"58":10,"60":3,"61":2,"63":2,"64":4,"68":2,"69":3,"70":6,"71":5,"85":2,"95":1,"96":3,"109":1}}],["garbage",{"2":{"90":1}}],["gc",{"2":{"90":2}}],["gt",{"2":{"89":1,"90":3,"93":1}}],["glob",{"2":{"89":1}}],["globalproperties=dict",{"2":{"90":1}}],["global",{"2":{"89":1,"90":1}}],["glmakie",{"2":{"61":2,"99":1,"103":2,"107":4,"108":3}}],["glue",{"2":{"8":1}}],["gdalworkshop",{"2":{"44":1}}],["gdal",{"0":{"44":1},"2":{"44":1}}],["gb",{"2":{"42":1}}],["gn",{"2":{"42":1,"103":2,"108":1}}],["gs",{"2":{"42":1,"103":2,"108":1}}],["ggplot2",{"2":{"39":1,"108":1}}],["github",{"2":{"33":2,"44":1,"91":1}}],["gives",{"2":{"22":1}}],["given",{"2":{"2":1,"22":2,"41":1,"74":1,"76":1,"84":1,"89":6,"90":3,"96":1}}],["graphics",{"2":{"108":2}}],["grammar",{"2":{"108":1}}],["gradient",{"2":{"104":1,"105":1,"106":1,"107":1}}],["gradually",{"2":{"86":1}}],["grey25",{"2":{"107":1}}],["grey15",{"2":{"39":1,"61":1}}],["greenwich",{"2":{"44":1}}],["green",{"2":{"44":1,"75":1}}],["grouped",{"2":{"89":1}}],["groups",{"2":{"38":1}}],["grouping",{"2":{"36":2,"61":2}}],["groupby",{"0":{"34":1,"37":1},"1":{"35":1,"36":1,"38":1,"39":1},"2":{"31":1,"33":1,"34":6,"35":1,"36":1,"37":3,"38":3,"39":3,"89":1,"101":1}}],["group",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1},"2":{"34":1,"36":1,"37":2,"75":1,"89":3}}],["grid=false",{"2":{"39":1}}],["grid",{"2":{"23":1,"74":1,"89":1}}],["gridchunks",{"2":{"2":3,"4":1,"5":1,"6":1,"89":1,"90":1}}],["go",{"2":{"93":2}}],["going",{"2":{"90":1}}],["good",{"2":{"39":1}}],["goal",{"2":{"21":1,"32":1,"52":1}}],["goes",{"2":{"16":2,"89":1,"90":1}}],["guide",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1}}],["gen",{"2":{"16":6}}],["general",{"0":{"112":1},"2":{"89":1,"98":1}}],["generated",{"2":{"43":1,"67":1,"79":1,"85":1,"90":1}}],["generate",{"2":{"16":2,"56":1,"58":1,"59":1,"89":1,"93":1}}],["generic",{"2":{"16":2,"18":1,"19":1,"21":1,"29":1,"89":1}}],["getting",{"0":{"94":1},"1":{"95":1,"96":1,"97":1}}],["gettarrayaxes",{"2":{"65":1}}],["getarrayinfo",{"2":{"90":1}}],["getaxis",{"2":{"53":1,"61":2,"89":1}}],["getloopchunks",{"2":{"90":1}}],["getloopcachesize",{"2":{"90":1}}],["getouttype",{"2":{"90":1}}],["getoutaxis",{"2":{"90":1}}],["getfrontperm",{"2":{"90":1}}],["gets",{"2":{"89":1,"90":1}}],["get",{"0":{"72":1},"2":{"10":1,"18":1,"37":1,"51":1,"68":1,"70":1,"72":1,"90":3,"96":1,"101":1,"103":1}}],["geoaxis",{"2":{"105":1,"106":1}}],["geometrybasics",{"2":{"103":1,"107":1,"108":1}}],["geomakie",{"2":{"99":1,"103":1,"105":2,"106":1}}],["geogcs",{"2":{"44":1}}],["geojson",{"0":{"44":1}}],["geotiff",{"0":{"44":1}}],["geo",{"2":{"1":1}}],["g",{"2":{"7":1,"10":1,"11":1,"13":1,"16":4,"23":1,"29":1,"34":26,"35":2,"36":2,"37":2,"38":1,"39":18,"41":2,"72":1,"74":1,"77":1,"89":5,"103":2,"108":2}}],["2π",{"2":{"100":1}}],["2×3",{"2":{"96":1}}],["2×2×3",{"2":{"4":1,"5":1,"6":1}}],["2×2",{"2":{"2":3,"66":1}}],["2f0",{"2":{"66":1}}],["2x2l31",{"2":{"43":1,"67":1,"79":1,"85":1}}],["2963860",{"2":{"83":1}}],["298617",{"2":{"87":2}}],["298",{"2":{"44":1}}],["29816",{"2":{"39":1}}],["29473",{"2":{"39":1}}],["29564",{"2":{"39":1}}],["274902",{"2":{"96":1}}],["2747",{"2":{"39":1}}],["273",{"2":{"37":1}}],["276",{"2":{"37":2}}],["270",{"2":{"37":1}}],["27",{"2":{"34":1,"35":1,"39":1}}],["275265",{"2":{"87":2}}],["275×205×9",{"2":{"34":4}}],["275×205×36",{"2":{"33":2}}],["275",{"2":{"33":2}}],["28422753251364",{"2":{"42":4,"103":2,"109":2}}],["28008",{"2":{"39":1}}],["2894",{"2":{"39":1}}],["288",{"2":{"37":1}}],["2818",{"2":{"34":1,"35":1}}],["28",{"2":{"34":3,"35":3,"39":3,"56":1}}],["28571",{"2":{"22":2}}],["2857142857142857",{"2":{"10":1,"12":1,"13":1,"14":1,"22":3,"29":2,"30":1,"54":1,"60":3,"61":1,"96":1}}],["2d",{"2":{"19":5,"20":3,"21":2}}],["26274",{"2":{"39":1}}],["268675",{"2":{"27":1}}],["265797",{"2":{"25":1}}],["26",{"2":{"16":2,"42":2,"103":1,"109":1}}],["253383",{"2":{"96":1}}],["259455",{"2":{"87":2}}],["257223563",{"2":{"44":1}}],["25153",{"2":{"39":1}}],["25",{"2":{"16":4,"26":2,"56":1,"100":1}}],["24375",{"2":{"39":1}}],["2434",{"2":{"39":1}}],["241882",{"2":{"25":1}}],["24",{"2":{"16":6,"61":1,"69":2}}],["240",{"2":{"14":1,"16":1,"27":1}}],["233118",{"2":{"96":1}}],["23",{"2":{"16":8,"39":1,"43":2,"46":3,"60":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["22990067443344916",{"2":{"101":1}}],["224959",{"2":{"96":1}}],["22211",{"2":{"39":1}}],["225542",{"2":{"27":1}}],["22",{"2":{"16":10}}],["211397",{"2":{"96":1}}],["21t19",{"2":{"65":4}}],["21t06",{"2":{"42":2,"103":1,"109":1}}],["2101",{"2":{"42":2,"103":1}}],["21699",{"2":{"39":1}}],["21209",{"2":{"39":1}}],["215973",{"2":{"27":1}}],["21",{"2":{"16":12,"34":8,"35":8,"39":8}}],["2=10",{"2":{"2":1}}],["2",{"2":{"2":3,"4":8,"5":9,"6":10,"8":1,"9":1,"11":3,"12":2,"13":1,"14":1,"17":1,"18":2,"19":2,"20":1,"22":9,"23":1,"25":2,"27":3,"29":1,"34":1,"35":1,"39":40,"42":3,"43":3,"46":6,"47":2,"48":2,"51":3,"52":6,"53":3,"56":1,"59":6,"61":6,"64":4,"65":1,"66":8,"67":1,"68":4,"69":2,"70":2,"71":5,"72":2,"79":1,"85":2,"86":2,"89":2,"96":5,"103":3,"105":2,"107":1,"108":1,"109":1}}],["207967",{"2":{"96":1}}],["209357",{"2":{"96":1}}],["20×10×15",{"2":{"60":2}}],["20×10×15×2",{"2":{"54":1,"96":1}}],["20ºn",{"2":{"59":1}}],["2003",{"2":{"43":1,"67":1,"79":1,"85":1}}],["2004",{"2":{"43":1,"67":1,"79":1,"85":1}}],["2005",{"2":{"43":2,"46":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["2002",{"2":{"43":3,"46":3,"67":2,"68":2,"69":2,"70":3,"71":5,"79":2,"85":1}}],["2001",{"2":{"43":3,"46":3,"67":2,"68":2,"69":3,"70":3,"71":5,"79":2,"85":1}}],["2000",{"2":{"26":1}}],["2019",{"2":{"42":2,"103":1,"109":1}}],["2015",{"2":{"42":2,"43":1,"67":1,"79":1,"85":1,"103":2,"109":4}}],["205",{"2":{"33":2}}],["203714",{"2":{"27":1}}],["2023",{"2":{"100":1,"101":2}}],["2021",{"2":{"56":9,"100":1,"101":2,"102":1}}],["2020",{"2":{"47":4,"48":2,"49":8,"56":5,"58":3,"59":4,"65":8,"76":1}}],["2024",{"2":{"26":1,"48":5}}],["2022",{"2":{"10":4,"12":2,"13":2,"14":2,"16":8,"17":4,"18":2,"20":2,"21":6,"22":6,"23":2,"29":6,"30":2,"56":5,"58":3,"59":4,"102":1}}],["20",{"2":{"2":7,"4":10,"5":10,"6":10,"16":14,"29":2,"39":1,"54":4,"59":2,"60":3,"61":1,"85":2,"96":3}}],["55",{"2":{"101":1,"110":1}}],["551487",{"2":{"96":1}}],["551732",{"2":{"22":1}}],["55245",{"2":{"96":1}}],["552582",{"2":{"96":1}}],["514759",{"2":{"96":1}}],["514979",{"2":{"22":1}}],["5173",{"2":{"93":1}}],["542756",{"2":{"96":1}}],["547668",{"2":{"96":1}}],["547738",{"2":{"87":2}}],["54942",{"2":{"87":2}}],["540514",{"2":{"27":1}}],["5743",{"2":{"39":1}}],["57873",{"2":{"39":1}}],["57695",{"2":{"39":1}}],["57143",{"2":{"22":2}}],["52419",{"2":{"39":1}}],["56632",{"2":{"39":1}}],["59",{"2":{"109":1}}],["598769",{"2":{"96":1}}],["599987",{"2":{"87":2}}],["59212",{"2":{"39":1}}],["59085",{"2":{"39":1}}],["594514",{"2":{"25":1}}],["595405",{"2":{"22":1}}],["5×4",{"2":{"87":2}}],["5×4×5",{"2":{"86":1}}],["5×4×3",{"2":{"21":2}}],["5×4×3×2",{"2":{"17":1,"18":1}}],["5×7×3",{"2":{"47":1}}],["5×6×36",{"2":{"56":1}}],["5×6",{"2":{"27":2}}],["5×10",{"2":{"25":2}}],["507229",{"2":{"96":1}}],["506947",{"2":{"87":2}}],["508557",{"2":{"22":1}}],["500909",{"2":{"96":1}}],["50089",{"2":{"39":1}}],["500",{"2":{"0":1,"39":1,"107":2}}],["500mb",{"2":{"0":2}}],["53",{"2":{"69":1}}],["538981",{"2":{"22":1}}],["536399",{"2":{"22":1}}],["5843",{"2":{"34":1,"35":1}}],["581312",{"2":{"25":1}}],["58",{"2":{"16":2}}],["5",{"2":{"2":7,"4":16,"5":18,"6":7,"10":2,"12":3,"13":2,"14":1,"16":6,"17":2,"21":4,"22":10,"23":1,"25":2,"27":4,"29":5,"30":1,"39":5,"43":4,"46":6,"47":9,"48":3,"49":1,"51":4,"53":1,"54":2,"56":3,"58":4,"60":3,"61":2,"64":4,"67":2,"68":4,"69":3,"70":10,"71":10,"72":24,"79":2,"85":4,"86":6,"87":3,"96":2,"97":1,"102":2,"107":2}}],["rotate",{"2":{"107":1}}],["row",{"2":{"77":1,"89":1}}],["rowgap",{"2":{"39":1}}],["right",{"2":{"100":1,"102":1}}],["rights",{"2":{"87":1}}],["r",{"2":{"86":1,"108":1}}],["rlon",{"2":{"78":2}}],["rlat",{"2":{"78":2}}],["r1i1p1f1",{"2":{"42":2,"103":3,"108":1}}],["running",{"2":{"93":1}}],["run",{"2":{"23":1,"93":3,"98":2}}],["runs",{"2":{"13":1,"90":1}}],["ram",{"2":{"45":1}}],["race",{"2":{"43":1}}],["rafaqz",{"2":{"33":1}}],["raw",{"2":{"33":1,"44":1}}],["rasm",{"2":{"33":2}}],["ras",{"2":{"26":3}}],["rasters",{"2":{"26":2}}],["raster",{"0":{"26":1},"2":{"22":11,"26":3}}],["ranges",{"0":{"70":1},"2":{"53":1,"67":1}}],["range",{"2":{"10":2,"16":2,"17":2,"22":2,"23":2,"29":2,"49":1,"54":3,"56":1,"90":1,"96":3,"100":1}}],["randn",{"2":{"100":1}}],["random",{"2":{"17":2,"59":2,"65":3,"96":1}}],["rand",{"2":{"2":1,"4":3,"5":3,"6":3,"8":2,"9":2,"10":1,"17":1,"19":1,"21":3,"22":1,"23":1,"25":1,"26":1,"27":1,"29":2,"30":1,"47":4,"51":1,"52":2,"54":2,"59":3,"61":1,"63":1,"64":3,"85":1,"87":1,"96":2}}],["remaining",{"2":{"78":1}}],["removes",{"2":{"90":1}}],["remove",{"2":{"35":1}}],["removed",{"2":{"15":1,"90":1}}],["remote",{"2":{"0":1}}],["relational",{"2":{"74":1}}],["related",{"2":{"33":1}}],["rect",{"2":{"108":1,"109":2}}],["recommend",{"2":{"97":1}}],["recommended",{"2":{"71":1}}],["rechunking",{"2":{"90":1}}],["recalculate",{"2":{"90":1}}],["recal",{"2":{"90":1}}],["recently",{"2":{"0":1}}],["rename",{"2":{"64":1}}],["resets",{"2":{"89":1,"90":1}}],["respectively",{"2":{"75":1}}],["reshape",{"2":{"56":1,"58":2}}],["result",{"2":{"53":1,"61":1}}],["resulting",{"2":{"8":1,"9":1,"14":1,"89":1,"90":1}}],["results",{"0":{"102":1},"2":{"2":1,"5":1,"39":2,"89":1,"90":1}}],["ref",{"2":{"54":1,"89":1,"90":1}}],["reference",{"0":{"88":1},"1":{"89":1,"90":1},"2":{"65":1}}],["references",{"2":{"43":1,"67":1,"79":1,"85":1}}],["referencing",{"2":{"34":1}}],["reentrantlock",{"2":{"43":1}}],["rewrote",{"2":{"42":1,"43":1,"67":1,"79":1,"85":1,"103":1}}],["realization",{"2":{"43":1,"67":1,"79":1,"85":1}}],["realm",{"2":{"42":1,"103":1}}],["readcubedata",{"0":{"46":1},"2":{"45":1,"46":1,"59":2,"89":1,"108":1,"109":1}}],["reading",{"2":{"41":1}}],["read",{"0":{"40":1,"42":1,"43":1,"44":1},"1":{"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1},"2":{"1":1,"40":1,"44":1,"48":3,"59":1,"70":1,"89":1,"108":1,"109":1}}],["red",{"2":{"39":1,"44":1,"75":1}}],["reduce",{"2":{"10":1,"14":1,"19":1}}],["reverse",{"2":{"39":1}}],["reverseordered",{"2":{"9":1,"44":1,"96":1}}],["rebuild",{"0":{"52":1},"2":{"33":1,"51":1,"52":2,"65":2}}],["repeat",{"2":{"100":1}}],["repl",{"2":{"95":1,"98":1}}],["replace",{"2":{"23":1,"33":2,"107":1}}],["repository",{"2":{"91":1,"111":1}}],["reports",{"2":{"91":1}}],["rep",{"2":{"33":2}}],["reproduces",{"2":{"32":1}}],["represented",{"2":{"89":1,"113":1}}],["represents",{"2":{"75":1}}],["representing",{"2":{"22":2,"90":1}}],["representation",{"2":{"1":1,"89":2,"90":3}}],["re",{"2":{"22":1}}],["registry",{"2":{"98":1}}],["registration",{"2":{"90":2}}],["registered",{"2":{"90":1,"98":1}}],["regions",{"2":{"22":8}}],["region",{"2":{"22":12}}],["regular",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":3,"18":3,"19":2,"20":2,"21":9,"22":8,"25":2,"27":4,"29":9,"30":3,"33":4,"34":2,"35":2,"39":6,"42":2,"43":4,"44":2,"46":6,"47":2,"48":7,"49":2,"51":9,"52":6,"53":2,"54":3,"56":14,"58":6,"59":4,"60":9,"61":3,"63":1,"64":5,"66":4,"67":2,"68":4,"69":2,"70":3,"71":10,"72":3,"79":2,"85":5,"86":6,"96":5,"101":1,"103":1,"109":1}}],["regularchunks",{"2":{"2":6,"4":3,"5":3,"6":3}}],["returned",{"2":{"89":1}}],["returns",{"2":{"89":5,"90":2}}],["return",{"2":{"18":1,"19":1,"21":2,"22":4,"34":1,"89":1,"90":1,"101":1}}],["requests",{"2":{"91":1}}],["requested",{"2":{"13":1}}],["required",{"2":{"56":1}}],["requirements",{"2":{"43":1,"67":1,"79":1,"85":1}}],["requires",{"2":{"16":1}}],["http",{"2":{"93":1}}],["https",{"2":{"33":2,"43":1,"44":1,"67":1,"75":1,"79":1}}],["html",{"2":{"75":1}}],["hold",{"2":{"89":1}}],["holds",{"2":{"89":1,"90":1}}],["ho",{"0":{"65":1}}],["however",{"2":{"24":1,"48":1,"56":1}}],["how",{"0":{"54":1,"55":1,"60":1,"61":1,"62":1,"98":1},"1":{"56":1,"57":1,"58":1,"59":1,"63":1,"64":1},"2":{"6":1,"7":1,"10":1,"17":2,"18":1,"24":1,"28":1,"34":1,"40":1,"46":3,"50":1,"61":1,"87":1,"89":1,"111":1,"113":1}}],["hdf5",{"2":{"43":1}}],["hr",{"2":{"42":1,"103":2,"108":1}}],["high",{"2":{"65":4,"108":1}}],["highclip",{"2":{"39":4}}],["history",{"2":{"42":2,"43":2,"46":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"103":1,"109":1}}],["hidedecorations",{"2":{"39":1}}],["hm",{"2":{"39":8}}],["happens",{"2":{"90":1}}],["had",{"2":{"87":1,"89":1,"90":1}}],["handled",{"2":{"90":1}}],["handle",{"2":{"74":1,"90":1}}],["handling",{"2":{"9":1,"89":1}}],["handy",{"2":{"61":1}}],["hard",{"2":{"46":1}}],["hamman",{"2":{"32":1,"39":1}}],["has",{"2":{"8":1,"9":1,"22":1,"26":1,"27":1,"32":1,"35":1,"59":1,"90":1}}],["half",{"2":{"8":5}}],["have",{"2":{"6":1,"9":1,"22":1,"29":1,"34":1,"48":1,"57":1,"59":2,"76":1,"78":2,"89":3}}],["having",{"2":{"1":1,"22":1}}],["help",{"2":{"89":1,"90":2}}],["height",{"2":{"42":2,"78":2,"103":1,"108":1,"109":1}}],["heatmap",{"0":{"104":1},"2":{"39":3,"61":1,"104":1,"108":1}}],["hereby",{"2":{"22":1}}],["here",{"2":{"8":1,"9":1,"13":1,"16":2,"17":1,"21":1,"22":1,"55":1,"61":1,"70":1,"86":1,"92":2}}],["hence",{"2":{"1":1}}],["yasxa",{"2":{"59":6}}],["yaxcolumn",{"2":{"90":1}}],["yaxconvert",{"2":{"27":2}}],["yaxdefaults",{"2":{"90":1}}],["yaxarraybase",{"2":{"27":1,"89":1,"90":1}}],["yaxarray",{"0":{"11":1,"17":1,"29":1,"55":1,"56":1,"66":1,"68":1,"74":1},"1":{"18":1,"19":1,"20":1,"56":1,"57":1,"58":1,"59":1},"2":{"2":1,"4":4,"5":4,"6":4,"7":1,"8":3,"9":3,"10":2,"12":1,"13":1,"14":2,"16":8,"17":2,"18":1,"19":2,"20":1,"21":6,"22":3,"23":1,"25":4,"26":2,"27":5,"29":5,"30":2,"33":2,"34":7,"35":1,"37":9,"38":1,"39":3,"42":2,"43":2,"44":1,"46":3,"47":5,"48":3,"49":1,"51":3,"52":5,"53":1,"54":3,"55":1,"56":15,"58":4,"59":6,"60":3,"61":4,"63":2,"64":4,"65":4,"66":4,"67":2,"68":2,"69":3,"70":3,"71":5,"74":1,"76":1,"79":1,"80":1,"82":1,"85":2,"86":4,"89":10,"90":3,"96":5,"101":2,"103":1,"109":1,"113":1}}],["yaxarrays",{"0":{"0":1,"1":1,"2":1,"7":1,"10":1,"16":1,"24":1,"28":1,"31":1,"40":1,"62":1,"67":1,"79":1,"91":1,"98":1,"112":1,"113":1},"1":{"2":1,"3":1,"4":1,"5":1,"6":1,"8":1,"9":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"63":1,"64":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"92":1,"93":1},"2":{"0":3,"2":1,"4":1,"5":1,"6":1,"8":3,"9":3,"10":4,"16":6,"17":3,"22":3,"23":4,"24":2,"25":1,"29":3,"31":3,"34":2,"37":2,"38":1,"39":1,"40":1,"41":1,"42":1,"43":1,"44":2,"47":3,"48":3,"49":3,"51":1,"52":1,"54":3,"55":1,"56":1,"57":1,"58":2,"59":4,"63":1,"64":1,"65":4,"67":1,"73":1,"75":1,"78":3,"79":1,"84":1,"86":1,"89":28,"90":28,"91":1,"93":1,"95":3,"96":5,"97":2,"98":4,"101":3,"103":1,"108":1,"111":1,"112":1}}],["yax",{"2":{"0":1,"8":3,"9":3,"10":2,"16":11,"17":3,"18":1,"19":1,"20":3,"21":5,"22":2,"23":2,"29":2,"31":1,"34":4,"37":1,"47":3,"48":4,"49":2,"52":1,"54":2,"56":1,"58":1,"59":1,"65":5,"66":2,"78":18,"89":1,"96":2,"101":2}}],["yet",{"2":{"89":1}}],["yeesian",{"2":{"44":1}}],["years",{"2":{"56":1,"100":1,"101":1}}],["year",{"2":{"8":4,"102":1}}],["yyyy",{"2":{"43":2,"67":2,"79":2,"85":2}}],["ylabel=",{"2":{"100":1,"102":1}}],["ylabel",{"2":{"39":3}}],["yc",{"2":{"33":2}}],["y",{"2":{"4":2,"5":3,"6":2,"26":1,"27":3,"33":2,"34":2,"35":1,"39":3,"44":1,"56":4,"60":4,"74":1,"96":3}}],["you",{"2":{"1":1,"23":1,"45":1,"46":1,"55":1,"59":3,"64":2,"78":4,"81":1,"89":1,"90":2,"92":1,"93":2,"95":2,"97":1,"98":3,"108":1,"111":3,"113":2}}],["yourself",{"2":{"93":1}}],["your",{"2":{"1":2,"43":1,"59":2,"78":3,"84":2,"86":1,"89":1,"92":4,"93":4}}],["circshift",{"2":{"105":1}}],["ct1",{"2":{"103":4,"104":1}}],["cycle",{"0":{"100":1,"102":1},"1":{"101":1,"102":1},"2":{"101":4}}],["cycle=12",{"2":{"34":2,"35":1,"37":2,"38":2,"39":3}}],["cdata",{"2":{"90":1}}],["cgrad",{"2":{"61":1}}],["center",{"2":{"89":1,"100":1,"102":1}}],["certain",{"2":{"47":1,"67":2,"90":1}}],["cell",{"2":{"42":2,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"89":1,"109":2}}],["cf",{"2":{"42":2,"43":2,"67":2,"79":2,"85":2,"103":2}}],["cftime",{"2":{"33":6,"34":2,"37":7,"38":2,"39":2,"43":6,"46":9,"67":3,"68":6,"69":7,"70":9,"71":15,"79":3,"85":3}}],["cmpcachmisses",{"2":{"90":1}}],["cm4",{"2":{"43":4,"67":4,"79":4,"85":4}}],["cmip",{"2":{"42":1,"103":1}}],["cmip6",{"2":{"42":3,"103":6,"108":3}}],["cmor",{"2":{"42":2,"43":3,"46":3,"67":2,"68":2,"69":3,"70":3,"71":5,"79":2,"85":2,"103":1,"109":1}}],["c54",{"2":{"39":1}}],["cbar",{"2":{"61":1}}],["cb",{"2":{"39":1}}],["cl",{"2":{"105":1,"106":1}}],["cl=lines",{"2":{"105":1,"106":1}}],["clean",{"2":{"90":1}}],["cleanme",{"2":{"90":4}}],["cleaner",{"2":{"89":2}}],["clevel=n",{"2":{"81":1}}],["closedinterval",{"2":{"71":1}}],["closed",{"0":{"71":1},"2":{"71":3}}],["close",{"2":{"65":4}}],["cloud",{"2":{"11":1,"42":1}}],["classes=classes",{"2":{"61":1}}],["classes",{"2":{"61":8}}],["classification",{"2":{"61":2}}],["class",{"2":{"61":3}}],["clashes",{"2":{"34":1}}],["climate",{"2":{"43":1,"67":1,"79":1,"85":1}}],["clustermanagers",{"2":{"23":2}}],["cluster",{"2":{"23":1}}],["cpus",{"2":{"23":1}}],["cpu",{"2":{"23":1}}],["c",{"2":{"22":11,"33":2,"41":1,"51":5,"52":7,"53":3,"61":2,"64":2,"75":1,"78":4,"81":1,"83":4,"89":6,"90":3,"101":4,"103":2,"108":2,"109":1}}],["cumbersome",{"2":{"108":1}}],["custom",{"2":{"29":1,"89":1}}],["current",{"2":{"22":2,"75":1,"89":1,"102":1,"108":1}}],["currently",{"2":{"16":1,"33":1,"65":1,"111":1}}],["cubeaxis",{"2":{"90":1}}],["cubeaxes",{"2":{"89":1}}],["cubedir",{"2":{"90":1}}],["cube2",{"2":{"89":1}}],["cube1",{"2":{"89":1}}],["cubelist",{"2":{"89":1}}],["cubefittable",{"2":{"61":2,"89":1}}],["cubetable",{"0":{"61":1},"2":{"61":3,"89":3}}],["cubes",{"0":{"54":1},"2":{"9":2,"17":1,"21":1,"54":2,"59":1,"60":2,"61":1,"68":1,"76":1,"89":18,"90":9}}],["cube",{"0":{"51":1,"53":1,"55":1,"76":1,"101":1},"1":{"52":1,"56":1,"57":1,"58":1,"59":1},"2":{"2":1,"4":1,"5":1,"6":1,"16":11,"17":2,"19":2,"21":2,"33":1,"51":1,"53":1,"55":2,"59":1,"60":1,"61":2,"76":3,"86":1,"89":34,"90":19,"113":1}}],["chose",{"2":{"75":1}}],["child",{"2":{"42":1,"103":1}}],["check",{"2":{"16":1,"86":1,"97":1}}],["changed",{"2":{"97":1,"111":1}}],["changes",{"2":{"46":1}}],["change",{"2":{"10":1,"89":1,"90":1}}],["chunkoffset",{"2":{"90":1}}],["chunksize`",{"2":{"90":1}}],["chunksizes",{"2":{"89":2}}],["chunksize",{"2":{"89":1,"90":3}}],["chunks",{"0":{"4":1},"2":{"2":5,"4":1,"5":1,"6":2,"89":4,"90":11}}],["chunked",{"2":{"2":5}}],["chunking",{"0":{"2":1,"3":1,"5":1,"6":1},"1":{"4":1,"5":1,"6":1},"2":{"1":1,"5":1,"89":4,"90":3}}],["chunk",{"0":{"1":1},"1":{"2":1,"3":1,"4":1,"5":1,"6":1},"2":{"1":1,"2":1,"4":1,"5":1,"89":4,"90":4}}],["criteria",{"2":{"61":1}}],["creation",{"2":{"47":1,"66":1}}],["creating",{"0":{"22":1},"2":{"10":1,"52":1,"56":1,"86":1,"92":1,"108":1}}],["createdataset",{"2":{"90":2}}],["created",{"2":{"90":2}}],["creates",{"2":{"61":1,"89":2,"90":1}}],["create",{"0":{"28":1,"29":1,"30":1,"66":1},"1":{"29":1,"30":1},"2":{"10":1,"16":1,"22":2,"28":1,"29":1,"37":1,"52":1,"54":1,"56":2,"61":1,"65":1,"79":1,"84":1,"86":3,"89":1,"90":1,"96":1,"100":1,"108":1}}],["crucial",{"2":{"1":1}}],["coastlines",{"2":{"105":3,"106":1}}],["cosd",{"2":{"89":1}}],["country",{"2":{"89":4}}],["country=cube2",{"2":{"89":1}}],["could",{"2":{"45":1,"52":1,"65":1}}],["copies",{"2":{"90":1}}],["copied",{"2":{"86":1}}],["copybuf",{"2":{"90":2}}],["copydata",{"2":{"90":1}}],["copy",{"2":{"51":1,"89":1,"93":1}}],["college",{"2":{"111":1}}],["collected",{"2":{"90":1}}],["collectfromhandle",{"2":{"90":1}}],["collection",{"2":{"50":1,"74":1}}],["collect",{"2":{"25":1,"53":3,"101":1}}],["colonperm",{"2":{"90":1}}],["color=",{"2":{"102":3,"108":2,"109":2,"110":1}}],["color",{"2":{"100":1,"105":1,"106":1,"107":1,"108":1,"109":3}}],["colorbar",{"2":{"39":2,"61":1}}],["colormap=makie",{"2":{"61":1}}],["colormap=",{"2":{"39":1}}],["colormap",{"2":{"39":3,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1}}],["colorrange=",{"2":{"39":1}}],["colorrange",{"2":{"39":3}}],["column",{"2":{"77":1,"90":1}}],["colnames",{"2":{"65":1}}],["colgap",{"2":{"39":1}}],["coordinates",{"2":{"33":2,"42":1,"109":1}}],["configuration",{"2":{"90":2}}],["concatenating",{"2":{"89":1}}],["concatenates",{"2":{"89":2}}],["concatenate",{"0":{"54":1},"2":{"47":2,"49":1,"54":2,"89":2}}],["concatenatecubes",{"0":{"9":1},"2":{"9":2,"54":2,"89":2}}],["concrete",{"2":{"89":2}}],["convinient",{"2":{"50":1}}],["conventions",{"2":{"43":1,"67":1,"79":1,"85":1}}],["convenience",{"2":{"34":1,"78":1}}],["convenient",{"2":{"23":1}}],["conversion",{"2":{"24":1,"26":1,"27":1}}],["conversions",{"2":{"24":1}}],["converted",{"2":{"76":1}}],["convert",{"0":{"24":1,"25":1,"26":1,"27":1},"1":{"25":1,"26":1,"27":1},"2":{"24":1,"25":2,"27":2,"89":1,"90":1}}],["constructor",{"2":{"89":1}}],["constructs",{"2":{"89":1}}],["construct",{"0":{"65":1},"2":{"89":2,"108":1}}],["consolidated=true",{"2":{"42":1,"103":1,"108":1}}],["consistent",{"2":{"42":1,"103":1}}],["consisting",{"2":{"8":1}}],["considered",{"2":{"61":1}}],["considering",{"2":{"32":1}}],["consider",{"2":{"17":1,"19":1,"21":1,"52":1,"109":1}}],["contributing",{"2":{"92":1}}],["contribute",{"0":{"91":1,"92":1},"1":{"92":1,"93":2}}],["contrast",{"2":{"89":1}}],["content",{"2":{"89":1}}],["contents",{"2":{"49":1}}],["contact",{"2":{"43":1,"67":1,"79":1,"85":1}}],["contains",{"2":{"71":1,"89":1,"90":1}}],["contain",{"2":{"42":1,"43":1,"90":1}}],["containing",{"0":{"66":1},"2":{"8":1,"61":1,"75":1,"76":1,"89":1}}],["continue",{"2":{"34":1,"108":1}}],["corresponding",{"2":{"7":1,"21":2,"22":2,"76":1,"89":1}}],["combining",{"0":{"114":1}}],["combined",{"2":{"9":2,"76":2}}],["combine",{"0":{"7":1},"1":{"8":1,"9":1},"2":{"7":1,"8":1,"9":1,"113":1}}],["command",{"2":{"98":2}}],["comment",{"2":{"42":1,"109":1}}],["common",{"2":{"41":1,"59":5,"89":2}}],["com",{"2":{"33":2,"44":1}}],["compiler",{"2":{"97":1}}],["compuation",{"2":{"89":1}}],["computing",{"2":{"61":1}}],["computations",{"2":{"13":1,"60":1}}],["computation",{"0":{"23":1},"2":{"13":1,"74":1,"89":3,"90":3}}],["computed",{"2":{"90":1}}],["compute",{"0":{"10":1},"1":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"101":1}}],["compares",{"2":{"90":1}}],["comparing",{"2":{"83":1}}],["compatible",{"2":{"44":1}}],["compress",{"2":{"83":2}}],["compress=n",{"2":{"83":1}}],["compressors",{"2":{"81":1}}],["compressor=compression",{"2":{"81":1}}],["compression",{"0":{"81":1,"83":1},"2":{"81":5,"83":4}}],["completely",{"2":{"45":1}}],["complexity",{"2":{"60":1}}],["complex",{"2":{"10":2,"96":1,"108":1}}],["comply",{"2":{"43":1,"67":1,"79":1,"85":1}}],["comes",{"2":{"1":1}}],["code",{"2":{"6":1,"13":1,"23":2,"43":2,"50":1,"65":1,"108":1}}],["captialisation",{"2":{"90":1}}],["cameracontrols",{"2":{"107":1}}],["came",{"2":{"76":1}}],["caxes",{"2":{"51":2,"89":2}}],["cairomakie",{"2":{"39":1,"100":2}}],["car",{"2":{"22":1}}],["cartesianindex",{"2":{"22":11}}],["caluclate",{"2":{"89":1}}],["calculations",{"2":{"39":1,"90":1}}],["calculating",{"2":{"14":1,"89":1}}],["calculates",{"2":{"89":1}}],["calculated",{"2":{"34":1,"61":2}}],["calculate",{"2":{"14":1,"22":1,"31":1,"32":2,"34":1,"39":1,"61":2,"90":2,"101":1}}],["calling",{"2":{"39":1,"78":1}}],["called",{"2":{"16":1,"34":1,"74":3,"90":1}}],["call",{"2":{"1":1,"23":1}}],["case",{"2":{"13":1,"19":1,"36":1,"42":1,"46":1,"49":2,"59":1}}],["cases",{"2":{"0":1,"45":1,"71":1,"111":1}}],["cataxis",{"2":{"89":2}}],["categoricalaxis",{"2":{"89":1}}],["categorical",{"2":{"9":1,"17":1,"18":1,"19":1,"22":1,"34":2,"35":1,"36":1,"37":2,"38":2,"39":3,"54":1,"61":1,"65":4,"89":1,"90":1,"96":1}}],["cat",{"0":{"8":1},"2":{"8":2}}],["cache=1gb",{"2":{"89":1}}],["cache=1e9",{"2":{"16":2}}],["cache=",{"2":{"89":1}}],["cache=5",{"2":{"89":1}}],["cache=5e8",{"2":{"84":1,"89":1}}],["cache=yaxdefaults",{"2":{"89":1}}],["caches",{"2":{"0":1}}],["cachesize",{"2":{"0":2,"90":1}}],["cache",{"2":{"0":6,"89":3,"90":7}}],["caching",{"0":{"0":1}}],["can",{"2":{"0":5,"2":1,"3":1,"13":2,"14":1,"16":3,"20":1,"22":1,"23":3,"29":2,"35":1,"39":1,"42":2,"43":1,"44":1,"45":1,"47":1,"54":1,"55":1,"57":1,"59":1,"60":1,"61":2,"65":1,"72":1,"74":3,"75":2,"76":1,"78":2,"85":1,"86":1,"87":1,"89":13,"90":6,"92":1,"95":2,"98":2,"110":1,"111":2}}],["msc",{"2":{"101":3,"102":2}}],["mscarray",{"2":{"101":2}}],["md",{"2":{"92":2}}],["mfdataset",{"0":{"47":1},"1":{"48":1,"49":1},"2":{"48":3,"49":2,"89":5}}],["mpi",{"2":{"42":1,"103":2,"108":1}}],["m",{"2":{"25":2}}],["miss",{"2":{"90":1}}],["missing",{"2":{"14":2,"16":6,"18":1,"21":1,"22":2,"43":12,"46":6,"60":1,"61":2,"68":4,"69":6,"70":6,"71":10,"86":3,"87":1,"89":2,"90":2,"107":1}}],["mind",{"2":{"108":1}}],["minimal",{"2":{"108":1}}],["minimized",{"2":{"90":1}}],["minutes",{"2":{"43":1,"46":3,"68":2,"69":3,"70":3,"71":5}}],["might",{"2":{"24":1,"45":1,"111":1}}],["mix",{"2":{"21":2}}],["mm",{"2":{"20":3,"43":2,"67":2,"79":2,"85":2}}],["mymean",{"2":{"23":4}}],["my",{"2":{"16":2,"43":1}}],["magma",{"2":{"109":1}}],["mahecha",{"2":{"76":1}}],["mask",{"2":{"61":2}}],["master",{"2":{"33":1,"98":1}}],["make",{"2":{"58":1,"59":2,"86":1,"89":1,"90":2,"93":1}}],["makie",{"2":{"39":1,"108":1,"109":1}}],["making",{"2":{"11":1,"43":1,"67":1,"108":1}}],["main",{"2":{"55":1,"90":1}}],["manager",{"2":{"95":1}}],["manual",{"2":{"43":1}}],["many",{"0":{"18":1,"19":2},"2":{"18":2,"19":2,"20":4,"46":1,"74":1,"90":1}}],["marker=",{"2":{"108":1,"109":2}}],["marketdata",{"2":{"65":2}}],["mar",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["machine",{"2":{"23":1,"74":1}}],["matching",{"2":{"96":1}}],["match",{"2":{"90":2}}],["matched",{"2":{"89":1}}],["matches",{"2":{"20":1}}],["mat",{"2":{"22":4}}],["matrix",{"2":{"16":2,"22":1,"25":1,"35":1,"39":2,"65":1,"74":1,"87":2,"101":1}}],["maximal",{"2":{"90":1}}],["maximum",{"2":{"60":1,"89":1,"90":1}}],["maxbuf",{"2":{"90":1}}],["max",{"2":{"16":2,"81":1,"83":1,"84":1,"89":8,"90":2}}],["maxsize",{"2":{"0":2}}],["may",{"2":{"10":1,"15":1,"34":4,"35":2,"36":1,"37":4,"38":4,"39":6,"42":1,"43":1,"97":1}}],["maps",{"0":{"103":1},"1":{"104":1}}],["mapslice",{"2":{"23":1}}],["mapslices",{"0":{"14":1},"2":{"10":1,"13":1,"14":1,"23":1,"60":1,"101":1}}],["mapped",{"2":{"89":1}}],["mapping",{"2":{"89":1,"90":3,"108":2,"109":4,"110":1}}],["mapcube",{"0":{"15":1},"1":{"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1},"2":{"10":1,"13":1,"15":1,"16":4,"18":1,"20":1,"21":2,"22":2,"23":3,"89":5,"90":2}}],["map",{"0":{"13":1,"60":1},"2":{"10":1,"13":2,"21":1,"22":3,"23":3,"34":2,"38":1,"39":1,"60":4,"61":1,"89":2,"96":1,"101":2}}],["moll",{"0":{"106":1}}],["mowingwindow",{"2":{"89":1}}],["module",{"2":{"89":1}}],["model",{"2":{"43":1,"67":1,"75":2,"79":1,"85":1}}],["modification",{"2":{"11":1,"23":1}}],["modify",{"0":{"11":1}}],["monthday",{"2":{"101":4}}],["month",{"2":{"32":1,"34":4,"35":1,"36":1,"37":5,"38":2,"39":3,"56":7,"58":3,"59":4,"89":1,"101":2}}],["monthly",{"0":{"32":1}}],["moment",{"2":{"27":1}}],["movingwindow",{"2":{"21":1,"89":4}}],["more",{"2":{"9":1,"10":1,"41":1,"55":1,"60":1,"61":1,"70":1,"71":1,"76":1,"81":1,"84":1,"89":3,"90":1,"96":1,"109":1,"110":1}}],["most",{"2":{"1":1,"15":1,"24":1,"109":1}}],["mesh",{"2":{"107":2}}],["merely",{"2":{"86":1}}],["merged",{"2":{"49":1}}],["measured",{"2":{"75":1,"76":1}}],["measure",{"2":{"74":1}}],["measures",{"2":{"42":1,"109":1}}],["means",{"0":{"32":1},"2":{"14":1,"89":1}}],["mean",{"0":{"100":1,"102":1},"1":{"101":1,"102":1},"2":{"10":1,"14":3,"23":4,"34":10,"35":2,"36":1,"39":2,"42":1,"43":1,"46":3,"61":4,"68":2,"69":3,"70":3,"71":5,"89":1,"101":5,"109":1}}],["meter",{"2":{"42":1,"109":1}}],["method",{"2":{"16":2,"18":1,"19":1,"21":1,"41":1,"89":1}}],["methods",{"2":{"7":1,"23":1,"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"109":1}}],["metadata",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":3,"24":1,"25":1,"27":3,"29":2,"33":2,"34":2,"35":1,"37":3,"38":2,"39":3,"42":1,"43":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":1,"56":5,"60":3,"61":3,"66":2,"68":2,"69":3,"70":3,"71":5,"86":2,"89":1,"96":3,"101":1,"109":1}}],["members",{"2":{"90":1}}],["member",{"2":{"6":1}}],["memory",{"0":{"45":1},"1":{"46":1},"2":{"1":1,"8":1,"10":1,"12":1,"13":1,"14":2,"16":3,"17":1,"18":1,"19":1,"21":3,"22":3,"24":3,"25":1,"27":1,"29":2,"33":3,"37":1,"45":1,"46":4,"51":1,"52":3,"53":1,"56":5,"59":4,"60":3,"61":3,"66":2,"74":1,"86":2,"89":2,"90":1,"96":2,"101":1,"108":1,"109":1}}],["multi",{"2":{"17":2,"21":2}}],["multiplying",{"2":{"60":1}}],["multiply",{"2":{"10":1,"60":1}}],["multiple",{"0":{"64":1,"114":1},"2":{"7":1,"21":1,"23":1,"42":1,"43":1,"74":1,"89":1}}],["must",{"2":{"0":1,"76":1,"89":1,"90":1}}],["mb",{"2":{"0":1,"33":2,"43":1,"46":3,"68":2,"109":1}}],["pkg",{"2":{"95":2,"98":2,"99":8}}],["pkg>",{"2":{"93":1,"98":1}}],["picture",{"2":{"74":1,"75":1}}],["pieces",{"2":{"50":1}}],["pixel",{"0":{"100":1},"1":{"101":1,"102":1},"2":{"21":1,"23":2}}],["purple",{"2":{"100":1}}],["purpose",{"2":{"50":1,"60":1}}],["pull",{"2":{"91":1}}],["public",{"0":{"89":1}}],["published",{"2":{"39":1}}],["p",{"2":{"43":1,"59":10,"67":1,"79":1,"85":1}}],["pydata",{"2":{"33":1}}],["post=getpostfunction",{"2":{"89":1}}],["positions",{"2":{"90":2}}],["position",{"2":{"74":1}}],["positional",{"2":{"69":1,"70":1}}],["possible",{"2":{"23":2,"24":1,"54":1,"66":1,"86":1,"89":3,"90":1}}],["pos",{"2":{"22":2}}],["point3f",{"2":{"107":1}}],["point",{"2":{"22":3,"42":1,"96":1,"108":1,"109":1}}],["points",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":4,"16":9,"17":3,"18":3,"19":2,"20":3,"21":9,"22":16,"23":1,"25":2,"27":4,"29":9,"30":3,"33":6,"34":3,"35":2,"37":3,"38":1,"39":7,"42":6,"43":6,"44":2,"46":9,"47":3,"48":10,"49":4,"51":9,"52":6,"53":2,"54":3,"56":14,"58":6,"59":21,"60":9,"61":5,"63":1,"64":5,"65":4,"66":4,"67":3,"68":6,"69":4,"70":9,"71":16,"72":3,"74":2,"75":1,"79":3,"85":6,"86":6,"96":5,"101":1,"103":3,"109":3}}],["plasma",{"2":{"108":1}}],["place",{"2":{"90":1}}],["plt",{"2":{"104":1,"108":1,"109":4}}],["please",{"2":{"43":1,"81":1}}],["plots",{"2":{"108":1}}],["plot",{"0":{"102":1,"104":1,"107":1},"2":{"39":2,"108":1,"109":1}}],["plotting",{"0":{"103":1},"1":{"104":1},"2":{"0":1,"99":1,"108":1}}],["plus",{"2":{"18":3,"33":1,"89":1}}],["paste",{"2":{"93":1}}],["pass",{"2":{"89":1}}],["passed",{"2":{"41":1,"89":5}}],["passing",{"2":{"21":1,"89":3}}],["pair",{"2":{"90":1}}],["pairs",{"2":{"18":1,"20":1}}],["partitioned",{"2":{"90":1}}],["participate",{"2":{"89":1}}],["particular",{"2":{"77":1}}],["parts",{"2":{"89":1}}],["parent",{"2":{"42":1,"103":1}}],["parallelized",{"2":{"90":1}}],["parallelisation",{"2":{"89":1}}],["parallel",{"2":{"23":1,"74":1}}],["package",{"2":{"23":1,"70":1,"72":1,"88":1,"95":1,"99":1}}],["packages",{"2":{"16":1,"24":1}}],["paths",{"2":{"47":1,"49":1,"89":1,"90":2}}],["path=",{"2":{"16":2,"42":1,"80":1,"81":1,"82":1,"83":1,"84":2,"85":1,"86":1,"89":1,"90":1}}],["path=f",{"2":{"4":1,"5":1,"6":1}}],["path",{"0":{"20":1},"2":{"0":1,"20":1,"33":2,"42":3,"43":2,"44":2,"67":2,"79":2,"84":2,"89":3,"93":1}}],["pr",{"2":{"93":1}}],["println",{"2":{"83":1}}],["printed",{"2":{"65":2}}],["primem",{"2":{"44":1}}],["prior",{"2":{"1":1}}],["props",{"2":{"96":2}}],["properly",{"2":{"32":1}}],["properties=dict",{"2":{"90":1}}],["properties=properties",{"2":{"18":2}}],["properties",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"10":2,"17":2,"18":2,"19":1,"20":2,"21":2,"23":2,"29":3,"30":3,"33":1,"39":1,"42":1,"43":1,"44":1,"67":1,"79":1,"85":1,"89":5,"90":1,"103":1}}],["probably",{"2":{"90":1}}],["process",{"2":{"74":1,"90":2}}],["processed",{"2":{"13":1}}],["provide",{"2":{"89":1}}],["provides",{"2":{"74":1,"108":1,"112":1}}],["provided",{"2":{"55":1,"86":1,"89":2}}],["providing",{"2":{"49":1}}],["projection",{"0":{"105":1,"106":1},"1":{"106":1,"107":1,"108":1,"109":1,"110":1},"2":{"44":1}}],["progressmeter",{"2":{"89":1}}],["progress",{"2":{"33":1,"111":1,"113":1}}],["product",{"2":{"22":1}}],["pressed",{"2":{"98":1}}],["pressing",{"2":{"95":1}}],["pre",{"2":{"89":2}}],["previously",{"2":{"61":1}}],["previous",{"2":{"39":1,"84":1,"86":1,"89":1}}],["preferred",{"2":{"33":2}}],["prepared",{"2":{"43":1,"67":1,"79":1,"85":1}}],["prep",{"2":{"9":2}}],["precipitation",{"2":{"9":2,"75":1,"76":1,"96":2}}],["permute",{"2":{"90":1}}],["permuteloopaxes",{"2":{"90":1}}],["permutation",{"2":{"90":1}}],["persist",{"2":{"90":1}}],["persistend",{"2":{"90":1}}],["persistency",{"2":{"90":1}}],["persistent",{"2":{"89":1,"90":2}}],["persist=nothing",{"2":{"84":1,"89":1}}],["perform",{"2":{"90":1}}],["performed",{"2":{"13":2}}],["performing",{"2":{"10":1}}],["per",{"2":{"7":1,"14":1,"34":1,"37":1,"38":1,"108":1}}],["=interval",{"2":{"71":2}}],["===",{"2":{"65":1}}],["==",{"2":{"12":1,"65":1,"101":1}}],["=>nan",{"2":{"107":1}}],["=>",{"2":{"10":2,"12":1,"13":1,"16":2,"17":2,"18":3,"19":2,"20":1,"21":2,"22":5,"23":1,"29":3,"30":3,"33":15,"34":5,"35":1,"37":3,"38":2,"39":3,"42":20,"43":20,"44":1,"46":30,"63":1,"64":1,"65":5,"67":10,"68":20,"69":30,"70":30,"71":50,"78":1,"79":10,"85":10,"96":6,"103":10,"109":17,"110":2}}],["=>2",{"2":{"4":1}}],["=>10",{"2":{"4":1}}],["=>5",{"2":{"4":1,"5":1}}],["=",{"2":{"0":5,"2":4,"4":9,"5":15,"6":9,"8":5,"9":5,"10":4,"11":1,"12":1,"13":1,"16":14,"17":4,"18":14,"19":7,"20":11,"21":12,"22":16,"23":5,"25":3,"26":5,"27":4,"29":5,"30":4,"33":5,"34":16,"35":1,"36":1,"37":4,"38":1,"39":22,"41":3,"42":2,"43":3,"44":2,"46":1,"47":6,"48":7,"49":2,"51":1,"52":3,"54":6,"56":7,"58":6,"59":17,"61":7,"63":1,"64":3,"65":7,"66":4,"67":2,"68":2,"69":6,"70":6,"71":3,"79":2,"81":2,"83":3,"85":2,"86":4,"87":5,"89":8,"90":7,"96":5,"100":10,"101":11,"102":5,"103":8,"104":5,"105":7,"106":5,"107":6,"108":10,"109":14,"110":2}}],["dc",{"2":{"90":2}}],["dd",{"2":{"48":4,"49":2,"51":1,"89":4,"101":1}}],["dkrz",{"2":{"42":1,"103":2,"108":1}}],["dummy",{"2":{"54":1,"56":1,"100":1,"101":1}}],["dufresne",{"2":{"43":1,"67":1,"79":1,"85":1}}],["due",{"2":{"36":1}}],["during",{"2":{"22":1,"23":1,"24":1}}],["d",{"2":{"22":5,"39":3,"65":5,"101":1,"103":3,"105":5,"106":1}}],["draw",{"2":{"108":2,"109":4,"110":1}}],["drop",{"2":{"39":1}}],["dropdims",{"0":{"35":1},"2":{"34":2,"35":2,"39":1}}],["drivers",{"2":{"41":1,"89":1}}],["driver",{"2":{"31":1,"41":3,"84":1,"89":5}}],["driver=backend",{"2":{"84":1,"89":1}}],["driver=",{"2":{"4":1,"5":1,"6":1,"41":3,"80":2,"81":1,"82":2,"83":1,"84":3,"85":1,"86":2,"89":5}}],["drei",{"2":{"19":2}}],["dash",{"2":{"102":1}}],["danger",{"2":{"84":1}}],["daysinmonth",{"2":{"34":1,"37":1}}],["days",{"2":{"32":1,"34":2,"36":1,"37":2,"38":2}}],["dayofyear",{"2":{"16":1}}],["day",{"2":{"10":2,"12":1,"13":1,"14":1,"16":4,"17":2,"18":1,"21":3,"22":3,"23":1,"29":3,"30":1,"47":2,"48":1,"100":1,"101":4,"102":1}}],["datconfig",{"2":{"90":2}}],["datset",{"2":{"89":1}}],["dat",{"2":{"89":8,"90":16}}],["datum",{"2":{"44":1}}],["datetime360day",{"2":{"43":6,"46":9,"67":3,"68":6,"69":7,"70":9,"71":15,"79":3,"85":3}}],["datetimenoleap",{"2":{"33":6,"34":2,"37":7,"38":2,"39":2}}],["datetime",{"2":{"20":1,"42":2,"48":1,"49":3,"65":5,"103":1,"109":2}}],["date",{"2":{"10":5,"12":3,"13":3,"14":3,"16":12,"17":5,"18":3,"21":8,"22":11,"23":3,"29":8,"30":3,"47":3,"48":7,"56":24,"58":8,"59":11,"74":1,"78":2,"100":2,"101":5,"103":1}}],["datesid",{"2":{"101":2}}],["dates",{"2":{"10":2,"12":1,"13":1,"14":1,"16":5,"17":2,"18":1,"21":2,"22":3,"23":1,"29":3,"30":1,"31":1,"34":1,"47":7,"48":5,"49":1,"56":8,"58":4,"59":5,"76":1,"100":1,"101":2,"103":1,"108":1,"109":1}}],["data=cube1",{"2":{"89":1}}],["databases",{"2":{"74":1}}],["dataframe",{"2":{"61":1,"89":1}}],["dataframes",{"2":{"61":1}}],["datacubes",{"2":{"89":1}}],["datacube",{"0":{"114":1},"2":{"61":2,"86":1,"89":1}}],["datatypes",{"2":{"55":1}}],["data1",{"2":{"54":2}}],["data3",{"2":{"30":1}}],["data2",{"2":{"29":2,"54":2}}],["datasetaxis",{"2":{"89":2,"90":1}}],["datasetaxis=",{"2":{"89":1,"90":1}}],["dataset",{"0":{"30":1,"41":1,"55":1,"57":1,"58":1,"59":1,"62":1,"65":1,"75":1,"84":1,"85":1,"87":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"56":1,"57":1,"58":2,"59":2,"63":1,"64":1},"2":{"0":3,"3":1,"4":4,"5":2,"6":3,"9":1,"10":1,"18":1,"20":2,"24":1,"30":2,"41":4,"42":3,"43":3,"44":3,"47":1,"48":3,"49":1,"57":1,"58":3,"59":5,"63":2,"64":3,"65":5,"67":3,"68":1,"75":3,"76":2,"78":1,"79":3,"80":1,"81":1,"82":1,"83":1,"84":3,"85":4,"86":2,"87":2,"89":20,"90":9,"103":2,"108":2,"109":1}}],["datasets",{"0":{"3":1,"28":1,"31":1,"40":1,"67":1,"79":1},"1":{"4":1,"5":1,"6":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1},"2":{"0":2,"24":1,"28":1,"40":1,"41":1,"45":1,"59":1,"84":1,"89":9,"90":4,"113":1}}],["data",{"0":{"33":1,"45":1,"53":1,"76":1},"1":{"46":1},"2":{"0":3,"1":2,"7":1,"8":2,"9":1,"10":3,"11":1,"12":1,"13":1,"14":2,"16":9,"17":3,"18":1,"19":1,"21":6,"22":4,"23":2,"25":2,"26":1,"27":1,"29":2,"33":4,"37":1,"42":3,"43":7,"46":6,"47":1,"51":1,"52":3,"53":2,"54":1,"56":6,"58":1,"59":2,"60":3,"61":5,"67":3,"68":4,"69":6,"70":6,"71":10,"73":1,"74":3,"75":2,"76":3,"79":3,"84":2,"85":3,"86":4,"87":1,"89":20,"90":12,"96":6,"97":1,"100":2,"101":2,"103":5,"105":1,"108":4,"109":7,"110":2,"113":4}}],["dev",{"2":{"93":1}}],["dependencies",{"2":{"93":1}}],["depth",{"2":{"21":8,"78":2}}],["deletes",{"2":{"84":1,"89":1}}],["delete",{"2":{"84":2,"86":1}}],["denoting",{"2":{"89":1}}],["dense",{"2":{"74":1}}],["denvil",{"2":{"43":2,"67":2,"79":2,"85":2}}],["degree",{"2":{"44":1}}],["degc",{"2":{"43":1,"46":3,"68":2,"69":3,"70":3,"71":5}}],["detect",{"2":{"41":1,"89":1,"90":1}}],["determined",{"2":{"90":1}}],["determines",{"2":{"89":1}}],["determine",{"2":{"1":1,"46":1,"89":1}}],["declarative",{"2":{"108":1}}],["dec",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["defaultfillval",{"2":{"90":1}}],["defaults",{"2":{"48":1,"89":7}}],["default",{"2":{"18":1,"41":1,"83":3,"86":1,"89":1,"90":4}}],["definition",{"2":{"76":1}}],["definitions",{"2":{"17":1,"19":1}}],["defining",{"2":{"23":1}}],["defines",{"2":{"89":1}}],["defined",{"2":{"18":1,"26":1,"27":1,"34":1,"39":1,"61":1,"72":1,"74":1,"77":1,"78":1,"86":1,"96":1}}],["define",{"0":{"101":1},"2":{"16":2,"18":1,"39":1,"56":1,"61":1,"78":1,"89":2,"100":1}}],["deal",{"2":{"17":1}}],["dest",{"2":{"106":1}}],["desc",{"2":{"89":3,"90":3}}],["descriptor",{"2":{"90":4}}],["descriptors",{"2":{"89":2}}],["descriptions",{"2":{"89":1}}],["description",{"2":{"17":2,"19":2,"21":2,"55":1,"89":4,"90":11}}],["described",{"2":{"113":1}}],["describe",{"2":{"89":2}}],["describes",{"2":{"7":1,"10":1,"24":1,"28":1,"40":1,"71":1,"73":1,"88":1,"90":1}}],["describing",{"2":{"89":1}}],["designed",{"2":{"24":2,"74":1}}],["desired",{"2":{"16":1,"90":4}}],["demand",{"2":{"13":1}}],["divided",{"2":{"60":1}}],["diverging",{"2":{"39":1}}],["direct",{"2":{"65":1}}],["directory",{"2":{"42":1,"80":2,"82":2}}],["directories",{"2":{"40":1,"90":1}}],["directly",{"2":{"16":1,"20":1,"27":1,"28":1,"29":1,"87":2}}],["differing",{"2":{"89":1}}],["difference",{"2":{"39":1}}],["differences",{"2":{"34":1,"39":1,"65":1,"90":1}}],["different",{"0":{"21":1},"2":{"9":2,"16":1,"17":2,"23":1,"32":1,"41":1,"51":1,"52":1,"64":1,"75":1,"89":3,"90":2,"111":1}}],["diff",{"2":{"34":2,"39":3}}],["dictionary",{"2":{"75":1,"89":3}}],["dict",{"2":{"4":1,"5":1,"8":1,"9":1,"10":2,"12":1,"13":1,"14":2,"16":5,"17":2,"18":3,"19":2,"20":1,"21":4,"22":4,"23":1,"25":1,"27":3,"29":4,"30":2,"33":2,"34":3,"35":2,"37":4,"38":3,"39":3,"42":2,"43":2,"44":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":1,"56":5,"60":3,"61":3,"65":2,"66":2,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"86":1,"89":3,"96":3,"101":1,"103":1,"109":1}}],["dime",{"2":{"42":1,"109":1}}],["dimensionaldata",{"2":{"22":1,"27":2,"31":1,"33":1,"34":15,"35":10,"37":12,"38":5,"39":38,"48":1,"49":2,"51":1,"52":1,"56":1,"58":1,"59":1,"65":1,"70":1,"71":2,"72":3,"74":1,"77":1,"78":1,"97":3,"99":1,"101":1,"103":1,"108":1}}],["dimensional",{"2":{"17":2,"19":2,"21":2,"73":1,"74":2,"89":1}}],["dimensions",{"0":{"58":1,"59":1,"77":1},"1":{"78":1},"2":{"9":1,"10":1,"13":1,"15":1,"16":2,"20":1,"21":1,"22":2,"23":1,"29":2,"34":16,"35":10,"37":11,"38":5,"39":38,"46":1,"49":1,"52":1,"54":1,"57":1,"59":3,"60":2,"64":1,"67":1,"72":2,"74":3,"75":1,"78":2,"89":8,"90":3,"96":3,"97":1}}],["dimension",{"0":{"8":1,"9":1,"48":1,"49":1,"72":1},"2":{"2":1,"8":2,"9":1,"10":1,"14":2,"16":3,"18":1,"19":1,"22":3,"34":1,"35":1,"36":1,"39":1,"47":2,"48":4,"49":3,"56":1,"59":1,"70":1,"72":1,"74":1,"76":1,"77":1,"78":4,"89":7,"90":3,"96":1}}],["dimvector",{"2":{"37":1,"89":1}}],["dimgroupbyarray",{"2":{"34":1,"37":1}}],["dimarray",{"0":{"27":1},"2":{"22":3,"27":6,"34":1,"35":1,"37":1,"38":2,"39":3,"48":3,"49":1,"72":1,"74":1,"89":2}}],["dims=2",{"2":{"101":1}}],["dims=",{"2":{"14":2,"23":1,"34":5,"35":1,"37":1,"39":1,"60":1}}],["dims",{"2":{"8":3,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":4,"25":1,"26":1,"27":2,"29":2,"33":2,"34":6,"35":1,"37":5,"38":2,"39":5,"42":1,"43":1,"46":3,"47":1,"51":3,"52":4,"53":1,"54":1,"56":5,"60":3,"61":3,"65":1,"66":2,"68":2,"69":3,"70":3,"71":5,"72":1,"86":1,"96":2,"101":1,"109":1}}],["dim",{"2":{"2":2,"4":7,"5":8,"6":2,"21":1,"22":1,"25":2,"27":2,"29":4,"34":2,"35":2,"39":6,"51":9,"52":6,"53":3,"54":1,"59":1,"63":1,"64":5,"66":4,"78":3,"85":3,"86":6,"89":1,"96":2,"108":2,"109":6,"110":1}}],["disregard",{"2":{"90":1}}],["display",{"2":{"107":1}}],["displayed",{"2":{"46":1}}],["dispatch",{"2":{"90":1}}],["discribe",{"2":{"89":2}}],["discussion",{"2":{"81":1}}],["distribute",{"2":{"23":1}}],["distributed",{"0":{"23":1},"2":{"0":1,"23":2}}],["diskarray",{"2":{"89":1}}],["diskarrays",{"2":{"2":9,"4":4,"5":4,"6":4,"89":2,"90":1}}],["disk",{"2":{"1":1,"16":1,"20":1,"27":1,"74":1,"86":3,"87":2,"89":1,"90":2}}],["dodgerblue",{"2":{"102":1}}],["documentation",{"0":{"92":1},"1":{"93":1}}],["doc",{"2":{"84":1}}],["docs",{"0":{"93":1},"2":{"75":1,"92":2,"93":6,"97":1,"108":1}}],["docstring",{"2":{"41":1,"89":1}}],["don",{"2":{"81":1}}],["done",{"2":{"39":1,"45":1,"52":1,"60":1,"92":2,"110":1}}],["double",{"2":{"33":2}}],["download",{"0":{"33":1},"2":{"33":1,"43":2,"44":2,"67":2,"79":2}}],["downloads",{"2":{"31":1,"33":1,"43":1,"44":1,"67":1,"79":1}}],["doing",{"2":{"23":1,"51":1,"53":1,"78":2,"93":1}}],["does",{"2":{"23":1,"86":1,"89":2,"90":1}}],["dot",{"2":{"21":1,"102":1}}],["do",{"0":{"54":1,"55":1,"60":1,"61":1,"62":1,"65":1},"1":{"56":1,"57":1,"58":1,"59":1,"63":1,"64":1},"2":{"1":1,"13":1,"16":1,"22":3,"23":1,"32":1,"39":1,"50":2,"60":1,"78":1,"86":1,"87":1,"90":1,"93":1,"95":1}}],["dsfinal",{"2":{"54":1,"60":2,"61":2}}],["ds2",{"2":{"54":3,"60":1,"85":1}}],["ds1",{"2":{"54":3,"60":3,"61":1}}],["dsw",{"2":{"34":2,"39":2}}],["dschunked",{"2":{"4":3,"5":3,"6":3}}],["ds",{"2":{"0":3,"4":2,"5":2,"6":2,"30":1,"33":4,"34":10,"37":1,"39":3,"42":1,"43":2,"44":1,"46":3,"48":3,"49":2,"58":2,"59":12,"63":1,"64":1,"65":2,"67":1,"68":2,"78":1,"79":1,"80":3,"81":2,"82":3,"83":7,"84":3,"85":2,"86":1,"87":5,"89":4,"90":1,"107":2}}],["written",{"2":{"89":1,"90":1}}],["writing",{"2":{"87":1}}],["writefac",{"2":{"90":1}}],["writefac=4",{"2":{"84":1,"89":1}}],["writes",{"2":{"89":1}}],["write",{"0":{"79":1,"80":1,"82":1},"1":{"80":1,"81":2,"82":1,"83":2,"84":1,"85":1,"86":1,"87":1},"2":{"86":1,"89":2}}],["wrapping",{"2":{"36":1,"49":1,"72":2}}],["wrapped",{"2":{"16":1}}],["wrap",{"2":{"0":1,"89":1}}],["would",{"2":{"47":1,"89":2}}],["world",{"2":{"44":2}}],["workarounds",{"2":{"108":1}}],["workdir",{"2":{"90":1}}],["worker",{"2":{"89":1}}],["workers",{"2":{"89":1}}],["workflow",{"2":{"45":1}}],["workflows",{"2":{"1":1}}],["work",{"2":{"24":2,"33":1,"49":1,"73":1,"89":1,"109":1,"111":2,"113":1}}],["workload",{"2":{"23":1}}],["working",{"2":{"16":1,"87":1}}],["works",{"2":{"6":1,"48":1,"53":1,"58":1,"59":1,"86":1}}],["wgs",{"2":{"44":3}}],["www",{"2":{"43":1,"67":1,"79":1}}],["w",{"2":{"39":2,"87":2}}],["was",{"2":{"20":1,"22":1,"23":1,"90":1}}],["way",{"2":{"15":1,"24":1,"51":1}}],["warning",{"2":{"11":1,"24":1,"33":1,"51":1,"59":1,"64":1,"66":1,"84":1,"86":1,"89":1,"108":1}}],["wanted",{"2":{"90":1}}],["wants",{"2":{"86":1}}],["want",{"0":{"99":1},"2":{"0":1,"1":1,"45":1,"49":1,"76":1,"78":2,"90":1,"93":1,"98":1,"113":1}}],["white",{"2":{"105":1,"106":1}}],["while",{"2":{"86":1}}],["which",{"2":{"9":1,"16":1,"22":2,"34":1,"39":1,"43":1,"46":1,"52":1,"59":2,"68":1,"71":1,"72":1,"76":3,"89":5,"90":4,"113":1}}],["whose",{"0":{"58":1,"59":1}}],["whole",{"2":{"8":3}}],["what",{"2":{"34":1}}],["whether",{"2":{"90":2}}],["when",{"2":{"1":1,"6":1,"13":1,"34":1,"46":1,"47":1,"49":1,"76":1,"78":1,"89":3,"90":1}}],["whereas",{"2":{"74":1}}],["where",{"2":{"0":1,"23":1,"32":1,"49":1,"59":4,"71":1,"87":1,"89":1,"90":4}}],["width",{"2":{"108":1}}],["wide",{"2":{"49":1}}],["wintri",{"0":{"105":1},"1":{"106":1,"107":1,"108":1,"109":1,"110":1}}],["windowloopinds",{"2":{"90":1}}],["window",{"2":{"89":1,"90":1}}],["within",{"2":{"70":1}}],["without",{"2":{"48":1,"90":1}}],["with",{"0":{"66":1},"2":{"4":1,"5":1,"8":1,"10":1,"12":1,"13":1,"16":7,"17":3,"18":2,"19":2,"21":3,"22":4,"23":2,"24":1,"29":3,"33":2,"34":4,"35":1,"37":2,"38":2,"39":5,"41":1,"42":3,"43":2,"46":3,"49":2,"51":1,"52":1,"59":6,"60":2,"61":3,"64":2,"65":3,"66":1,"67":1,"68":2,"69":3,"70":3,"71":5,"73":1,"75":1,"79":1,"81":1,"83":1,"84":1,"85":2,"86":2,"87":1,"89":11,"90":1,"92":1,"96":4,"97":3,"103":2,"105":1,"108":2,"109":1,"111":1,"113":1}}],["will",{"2":{"0":1,"1":1,"4":1,"5":1,"13":1,"16":3,"17":2,"18":1,"19":1,"22":1,"31":1,"36":2,"41":1,"43":1,"49":1,"55":1,"59":1,"60":2,"61":2,"64":2,"65":1,"84":3,"86":3,"87":1,"89":12,"90":3,"113":1}}],["wether",{"2":{"89":1}}],["well",{"2":{"61":1,"65":1,"86":1,"89":1}}],["welcome",{"2":{"6":1,"91":1}}],["weight=",{"2":{"89":1}}],["weight=nothing",{"2":{"89":1}}],["weight",{"0":{"37":1},"1":{"38":1,"39":1},"2":{"36":1,"38":1,"39":1}}],["weights",{"0":{"38":1},"2":{"34":3,"38":2,"39":1}}],["weightedmean",{"2":{"89":1}}],["weighted",{"0":{"39":1},"2":{"32":1,"34":8,"39":8,"61":1,"89":3}}],["were",{"2":{"13":2,"71":1,"90":1,"100":1}}],["we",{"2":{"0":1,"8":2,"9":1,"13":2,"14":1,"16":5,"17":3,"18":1,"19":1,"20":1,"22":5,"23":2,"29":2,"34":3,"35":1,"36":2,"39":1,"42":1,"47":1,"49":1,"52":1,"54":1,"55":1,"56":1,"57":1,"59":2,"60":2,"61":5,"65":4,"70":1,"76":1,"86":3,"87":4,"97":2,"100":1,"103":1,"108":1}}],["oob",{"2":{"89":1}}],["ohlcv",{"2":{"65":3}}],["ouput",{"2":{"93":1}}],["our",{"2":{"60":1,"61":1,"101":1,"109":1}}],["outcube",{"2":{"90":1}}],["outcubes",{"2":{"90":1}}],["outcs",{"2":{"90":1}}],["outsize",{"2":{"90":1}}],["outar",{"2":{"90":2}}],["out",{"2":{"33":1,"89":2,"90":1}}],["outtype",{"2":{"16":2,"89":1,"90":2}}],["outdims=outdims",{"2":{"22":1,"23":1}}],["outdims",{"0":{"17":1,"18":1,"19":1,"20":1},"1":{"18":1,"19":1,"20":1},"2":{"16":4,"18":12,"19":2,"20":11,"21":3,"89":6}}],["outputcube",{"2":{"90":3}}],["outputs",{"2":{"16":1,"18":2,"21":1}}],["output",{"2":{"6":1,"16":3,"17":1,"18":1,"22":1,"23":3,"43":1,"67":1,"79":1,"85":1,"89":11,"90":9}}],["o1",{"2":{"43":2,"67":2,"79":2,"85":1}}],["optimal",{"2":{"90":1}}],["optifunc",{"2":{"90":1}}],["optionally",{"2":{"89":1}}],["option",{"2":{"56":1,"58":1,"81":1}}],["options",{"2":{"41":1,"49":1,"53":1,"89":1}}],["operates",{"2":{"89":1}}],["operate",{"2":{"21":1,"78":1}}],["operation",{"2":{"21":1,"90":1}}],["operations",{"0":{"16":1},"2":{"10":1,"34":1,"89":2,"90":3,"108":1}}],["operating",{"2":{"19":1}}],["opens",{"2":{"89":1}}],["openinterval",{"2":{"71":1}}],["opening",{"2":{"48":2}}],["open",{"0":{"41":1,"47":1,"71":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"48":1,"49":1},"2":{"0":2,"18":1,"20":2,"41":3,"42":2,"43":2,"44":1,"47":1,"48":3,"49":3,"65":4,"67":2,"71":2,"79":1,"81":1,"85":1,"87":6,"89":7,"103":1,"108":1}}],["obj",{"2":{"61":2,"100":1,"102":1}}],["objects",{"2":{"89":2}}],["object",{"2":{"11":1,"42":1,"89":5,"90":3}}],["obtain",{"0":{"53":1},"2":{"36":1,"65":1}}],["ocean",{"2":{"43":1,"67":1,"79":1,"85":1}}],["oct",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["occuring",{"2":{"4":1}}],["o",{"2":{"33":3,"39":4,"89":5}}],["omit",{"2":{"23":1}}],["otherwise",{"2":{"89":1}}],["others",{"2":{"21":1,"65":1}}],["other",{"0":{"111":1},"1":{"112":1,"113":1,"114":1},"2":{"20":1,"24":1,"45":1,"108":1,"111":1,"113":1}}],["overwrite=false",{"2":{"84":1,"89":1}}],["overwrite=true",{"2":{"16":2,"84":3,"86":3,"89":1}}],["overwrite",{"0":{"84":1},"2":{"84":1,"89":2,"90":2}}],["overview",{"0":{"112":1},"2":{"78":1,"111":1,"112":1}}],["over",{"0":{"16":1,"113":1},"2":{"10":1,"15":1,"21":1,"23":1,"39":1,"89":8,"90":1,"113":1}}],["orangered",{"2":{"61":1}}],["orca2",{"2":{"43":1,"67":1,"79":1,"85":1}}],["ordered",{"2":{"74":1,"75":1}}],["ordereddict",{"2":{"22":1,"89":1}}],["orderedcollections",{"2":{"22":1}}],["order",{"2":{"16":1,"32":1,"87":1}}],["original",{"2":{"43":2,"46":6,"68":4,"69":6,"70":6,"71":10}}],["originates",{"2":{"9":1}}],["origin",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1,"96":2}}],["or",{"0":{"55":1},"1":{"56":1,"57":1,"58":1,"59":1},"2":{"1":2,"6":1,"10":1,"13":2,"15":1,"27":1,"41":1,"42":1,"45":1,"52":1,"57":1,"66":2,"67":2,"74":3,"77":2,"78":9,"81":1,"84":1,"89":24,"90":7,"95":1,"96":2,"98":1,"109":1}}],["onlinestat",{"2":{"89":2}}],["onlinestats",{"2":{"61":2}}],["only",{"2":{"6":1,"13":1,"14":1,"16":1,"20":1,"22":1,"24":1,"29":2,"34":1,"43":1,"60":1,"78":1,"86":1,"89":2}}],["once",{"2":{"39":1,"76":1,"90":1,"92":1}}],["on",{"2":{"1":2,"6":1,"7":1,"10":2,"13":2,"16":1,"23":2,"43":2,"46":3,"50":1,"67":1,"68":2,"69":3,"70":3,"71":5,"74":1,"78":1,"79":1,"81":1,"85":1,"86":1,"89":5,"90":4,"108":2}}],["ones",{"2":{"17":1,"52":1}}],["oneto",{"2":{"4":4,"5":4,"6":2,"25":2,"29":3,"51":9,"52":6,"63":1,"64":5,"66":4,"86":6,"96":2}}],["one",{"0":{"18":1,"63":1},"2":{"0":1,"7":1,"8":2,"14":2,"18":15,"19":5,"20":6,"21":2,"22":2,"35":1,"43":1,"47":1,"61":1,"65":1,"74":2,"75":1,"86":2,"89":9,"90":3,"108":1,"111":1}}],["own",{"2":{"0":1,"43":1,"78":1}}],["offsets",{"2":{"90":1}}],["offset",{"2":{"13":1}}],["often",{"2":{"7":1}}],["of",{"0":{"11":1,"32":1,"59":1,"87":1,"112":2},"2":{"0":2,"1":1,"6":1,"8":3,"9":1,"10":2,"11":1,"12":1,"13":2,"14":1,"15":1,"22":7,"23":3,"24":1,"26":1,"27":1,"32":1,"33":1,"37":1,"43":1,"46":1,"47":3,"49":2,"50":3,"51":3,"55":1,"56":2,"57":1,"58":1,"59":2,"60":1,"61":1,"67":3,"68":1,"70":1,"72":1,"74":7,"75":1,"76":2,"77":2,"78":1,"79":1,"85":1,"86":1,"87":1,"88":1,"89":53,"90":42,"96":1,"97":2,"101":2,"102":1,"108":2,"111":1,"112":1}}],["eo",{"2":{"111":1}}],["esdltutorials",{"2":{"111":1}}],["esm1",{"2":{"42":1,"103":2,"108":1}}],["eltype",{"2":{"96":1}}],["elementtype",{"2":{"90":1}}],["element",{"2":{"8":1,"9":1,"10":2,"13":2,"14":1,"16":3,"22":2,"34":2,"35":1,"36":1,"37":7,"38":2,"39":3,"49":1,"53":1,"61":1,"69":2,"72":1,"75":1,"76":2,"89":1,"90":1,"101":1}}],["elements",{"0":{"11":1,"69":1},"2":{"8":1,"12":1,"13":2,"23":1,"67":1,"74":1,"89":1,"90":1}}],["empty",{"2":{"90":1}}],["embeds",{"2":{"89":1}}],["either",{"2":{"89":2}}],["error",{"2":{"84":1}}],["effectively",{"2":{"60":1}}],["even",{"2":{"48":1}}],["everywhere",{"2":{"23":2}}],["every",{"2":{"0":1,"10":1,"13":1,"89":1}}],["epsg",{"2":{"44":5}}],["et",{"2":{"43":1,"67":1,"76":1,"79":1,"85":1}}],["edu",{"2":{"43":1,"67":1,"75":1,"79":1}}],["equivalent",{"2":{"39":1,"72":1}}],["equally",{"2":{"0":1}}],["env",{"2":{"93":1}}],["ensure",{"2":{"43":1}}],["enabling",{"2":{"29":1}}],["enter",{"2":{"95":1}}],["entire",{"2":{"22":1,"24":1,"80":1,"82":1}}],["entries",{"2":{"22":1,"33":2,"42":1,"43":1,"46":3,"65":1,"68":2,"69":3,"70":3,"71":5,"87":1,"89":1,"96":1,"109":1}}],["entry",{"2":{"10":1,"12":1,"13":1,"16":2,"17":1,"18":1,"19":1,"21":1,"29":2,"34":2,"35":1,"37":2,"38":2,"39":3,"89":1,"92":3}}],["enumerate",{"2":{"22":2,"39":2}}],["end",{"2":{"13":1,"16":1,"18":1,"19":2,"21":2,"22":4,"23":2,"34":2,"39":2,"43":1,"60":1,"101":2,"107":1}}],["exist",{"2":{"89":1}}],["exists",{"2":{"84":1,"89":1,"90":1}}],["existing",{"0":{"8":1,"49":1},"2":{"49":1,"84":1,"85":1}}],["expression",{"2":{"89":1}}],["exported",{"2":{"78":2}}],["experiment",{"2":{"43":3,"67":3,"79":3,"85":3}}],["explore",{"2":{"41":1}}],["explicitly",{"2":{"13":1,"34":1,"52":1,"55":1,"78":1,"90":1}}],["executes",{"2":{"89":1}}],["execute",{"2":{"23":1}}],["external",{"2":{"42":1,"103":1}}],["extension",{"2":{"41":1,"89":2}}],["extended",{"2":{"16":1,"89":1,"90":2}}],["extracts",{"2":{"90":1}}],["extract",{"0":{"51":1},"1":{"52":1},"2":{"90":1}}],["extracted",{"2":{"21":1}}],["extra",{"2":{"23":1}}],["exactly",{"2":{"5":1,"53":1,"65":1}}],["examples",{"2":{"6":1,"31":1,"41":1,"43":1,"53":2,"67":1,"79":1,"92":1}}],["example",{"2":{"0":1,"1":1,"5":1,"10":1,"17":1,"21":1,"23":2,"32":1,"41":1,"43":1,"45":1,"47":1,"52":1,"58":1,"59":1,"60":1,"61":1,"67":2,"74":2,"75":1,"76":1,"78":1,"79":2,"89":5,"90":1,"92":2,"96":2,"109":1,"110":1}}],["e",{"2":{"7":1,"8":1,"10":1,"11":1,"13":1,"22":2,"23":1,"26":1,"27":1,"29":1,"41":1,"43":1,"56":1,"72":1,"74":1,"77":1,"84":1,"89":7,"90":1,"93":1,"96":1}}],["east",{"2":{"44":1}}],["easier",{"2":{"29":1,"67":1}}],["easily",{"2":{"0":1,"23":1}}],["easy",{"2":{"26":1,"27":1,"108":1}}],["each",{"2":{"4":1,"5":1,"10":1,"13":1,"20":1,"22":5,"23":2,"32":1,"36":1,"46":1,"60":2,"61":2,"75":1,"77":1,"89":3,"90":3,"96":1}}],["features",{"2":{"112":1}}],["feel",{"2":{"81":1}}],["few",{"2":{"78":1}}],["feb",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["frame",{"2":{"113":1}}],["frames",{"2":{"74":1}}],["front",{"2":{"90":1}}],["from",{"0":{"32":1,"51":1,"53":2,"65":1},"1":{"52":1},"2":{"0":1,"8":1,"9":1,"24":1,"34":1,"41":1,"46":1,"49":1,"51":1,"52":1,"53":4,"59":3,"65":2,"71":1,"76":2,"87":1,"89":6,"90":6,"96":1,"101":1,"108":1,"109":1}}],["free",{"2":{"81":1}}],["frequently",{"0":{"50":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1}}],["fr",{"2":{"43":1,"67":1,"79":1,"85":1}}],["faceting",{"0":{"109":1},"2":{"109":1}}],["fallback",{"2":{"90":1}}],["falls",{"2":{"89":1}}],["false",{"2":{"18":1,"20":1,"66":1,"89":1,"90":1}}],["fails",{"2":{"89":1}}],["faq",{"0":{"50":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1}}],["faster",{"2":{"90":1}}],["fastest",{"2":{"1":1}}],["fast",{"2":{"1":1,"13":1}}],["f2mix",{"2":{"19":3}}],["f2",{"2":{"18":3}}],["f1",{"2":{"18":2,"19":1}}],["fu",{"2":{"90":1}}],["funtion",{"2":{"101":1}}],["fun",{"2":{"89":5}}],["functionality",{"0":{"112":1}}],["functions",{"2":{"10":2,"21":1,"74":2,"88":1,"89":1,"90":1,"109":1}}],["function",{"0":{"61":1},"2":{"0":1,"1":1,"13":2,"15":1,"16":6,"17":1,"18":2,"19":2,"21":5,"23":6,"31":1,"34":1,"36":1,"39":1,"41":1,"45":1,"51":2,"54":1,"60":1,"61":1,"65":1,"71":1,"86":1,"89":22,"90":12}}],["future",{"2":{"33":1}}],["further",{"2":{"13":1,"111":1}}],["flag",{"2":{"90":3}}],["flat",{"2":{"18":4,"19":2,"20":2}}],["float32",{"2":{"16":6,"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"86":2,"87":4,"90":1,"109":1}}],["float64",{"2":{"8":1,"9":1,"10":3,"12":3,"13":3,"14":4,"17":2,"18":2,"19":2,"20":2,"21":3,"22":9,"25":2,"27":4,"29":6,"30":2,"33":2,"34":3,"35":2,"38":3,"39":6,"42":4,"43":4,"44":2,"46":6,"47":1,"51":1,"52":3,"54":4,"60":12,"61":5,"65":2,"67":2,"68":4,"69":2,"70":6,"71":10,"72":4,"79":2,"85":2,"89":1,"90":1,"96":7,"101":2,"103":2,"109":2}}],["flexible",{"2":{"9":1,"15":1}}],["focus",{"2":{"108":1}}],["folder",{"2":{"93":1}}],["follow",{"2":{"93":1,"111":1}}],["follows",{"2":{"16":2,"19":1,"21":1,"34":2,"39":1,"87":1}}],["following",{"2":{"2":1,"5":1,"6":1,"16":1,"17":1,"18":1,"21":1,"23":1,"31":1,"32":1,"33":1,"52":1,"89":2,"90":4,"98":2,"99":1,"111":1}}],["found",{"2":{"89":1,"90":1}}],["fourth",{"2":{"43":2,"67":2,"79":2,"85":2}}],["fontsize=24",{"2":{"104":1}}],["fontsize=18",{"2":{"39":1}}],["font=",{"2":{"39":1}}],["forwarded",{"2":{"89":1}}],["forwardordered",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":4,"18":4,"19":3,"20":3,"21":9,"22":9,"25":2,"27":4,"29":9,"30":3,"33":6,"34":3,"35":2,"37":3,"38":1,"39":7,"42":6,"43":6,"44":1,"46":9,"47":3,"48":10,"49":4,"51":9,"52":6,"53":2,"54":4,"56":14,"58":6,"59":10,"60":9,"61":5,"63":1,"64":5,"65":4,"66":4,"67":3,"68":6,"69":4,"70":9,"71":15,"72":3,"79":3,"85":6,"86":6,"96":5,"101":1,"103":3,"109":3}}],["force",{"2":{"89":1}}],["forcing",{"2":{"42":1,"103":1}}],["forms",{"2":{"89":1,"90":2}}],["formal",{"2":{"76":1}}],["format",{"2":{"41":1,"81":1,"83":1,"84":1,"89":1,"101":1}}],["former",{"2":{"51":1}}],["for",{"0":{"6":1,"100":1},"1":{"101":1,"102":1},"2":{"0":2,"1":3,"4":1,"5":1,"6":1,"20":1,"22":4,"23":1,"33":1,"34":1,"37":1,"39":3,"41":3,"43":2,"45":2,"46":1,"47":3,"48":2,"56":1,"58":2,"59":2,"60":4,"61":6,"65":5,"67":1,"71":1,"72":1,"74":4,"75":3,"76":1,"78":4,"79":1,"84":1,"85":1,"86":2,"89":20,"90":16,"99":1,"100":1,"101":2,"108":3,"109":2,"110":2,"111":1}}],["f",{"2":{"2":2,"16":3,"41":1,"89":1}}],["field",{"2":{"89":1}}],["fields",{"2":{"61":1,"89":1,"90":4}}],["fig",{"2":{"39":8,"61":3,"100":1,"102":1,"104":2,"105":2,"106":2,"107":3}}],["figure=",{"2":{"102":1,"109":3,"110":1}}],["figure",{"2":{"39":2,"100":1,"102":1,"104":1,"105":1,"106":1,"107":1}}],["filterig",{"2":{"101":1}}],["filter",{"2":{"89":2}}],["fillarrays",{"2":{"86":3}}],["fill",{"2":{"86":1,"89":1,"90":1}}],["fillvalue=",{"2":{"90":1}}],["fillvalue",{"2":{"33":6,"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"109":1}}],["filling",{"2":{"28":1,"29":1}}],["filename",{"2":{"33":2,"41":1,"89":1}}],["files",{"0":{"114":1},"2":{"7":1,"40":1,"44":1,"47":2,"48":6,"49":4,"89":5,"90":2,"93":1}}],["file",{"2":{"2":1,"7":1,"27":1,"43":2,"59":1,"83":3,"84":2,"86":1,"89":2,"92":4}}],["findaxis",{"2":{"90":1}}],["findall",{"2":{"22":1,"101":1}}],["find",{"2":{"55":1,"90":1,"111":1}}],["finalizer",{"2":{"90":1}}],["finalize",{"2":{"90":1}}],["finally",{"2":{"22":1,"89":1}}],["final",{"2":{"21":1,"22":1}}],["firstly",{"2":{"56":1}}],["first",{"2":{"8":4,"16":3,"18":1,"22":1,"39":1,"61":1,"64":1,"87":1,"89":4,"90":1,"92":1,"96":1,"103":1,"108":2,"109":1}}],["fitting",{"2":{"89":1}}],["fittable",{"2":{"89":2}}],["fitcube",{"2":{"61":2}}],["fitsym",{"2":{"89":4}}],["fits",{"2":{"24":1}}],["fit",{"2":{"1":1,"45":1,"74":1}}],["t=union",{"2":{"90":1}}],["typing",{"2":{"95":1}}],["typically",{"2":{"89":1}}],["type",{"2":{"33":2,"52":1,"66":1,"74":1,"76":1,"89":8,"90":3,"96":1,"97":1,"108":1}}],["types",{"0":{"73":1},"1":{"74":1,"75":1,"76":1,"77":1,"78":1},"2":{"24":2,"26":1,"27":1,"66":1,"69":1,"75":1,"89":2,"97":1}}],["tutorial",{"2":{"111":2,"112":1,"113":1}}],["tutorials",{"0":{"111":1},"1":{"112":1,"113":1,"114":1},"2":{"71":1,"111":3}}],["turn",{"2":{"89":1}}],["tuple",{"2":{"2":3,"4":1,"5":1,"6":1,"18":1,"20":1,"34":2,"35":1,"37":5,"38":2,"39":4,"89":5,"90":1}}],["tbl",{"2":{"61":2}}],["target",{"2":{"90":1}}],["tab",{"2":{"89":4}}],["tables",{"2":{"113":1}}],["tableaggregator",{"2":{"89":1}}],["table",{"0":{"113":1},"2":{"42":1,"43":2,"61":2,"67":2,"78":2,"79":2,"85":2,"89":4,"90":1,"103":1}}],["ta",{"2":{"65":3}}],["tas",{"2":{"42":5,"103":5,"108":2,"109":5,"110":1}}],["tair",{"2":{"33":2,"39":1,"89":1}}],["takes",{"2":{"89":4}}],["taken",{"2":{"59":2}}],["take",{"2":{"16":1,"89":1,"90":2,"93":1}}],["tip",{"2":{"97":1}}],["tidy",{"2":{"89":1}}],["ticks",{"2":{"74":1}}],["ticks=false",{"2":{"39":1}}],["tick",{"2":{"72":1,"77":1,"96":1}}],["tiff",{"0":{"114":1}}],["tif",{"2":{"44":2,"99":1}}],["title",{"2":{"39":1,"43":1,"67":1,"79":1,"85":1,"92":1}}],["ti",{"2":{"26":1}}],["time1",{"2":{"69":2}}],["timearray",{"0":{"65":1},"2":{"65":3}}],["time=1",{"2":{"96":1,"108":1}}],["time=datetime",{"2":{"109":1}}],["time=date",{"2":{"56":1}}],["time=between",{"2":{"56":1}}],["time=at",{"2":{"39":3,"56":1}}],["time=>cyclicbins",{"2":{"34":2,"35":1,"37":2,"38":2,"39":3}}],["time",{"0":{"32":1,"78":1},"2":{"1":1,"7":1,"8":4,"9":3,"10":3,"12":1,"13":1,"14":7,"16":14,"17":2,"18":4,"19":1,"20":5,"21":10,"22":8,"23":5,"26":2,"29":3,"30":1,"33":4,"34":21,"35":3,"36":2,"37":9,"38":3,"39":7,"42":4,"43":4,"46":6,"47":4,"48":9,"49":5,"54":2,"56":8,"58":4,"59":7,"60":4,"61":3,"65":5,"67":1,"68":4,"69":6,"70":6,"71":10,"74":2,"75":1,"78":4,"79":1,"85":1,"89":6,"96":4,"100":1,"101":4,"103":4,"108":1,"109":10}}],["timestamp",{"2":{"65":1}}],["timestep",{"2":{"61":1}}],["timeseries",{"2":{"65":3}}],["times",{"2":{"0":1}}],["treat",{"2":{"89":1}}],["treatment",{"2":{"89":1,"90":1}}],["treated",{"2":{"42":1,"109":1}}],["translate",{"2":{"105":1,"106":1}}],["transformed",{"2":{"43":1,"67":1,"79":1,"85":1}}],["transformations",{"2":{"105":1}}],["transformation",{"2":{"22":1}}],["transform",{"2":{"22":2}}],["track",{"2":{"89":1}}],["tries",{"2":{"41":1,"89":1}}],["true",{"2":{"12":1,"45":1,"66":1,"86":1,"89":3,"90":1}}],["tesselation",{"2":{"107":1}}],["testrange",{"2":{"90":1}}],["test1",{"2":{"66":1}}],["test2",{"2":{"66":2}}],["test",{"2":{"17":4,"18":1,"19":3,"20":4,"21":4,"66":3,"90":1,"103":1}}],["terminal",{"2":{"93":1}}],["text",{"2":{"92":1}}],["tensors",{"2":{"74":1}}],["tell",{"2":{"55":1}}],["temporary",{"2":{"90":1}}],["temporal",{"2":{"31":1,"60":1,"74":1}}],["tempo",{"2":{"34":6,"37":4,"38":1}}],["temp",{"2":{"9":2}}],["temperature=temperature",{"2":{"59":1}}],["temperature",{"2":{"9":2,"33":2,"39":2,"42":3,"43":2,"46":6,"59":4,"68":5,"69":6,"70":6,"71":10,"74":1,"75":1,"76":1,"96":4,"109":3}}],["tempname",{"2":{"2":1,"4":1,"5":1,"6":1}}],["tspan",{"2":{"16":1}}],["t",{"2":{"16":4,"43":1,"46":4,"56":1,"58":2,"59":2,"61":3,"68":2,"69":3,"70":3,"71":5,"81":1,"89":1,"90":2,"100":1,"101":1,"109":1}}],["two",{"2":{"8":1,"9":1,"18":8,"19":4,"20":3,"21":2,"53":2,"54":1,"74":1,"90":1}}],["toghether",{"2":{"90":1}}],["together",{"2":{"65":1,"76":1}}],["touches",{"2":{"71":1}}],["tolerances",{"2":{"70":1}}],["too",{"2":{"59":1,"74":1,"89":1}}],["tos",{"2":{"43":5,"46":6,"67":2,"68":4,"69":4,"70":3,"71":9,"72":2,"79":2,"80":2,"82":2,"85":1}}],["top",{"2":{"39":1,"108":1}}],["todo",{"2":{"21":1,"101":1}}],["toy",{"2":{"21":1,"86":1}}],["to",{"0":{"9":1,"18":1,"19":1,"62":1,"85":1,"91":1,"92":1,"98":1},"1":{"63":1,"64":1,"92":1,"93":2},"2":{"0":4,"1":4,"3":1,"4":1,"6":2,"7":1,"8":1,"9":1,"10":8,"12":1,"15":1,"16":2,"17":1,"18":2,"19":1,"20":4,"21":3,"22":2,"23":6,"24":3,"25":2,"27":3,"28":1,"31":1,"32":3,"33":2,"34":1,"35":1,"36":1,"39":1,"40":1,"41":1,"42":3,"43":2,"45":1,"46":2,"47":2,"48":1,"49":2,"50":2,"51":2,"53":3,"54":1,"56":2,"58":2,"59":6,"60":1,"61":1,"64":2,"65":2,"66":1,"67":3,"71":1,"72":1,"73":1,"74":5,"75":3,"76":2,"77":2,"78":2,"79":1,"80":2,"81":2,"82":2,"83":2,"84":1,"85":2,"86":4,"87":3,"89":48,"90":19,"92":2,"93":3,"97":2,"98":1,"103":2,"108":3,"111":1,"113":3}}],["though",{"2":{"86":1}}],["those",{"2":{"11":1,"24":1,"26":1,"27":1,"64":1,"75":1,"87":1}}],["through",{"2":{"89":5,"90":5,"95":1}}],["thrown",{"2":{"84":1}}],["three",{"2":{"55":1,"75":1,"100":1}}],["threaded",{"2":{"43":1}}],["threads",{"2":{"43":2,"89":2}}],["thread",{"2":{"23":1,"43":3}}],["than",{"2":{"24":1,"55":1,"60":1,"61":1}}],["that",{"2":{"0":1,"9":2,"10":1,"13":1,"16":5,"20":1,"21":1,"22":2,"23":1,"24":1,"32":1,"35":1,"38":1,"43":2,"45":1,"48":2,"52":1,"54":1,"57":1,"59":2,"61":1,"65":1,"66":1,"72":1,"74":1,"75":2,"77":1,"78":1,"86":2,"89":13,"90":13,"108":2,"111":1,"113":1}}],["things",{"2":{"50":1}}],["think",{"2":{"1":1}}],["thinking",{"2":{"1":1}}],["this",{"2":{"0":1,"1":1,"4":1,"7":1,"10":1,"13":2,"16":4,"17":1,"19":2,"22":3,"23":1,"24":1,"28":1,"32":1,"34":1,"36":2,"40":1,"41":1,"42":1,"43":1,"45":1,"46":2,"49":1,"50":1,"53":1,"58":1,"59":2,"60":2,"61":2,"64":1,"65":1,"71":1,"73":1,"76":1,"81":1,"87":2,"88":2,"89":7,"90":10,"92":1,"93":2,"108":2,"109":1,"112":1,"113":1}}],["their",{"0":{"58":1,"59":1},"2":{"57":1,"59":1,"66":1,"74":1,"89":3,"90":2}}],["they",{"2":{"46":1,"65":4}}],["then",{"2":{"21":2,"22":2,"52":1,"60":1,"65":1,"78":1,"86":1,"87":1,"93":2,"95":1}}],["thereby",{"2":{"89":1}}],["therefore",{"2":{"61":1,"97":1}}],["there",{"2":{"14":2,"21":1,"27":1,"46":1,"47":1,"53":1,"65":2,"89":1,"108":1}}],["theme",{"2":{"39":2}}],["them",{"2":{"7":1,"10":1,"45":1,"55":1,"78":1,"87":1,"89":1,"109":1}}],["these",{"2":{"0":1,"6":1,"53":1,"55":1,"66":1,"72":1,"74":1}}],["the",{"0":{"33":1,"51":1,"53":1,"61":1,"101":1,"112":1},"1":{"52":1},"2":{"0":5,"1":4,"2":3,"4":1,"5":4,"6":4,"8":6,"9":3,"10":1,"11":1,"13":3,"14":2,"15":1,"16":12,"17":3,"18":5,"19":2,"20":3,"21":10,"22":14,"23":7,"24":2,"27":1,"29":3,"31":2,"32":5,"33":2,"34":4,"35":1,"36":2,"37":2,"38":2,"39":9,"41":6,"43":2,"45":3,"46":6,"48":1,"49":5,"50":1,"51":3,"52":5,"53":3,"54":2,"55":2,"56":9,"58":3,"59":10,"60":3,"61":10,"64":1,"65":7,"67":1,"68":5,"69":3,"70":5,"71":6,"72":1,"73":1,"74":5,"75":4,"76":4,"78":4,"83":1,"84":3,"85":1,"86":10,"87":2,"89":122,"90":83,"91":1,"92":1,"93":6,"95":2,"96":6,"97":8,"98":5,"99":1,"100":1,"101":4,"103":1,"108":4,"111":6,"112":1,"113":5}}],["smooth",{"2":{"110":1}}],["small",{"2":{"50":1,"65":1}}],["switched",{"2":{"97":1}}],["syntax",{"2":{"97":1,"108":1,"111":1}}],["system",{"2":{"93":1}}],["symbols",{"2":{"41":1,"89":1}}],["symbol",{"2":{"10":1,"12":1,"13":1,"18":1,"20":1,"29":2,"34":4,"35":2,"36":2,"37":5,"38":4,"39":6,"65":5,"89":3,"90":1}}],["src",{"2":{"92":1}}],["sres",{"2":{"43":2,"67":2,"79":2,"85":2}}],["skeleton=a",{"2":{"86":1}}],["skeleton=true",{"2":{"86":2}}],["skeleton=false",{"2":{"84":1,"89":1}}],["skeleton",{"0":{"86":1},"2":{"86":8,"87":4}}],["skipped",{"2":{"89":1}}],["skip",{"2":{"41":4,"89":5}}],["skipmissing",{"2":{"23":1,"60":1}}],["snow3",{"2":{"61":1}}],["snippet",{"2":{"6":1}}],["ssp585",{"2":{"42":1,"103":2,"108":1}}],["slightly",{"2":{"111":1}}],["slicing",{"2":{"16":1}}],["slices",{"2":{"89":3}}],["slice",{"2":{"16":1,"103":4,"104":1}}],["slow",{"2":{"59":1,"89":1}}],["slurmmanager",{"2":{"23":1}}],["shinclude",{"2":{"93":1}}],["shdocs>",{"2":{"93":1}}],["shnpm",{"2":{"93":2}}],["shouldn",{"2":{"46":1}}],["should",{"2":{"33":1,"45":1,"46":1,"56":1,"65":1,"78":1,"89":3,"90":1,"92":1,"93":1,"98":1,"109":1}}],["showprog",{"2":{"89":1}}],["showing",{"2":{"65":1}}],["shown",{"2":{"46":1,"89":1}}],["shows",{"2":{"39":1}}],["show",{"2":{"23":1,"87":1,"107":1}}],["shading=false",{"2":{"105":1,"106":1,"107":1}}],["shall",{"2":{"89":5,"90":1}}],["shares",{"2":{"59":1}}],["share",{"0":{"58":1,"59":1},"2":{"57":1,"59":1,"75":1,"89":1}}],["shared",{"2":{"4":1,"5":1,"6":1,"20":1,"30":1,"42":1,"43":1,"44":1,"48":3,"49":1,"54":1,"58":2,"59":3,"63":1,"64":1,"65":2,"67":1,"79":1,"85":1,"86":1,"103":1}}],["shape",{"2":{"6":1}}],["screen",{"2":{"107":1}}],["scripts",{"2":{"93":1}}],["scene",{"2":{"107":3}}],["scenariomip",{"2":{"42":1,"103":2,"108":1}}],["scenarios",{"2":{"17":1,"103":1}}],["scope",{"2":{"89":1,"90":1}}],["scales",{"2":{"108":1,"109":1}}],["scalar",{"2":{"42":1,"109":1}}],["scatter",{"2":{"108":3,"109":2,"110":1}}],["scattered",{"2":{"7":1}}],["subcubes",{"2":{"89":1}}],["subtype",{"2":{"74":1,"78":1,"90":1,"97":1}}],["subtables",{"2":{"61":1}}],["subsetextensions",{"2":{"90":1}}],["subsetcube",{"2":{"89":1}}],["subseting",{"2":{"72":1}}],["subset",{"0":{"55":1},"1":{"56":1,"57":1,"58":1,"59":1},"2":{"56":5,"59":4,"67":1,"70":1,"89":1,"90":1,"103":1,"109":1}}],["subsetting",{"0":{"56":1,"57":1,"58":1,"59":1},"1":{"58":1,"59":1},"2":{"42":1,"43":1,"90":1,"101":1}}],["subsets",{"2":{"15":1,"77":1}}],["subsequent",{"2":{"17":1}}],["such",{"2":{"46":1,"71":1,"89":1,"97":1}}],["surface",{"2":{"33":2,"39":2,"42":2,"43":2,"46":6,"68":5,"69":6,"70":6,"71":10,"105":1,"106":1,"109":2}}],["supposed",{"2":{"89":1}}],["support",{"2":{"27":1,"65":1}}],["supertype",{"2":{"26":1,"27":1}}],["summarysize",{"2":{"66":2}}],["sum",{"2":{"18":1,"19":1,"21":1,"22":2,"34":4,"37":2,"38":4,"39":2,"60":1}}],["suggestions",{"2":{"6":1}}],["s",{"2":{"10":1,"16":3,"18":1,"19":1,"21":2,"39":7,"41":1,"45":1,"52":1,"54":1,"56":1,"58":1,"59":2,"67":1,"77":1,"86":1,"89":2,"90":1,"99":1,"101":1,"108":4,"109":2}}],["style",{"0":{"113":1}}],["st",{"2":{"97":1}}],["stdzero",{"2":{"89":1}}],["stock3",{"2":{"65":4}}],["stock2",{"2":{"65":4}}],["stock1",{"2":{"65":4}}],["stocks",{"2":{"65":7}}],["storing",{"2":{"75":1}}],["storage",{"2":{"11":1,"42":1}}],["stored",{"2":{"74":3,"90":2}}],["stores",{"2":{"74":1,"89":1}}],["store",{"2":{"0":1,"42":4,"74":1,"75":1,"103":2,"108":1}}],["struct",{"2":{"89":1,"90":4}}],["structures",{"2":{"73":1}}],["structure",{"2":{"52":2,"65":1,"76":1}}],["strings",{"0":{"66":1}}],["string",{"2":{"8":1,"9":2,"10":1,"12":1,"13":1,"14":2,"16":5,"17":3,"18":4,"19":3,"20":1,"21":4,"22":6,"25":1,"27":3,"29":3,"33":2,"34":1,"35":1,"37":2,"38":1,"39":1,"42":2,"43":2,"44":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":2,"56":5,"60":3,"61":3,"66":5,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"84":1,"85":1,"86":1,"89":6,"90":4,"96":4,"101":1,"103":1,"109":1}}],["stable",{"2":{"97":1}}],["stack",{"2":{"66":1}}],["statistical",{"2":{"110":1}}],["statistics",{"2":{"14":1,"23":1,"31":1,"61":3,"100":1}}],["stat",{"2":{"83":2}}],["status",{"2":{"46":2}}],["standard",{"2":{"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"109":1}}],["standards",{"2":{"42":1,"43":1,"67":1,"79":1,"85":1,"103":1}}],["started",{"0":{"94":1},"1":{"95":1,"96":1,"97":1}}],["start=12",{"2":{"34":2,"35":1,"37":2,"38":2,"39":3}}],["start=december",{"2":{"34":3,"37":1}}],["start",{"2":{"10":1,"56":1,"81":1,"87":1}}],["still",{"2":{"8":1,"22":1,"75":1,"111":1}}],["step=3",{"2":{"34":2,"35":1,"37":2,"38":2,"39":3}}],["steps",{"2":{"10":1,"14":1,"39":1,"89":1,"93":1,"109":2}}],["step",{"2":{"7":1,"14":1,"20":1,"60":2,"89":1,"90":2,"103":1,"108":1}}],["sphere",{"0":{"107":1},"2":{"107":3}}],["spheroid",{"2":{"44":1}}],["split",{"2":{"89":1}}],["splitted",{"2":{"2":1}}],["special",{"2":{"69":1,"89":1,"90":1}}],["specifiers",{"2":{"90":1}}],["specifier",{"2":{"89":1}}],["specifies",{"2":{"89":3}}],["specified",{"2":{"49":1,"89":8,"90":1}}],["specific",{"2":{"56":1,"78":1,"89":2}}],["specifying",{"2":{"48":1,"89":2,"90":1}}],["specify",{"0":{"20":1},"2":{"17":1,"29":1,"89":1}}],["specs",{"2":{"42":1,"103":1,"110":2}}],["spectral",{"2":{"39":1}}],["sparse",{"2":{"74":1}}],["spatio",{"2":{"60":1}}],["spatial",{"2":{"1":1,"14":1,"22":5,"23":1,"31":1,"74":1}}],["span",{"2":{"56":1,"100":1}}],["space",{"2":{"1":1,"16":1}}],["safe",{"2":{"43":2}}],["sampled",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":3,"18":3,"19":2,"20":3,"21":9,"22":8,"25":2,"27":4,"29":9,"30":3,"33":6,"34":3,"35":2,"37":3,"38":1,"39":7,"42":6,"43":6,"44":2,"46":9,"47":3,"48":10,"49":4,"51":9,"52":6,"53":2,"54":3,"56":14,"58":6,"59":10,"60":9,"61":5,"63":1,"64":5,"65":4,"66":4,"67":3,"68":6,"69":4,"70":9,"71":15,"72":3,"79":3,"85":6,"86":6,"96":5,"101":1,"103":3,"109":3}}],["same",{"2":{"0":1,"2":1,"5":1,"6":1,"9":1,"16":1,"20":1,"21":1,"22":2,"26":1,"27":1,"45":1,"52":2,"53":2,"54":1,"59":1,"64":1,"65":2,"68":1,"69":1,"70":1,"74":1,"75":3,"76":2,"89":1,"90":1,"93":1}}],["saves",{"2":{"84":1,"89":1}}],["save",{"0":{"86":1},"2":{"12":1,"27":1,"64":1,"66":1,"80":2,"81":1,"82":2,"83":1,"86":1,"89":2}}],["savecube",{"2":{"2":1,"47":4,"80":1,"82":1,"86":1,"89":2}}],["savedataset",{"2":{"4":1,"5":1,"6":1,"81":1,"83":1,"84":1,"85":1,"86":2,"89":1,"90":1}}],["saved",{"2":{"2":1,"11":1,"20":1,"83":1,"84":1}}],["saving",{"2":{"1":1,"4":1,"5":1,"6":1,"16":1}}],["serve",{"2":{"90":1}}],["series",{"0":{"32":1},"2":{"23":1}}],["sequence",{"2":{"74":1}}],["selected",{"2":{"90":1,"100":1}}],["select",{"0":{"67":1,"68":1,"69":1,"70":1},"1":{"68":1,"69":1,"70":1,"71":1,"72":1},"2":{"59":1,"67":1}}],["selectors",{"2":{"71":1}}],["selector",{"2":{"59":1,"70":1}}],["selection",{"2":{"59":2}}],["selecting",{"2":{"56":1,"58":1,"59":1}}],["sebastien",{"2":{"43":2,"67":2,"79":2,"85":2}}],["seaborn",{"2":{"104":1,"105":1,"106":1,"107":1}}],["sea",{"2":{"43":3,"46":6,"67":1,"68":5,"69":6,"70":6,"71":10,"79":1,"85":1}}],["searching",{"2":{"89":1}}],["search",{"2":{"41":1,"89":1}}],["season",{"2":{"34":1,"37":2,"38":1}}],["seasons",{"0":{"34":1,"36":1,"39":1},"1":{"35":1,"36":1},"2":{"34":9,"37":1,"39":5,"78":1}}],["seasonal",{"0":{"32":1,"100":1,"102":1},"1":{"101":1,"102":1},"2":{"32":1,"38":1,"39":1,"100":1,"101":4}}],["separate",{"2":{"89":1,"90":1}}],["separated",{"2":{"75":1}}],["separately",{"2":{"5":1,"22":1,"23":1}}],["sep",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["seed",{"2":{"17":1,"21":2}}],["see",{"2":{"16":1,"18":1,"41":1,"71":1,"78":1,"89":1,"97":1,"109":1}}],["second",{"2":{"8":3,"18":1,"19":1,"89":1}}],["section",{"2":{"7":1,"10":1,"24":1,"28":1,"40":1,"50":1,"65":1,"73":1,"88":1}}],["setting",{"2":{"84":1,"89":1,"90":1}}],["sets",{"2":{"6":1,"33":1}}],["set",{"0":{"4":1,"5":1,"6":1},"2":{"4":1,"5":1,"19":2,"22":1,"42":1,"84":1,"89":1,"90":2,"93":1,"108":1}}],["setchunks",{"2":{"1":1,"2":2,"3":1,"4":1,"5":1,"6":1,"89":1,"90":1}}],["several",{"0":{"16":1},"2":{"0":1,"16":1,"54":1,"57":1,"78":1}}],["significant",{"2":{"81":1}}],["similar",{"2":{"108":1}}],["simulate",{"2":{"65":1}}],["simplicity",{"2":{"100":1}}],["simply",{"2":{"23":1,"66":1,"87":1,"93":1,"98":1}}],["simpler",{"2":{"108":1}}],["simple",{"2":{"16":1,"50":1,"96":1}}],["sin",{"2":{"100":1}}],["sink",{"2":{"90":1}}],["since",{"2":{"46":1,"98":1}}],["single",{"0":{"100":1},"1":{"101":1,"102":1},"2":{"0":1,"7":1,"8":1,"43":1,"76":1,"80":1,"82":1,"89":6,"90":1}}],["situations",{"2":{"1":1,"47":1}}],["size=",{"2":{"105":1,"106":1,"107":1,"109":3,"110":1}}],["sizes",{"2":{"2":1,"89":2,"90":2}}],["size",{"2":{"0":1,"1":1,"4":1,"5":1,"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":2,"25":1,"27":1,"29":2,"33":2,"37":1,"39":1,"42":1,"43":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":1,"56":5,"60":3,"61":3,"68":2,"69":3,"70":3,"71":5,"83":4,"86":1,"87":1,"89":3,"90":4,"96":3,"100":1,"101":2,"102":1,"104":1,"109":1}}],["sophisticated",{"2":{"108":1}}],["sosstsst",{"2":{"43":1,"46":3,"68":2,"69":3,"70":3,"71":5}}],["software",{"2":{"43":1,"67":1,"79":1}}],["sort",{"2":{"22":1}}],["so",{"2":{"2":1,"23":1,"55":1,"59":1,"89":1,"90":1,"108":1}}],["source",{"2":{"0":2,"41":1,"43":1,"67":1,"79":1,"84":1,"85":1,"89":25,"90":24}}],["sometimes",{"2":{"78":1,"86":1,"113":1}}],["some",{"0":{"59":1},"2":{"0":1,"11":1,"39":1,"57":1,"59":1,"60":1,"65":2,"89":1,"100":1,"105":1,"109":1}}],["a4",{"2":{"47":3,"48":1,"49":1}}],["advance",{"2":{"46":1}}],["addargs",{"2":{"89":3,"90":1}}],["adds",{"2":{"74":2,"77":1}}],["addprocs",{"2":{"23":2}}],["addition",{"2":{"22":1,"24":1,"74":1}}],["additional",{"2":{"4":3,"5":3,"9":1,"16":1,"21":1,"42":2,"59":10,"64":4,"65":4,"85":3,"89":4,"90":3,"103":2,"109":1}}],["added",{"2":{"15":1,"85":1,"89":1,"90":1}}],["add",{"2":{"6":1,"10":1,"12":1,"43":1,"60":1,"92":2,"95":2,"98":3,"99":4,"105":1,"109":1}}],["again",{"2":{"84":1,"87":1,"109":1}}],["agreement",{"2":{"39":1}}],["aggregation",{"2":{"23":1}}],["aggregate",{"2":{"22":1}}],["authority",{"2":{"44":5}}],["auto",{"2":{"18":1,"20":1,"89":1}}],["aug",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["api",{"0":{"88":1,"89":1,"90":1},"1":{"89":1,"90":1}}],["apr",{"2":{"34":4,"35":2,"36":1,"37":4,"38":4,"39":6}}],["appropriate",{"2":{"92":1}}],["approximated",{"2":{"90":1}}],["approx",{"2":{"89":1,"90":1}}],["approach",{"2":{"9":1,"34":1,"108":1}}],["append=true",{"2":{"85":2}}],["append=false",{"2":{"84":1,"89":1}}],["append",{"0":{"85":1}}],["apply",{"0":{"60":1},"2":{"10":2,"13":1,"15":1,"21":1,"23":1,"39":1,"101":1}}],["application",{"2":{"21":1}}],["applications",{"2":{"0":1}}],["applies",{"2":{"13":1}}],["applied",{"2":{"0":1,"3":1,"4":1,"22":1,"89":2,"90":1}}],["air",{"2":{"33":2,"39":2,"42":3,"109":3}}],["a3",{"2":{"30":4,"47":3,"48":1,"49":1}}],["a2",{"2":{"29":1,"30":3,"43":2,"47":3,"48":2,"67":2,"79":2,"85":2,"96":1}}],["a1",{"2":{"29":1,"47":3,"48":2}}],["able",{"2":{"64":1}}],["abstractstring",{"2":{"89":1}}],["abstractdict",{"2":{"89":1,"90":3}}],["abstractdimarray",{"2":{"26":1,"27":1,"74":1}}],["abs",{"2":{"21":1}}],["about",{"2":{"1":2,"55":1,"70":1,"96":1,"112":1}}],["above",{"2":{"0":1,"5":1,"16":1,"86":1,"95":1}}],["atol",{"2":{"70":1}}],["atmosphere",{"2":{"43":1,"67":1,"79":1,"85":1}}],["atmos",{"2":{"42":1,"103":1}}],["attributes",{"2":{"39":1,"89":1,"90":1,"108":1,"109":1}}],["at",{"2":{"21":1,"22":4,"27":1,"39":1,"41":1,"43":3,"46":3,"59":1,"65":3,"67":1,"68":2,"69":6,"70":7,"71":5,"75":1,"76":2,"79":1,"84":2,"85":1,"89":3,"90":2,"91":1,"92":2,"93":2,"96":1,"111":2}}],["after",{"2":{"14":1,"16":1,"44":1,"89":3}}],["asaxisarray",{"2":{"89":1}}],["assemble",{"2":{"96":1}}],["assessment",{"2":{"43":2,"67":2,"79":2,"85":2}}],["associated",{"2":{"89":1}}],["assign",{"0":{"62":1},"1":{"63":1,"64":1}}],["asked",{"0":{"50":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1}}],["aspect=dataaspect",{"2":{"39":1,"104":1}}],["as",{"2":{"5":1,"8":1,"9":1,"10":1,"12":1,"16":6,"17":1,"18":1,"19":1,"21":1,"22":2,"23":2,"26":1,"27":2,"29":1,"31":1,"34":2,"39":1,"41":1,"42":1,"43":1,"44":1,"45":1,"47":1,"48":2,"49":2,"52":2,"53":1,"54":1,"59":1,"61":1,"65":3,"68":1,"71":1,"72":1,"74":1,"77":1,"78":1,"86":1,"87":1,"89":12,"90":3,"96":1,"97":1,"101":1,"103":1,"113":1}}],["ax",{"2":{"61":1,"100":3,"102":3,"104":1,"105":3,"106":3,"107":5}}],["axs",{"2":{"39":9}}],["axlist",{"2":{"10":2,"17":2,"19":1,"21":4,"22":2,"23":2,"29":2,"30":1,"54":3,"90":5,"96":3}}],["axessmall",{"2":{"90":2}}],["axes",{"0":{"51":1,"53":1},"1":{"52":1},"2":{"4":4,"5":4,"6":1,"20":1,"29":1,"30":1,"42":3,"43":1,"44":1,"48":3,"49":1,"51":2,"52":1,"53":2,"56":2,"58":5,"59":13,"63":1,"64":5,"65":8,"67":2,"74":2,"79":1,"85":4,"86":1,"89":15,"90":11,"96":1,"101":2,"103":3}}],["axislegend",{"2":{"102":1}}],["axis=false",{"2":{"107":1}}],["axis=",{"2":{"100":1}}],["axisdescriptor",{"2":{"90":1}}],["axisdesc",{"2":{"89":3}}],["axis",{"0":{"4":1},"2":{"4":1,"9":2,"16":3,"39":1,"44":2,"53":1,"56":1,"58":1,"59":7,"65":1,"72":1,"77":1,"86":1,"89":16,"90":14,"96":1,"102":1,"103":1,"104":1,"108":1,"109":1}}],["albeit",{"2":{"108":1}}],["always",{"2":{"89":2,"90":1,"91":1,"97":1}}],["although",{"2":{"65":1,"66":1,"71":1}}],["alternatives",{"2":{"89":1}}],["alternatively",{"2":{"0":1,"2":1,"89":2,"95":1}}],["altered",{"2":{"42":1,"43":1,"46":3,"68":2,"69":3,"70":3,"71":5,"109":1}}],["algebraic",{"2":{"108":1}}],["algebraofgraphics",{"0":{"108":1},"1":{"109":1,"110":1},"2":{"99":1,"108":2,"110":1}}],["algebra",{"0":{"60":1},"2":{"60":1,"108":1}}],["already",{"2":{"46":1,"48":1,"84":1,"89":1,"90":1}}],["al",{"2":{"43":1,"67":1,"76":1,"79":1,"85":1}}],["along",{"0":{"8":1,"48":1,"49":1},"2":{"8":1,"16":1,"47":2,"48":2,"49":2,"89":6,"90":2,"108":1,"111":1}}],["allaxes",{"2":{"90":1}}],["allinaxes",{"2":{"90":1}}],["allmissing",{"2":{"89":1}}],["allocate",{"2":{"86":1}}],["allocation",{"2":{"22":1}}],["allow",{"2":{"90":1}}],["allowed",{"2":{"66":1}}],["allowing",{"2":{"26":1,"27":1,"75":1}}],["allows",{"2":{"23":1,"108":1}}],["all",{"0":{"6":1,"58":1,"59":1},"2":{"4":1,"6":2,"10":1,"12":1,"13":1,"14":2,"22":1,"23":4,"39":2,"41":2,"44":1,"57":1,"59":2,"65":3,"71":1,"74":1,"76":2,"84":3,"86":1,"88":1,"89":7,"90":7,"93":1}}],["also",{"2":{"2":1,"3":1,"14":1,"21":1,"23":1,"29":1,"48":1,"51":1,"59":1,"61":1,"74":2,"75":1,"81":1,"86":2,"89":1,"95":1,"110":1}}],["annual",{"2":{"89":1}}],["analysis",{"0":{"110":1},"2":{"110":1}}],["analyzing",{"2":{"1":1}}],["analog",{"2":{"75":1}}],["anchor",{"2":{"21":1}}],["another",{"2":{"16":1,"49":1,"59":1}}],["anynymous",{"2":{"89":1}}],["anyocean",{"2":{"89":1}}],["anymissing",{"2":{"89":1}}],["anymore",{"2":{"21":1}}],["any",{"2":{"8":1,"9":1,"10":1,"11":1,"14":2,"16":5,"18":3,"20":1,"21":2,"22":4,"25":1,"27":3,"29":1,"33":2,"34":3,"35":2,"37":4,"38":3,"39":3,"41":1,"42":2,"43":3,"44":1,"46":3,"47":1,"51":1,"52":3,"53":1,"54":1,"56":6,"60":3,"61":3,"66":4,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"86":1,"89":4,"90":9,"96":1,"101":1,"103":1,"109":1}}],["an",{"0":{"8":1},"2":{"9":1,"10":4,"12":1,"13":1,"15":1,"23":2,"45":1,"49":1,"52":1,"53":1,"58":1,"59":1,"61":1,"66":1,"67":3,"70":1,"74":1,"75":1,"77":1,"78":1,"79":1,"80":1,"81":1,"82":1,"84":1,"85":1,"89":19,"90":8}}],["and",{"0":{"17":1,"28":1,"31":1,"40":1,"53":1,"67":1,"71":1,"79":1},"1":{"18":1,"19":1,"20":1,"29":1,"30":1,"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1,"48":1,"49":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1},"2":{"0":1,"2":1,"5":1,"6":1,"7":1,"8":1,"12":1,"16":4,"17":2,"18":2,"20":2,"21":4,"22":2,"24":1,"28":1,"29":1,"31":1,"32":1,"33":1,"34":2,"39":1,"40":2,"41":1,"42":1,"43":1,"46":1,"47":1,"48":1,"51":1,"54":1,"56":1,"59":6,"60":1,"61":6,"65":5,"67":1,"71":1,"74":5,"75":3,"76":2,"79":1,"81":2,"83":1,"84":1,"85":1,"86":3,"87":1,"89":19,"90":6,"91":1,"93":4,"95":1,"96":2,"100":1,"103":1,"105":1,"108":4}}],["available",{"2":{"41":1,"71":2,"86":1,"88":1,"89":2,"95":1}}],["avariable",{"2":{"0":1}}],["avoid",{"2":{"34":1,"43":1}}],["avoids",{"2":{"22":1}}],["avoided",{"2":{"0":1}}],["averaging",{"2":{"14":1}}],["averages",{"0":{"32":1},"2":{"31":1}}],["average",{"2":{"14":1,"32":2}}],["arg",{"2":{"89":1}}],["argument",{"2":{"23":1,"86":1,"89":4,"90":2}}],["arguments",{"2":{"21":1,"39":1,"41":1,"89":12,"90":3}}],["artype",{"2":{"89":2}}],["archgdaldatasets",{"2":{"44":1}}],["archgdal",{"2":{"44":2,"99":1}}],["arr2",{"2":{"27":1}}],["arr",{"2":{"22":7,"27":2}}],["arrayinfo",{"2":{"90":1}}],["arrays",{"2":{"6":1,"7":1,"8":2,"9":1,"11":1,"28":1,"30":2,"42":2,"43":2,"73":1,"74":4,"75":3,"76":3,"89":2,"90":1}}],["array",{"0":{"22":1,"25":1},"2":{"0":1,"1":1,"8":2,"9":2,"10":3,"12":2,"13":2,"15":1,"18":1,"20":1,"22":8,"25":2,"34":1,"39":1,"53":1,"67":1,"74":4,"75":1,"76":1,"77":2,"86":5,"87":5,"89":10,"90":4,"96":3}}],["arbitrary",{"2":{"16":1}}],["arithmetics",{"0":{"12":1},"2":{"10":1}}],["areas",{"2":{"89":1}}],["area",{"2":{"42":2,"89":1,"109":2}}],["areacella",{"2":{"42":2,"103":1,"109":1}}],["are",{"2":{"0":1,"11":1,"18":1,"19":1,"24":3,"34":2,"39":2,"41":2,"46":2,"47":1,"49":1,"53":1,"55":1,"59":1,"65":3,"67":1,"71":1,"72":1,"74":3,"75":2,"76":3,"78":1,"86":1,"89":13,"90":6,"91":1,"93":1,"108":2,"111":2,"113":1}}],["according",{"2":{"89":1}}],["accessible",{"2":{"34":1}}],["access",{"2":{"1":2,"13":1,"29":1,"74":1,"77":1}}],["accessed",{"2":{"0":2,"42":1,"43":2}}],["activate",{"2":{"61":1,"93":2,"100":1,"104":1,"107":1,"108":1}}],["actually",{"2":{"90":1}}],["actual",{"2":{"13":1,"43":1,"86":1,"90":1,"96":1}}],["achieves",{"2":{"52":1}}],["achieved",{"2":{"0":1}}],["across",{"2":{"0":1,"7":1,"16":1,"74":3}}],["a",{"0":{"9":1,"11":1,"22":1,"29":1,"30":1,"48":1,"49":1,"51":1,"55":1,"56":1,"57":1,"58":1,"59":1,"62":1,"65":2,"66":1,"68":1,"72":1,"84":1,"85":1,"100":1,"114":1},"1":{"52":1,"56":1,"57":1,"58":2,"59":2,"63":1,"64":1,"101":1,"102":1},"2":{"0":4,"2":7,"3":1,"4":1,"7":1,"8":1,"9":2,"10":3,"11":1,"12":4,"13":2,"14":2,"15":1,"16":5,"17":2,"18":1,"19":2,"20":1,"22":75,"23":11,"25":2,"26":5,"27":8,"29":1,"32":1,"37":1,"39":2,"41":1,"42":6,"43":4,"44":1,"47":4,"48":3,"49":1,"50":1,"51":2,"52":2,"53":1,"55":4,"56":3,"57":1,"59":2,"61":3,"63":2,"64":2,"65":4,"70":2,"71":4,"72":1,"74":12,"75":4,"76":8,"77":1,"78":4,"80":3,"81":3,"82":3,"83":1,"84":4,"86":5,"89":65,"90":31,"92":2,"93":2,"96":4,"97":1,"108":3,"112":1,"113":1}}],["iall",{"2":{"90":1}}],["iwindow",{"2":{"90":1}}],["icolon",{"2":{"90":1}}],["icefire",{"2":{"104":1,"105":1,"106":1,"107":1}}],["ice",{"2":{"43":1,"67":1,"79":1,"85":1}}],["ipcc",{"2":{"43":3,"67":3,"79":3,"85":3}}],["ipsl",{"2":{"43":6,"67":6,"79":6,"85":6}}],["idx",{"2":{"101":3}}],["identical",{"2":{"89":1}}],["id",{"2":{"42":2,"43":2,"67":2,"79":2,"85":2,"103":2}}],["irregular",{"2":{"20":1,"33":2,"34":1,"37":3,"38":1,"39":1,"42":4,"43":2,"46":3,"47":1,"48":3,"49":2,"59":6,"61":2,"65":4,"67":1,"68":2,"69":2,"70":6,"71":5,"79":1,"85":1,"90":1,"103":2,"109":2}}],["illustrate",{"2":{"17":1}}],["immutable",{"2":{"11":1}}],["improving",{"2":{"97":1}}],["improvement",{"2":{"81":1}}],["improve",{"2":{"6":1}}],["implementing",{"2":{"89":1}}],["importance",{"2":{"90":1}}],["important",{"2":{"1":1}}],["import",{"2":{"48":1,"49":1}}],["impossible",{"2":{"11":1}}],["i",{"0":{"54":1,"55":1,"60":1,"61":1,"62":1,"65":1},"1":{"56":1,"57":1,"58":1,"59":1,"63":1,"64":1},"2":{"8":1,"22":3,"26":1,"27":1,"39":2,"41":1,"43":2,"47":4,"48":2,"56":1,"84":1,"89":8,"90":4,"93":2,"96":1,"101":3}}],["ispar",{"2":{"89":1,"90":1}}],["ismissing",{"2":{"86":1}}],["issue",{"2":{"81":1}}],["issues",{"2":{"33":1}}],["isequal",{"2":{"22":1}}],["is",{"2":{"1":2,"2":1,"6":1,"7":1,"9":1,"13":1,"14":2,"15":1,"16":4,"21":2,"22":2,"23":3,"24":1,"27":1,"32":2,"33":2,"34":2,"38":1,"41":1,"43":2,"46":2,"49":1,"50":1,"52":2,"54":1,"55":1,"59":2,"60":1,"61":4,"65":2,"66":2,"68":1,"71":2,"72":1,"74":4,"75":1,"76":2,"77":1,"78":1,"86":4,"87":1,"89":12,"90":10,"92":1,"95":1,"97":1,"98":1,"108":1,"111":1,"113":1}}],["if",{"2":{"0":1,"18":1,"19":1,"24":1,"59":3,"78":2,"81":1,"84":1,"86":2,"89":12,"90":6,"93":1,"98":1,"111":1}}],["incubes",{"2":{"90":1}}],["incs",{"2":{"90":1}}],["include",{"2":{"89":2,"90":1}}],["included",{"2":{"71":1}}],["inarbc",{"2":{"90":1}}],["inar",{"2":{"90":2}}],["inplace",{"2":{"89":3,"90":1}}],["inputcube",{"2":{"90":2}}],["inputs",{"2":{"18":1}}],["input",{"2":{"16":1,"17":1,"18":1,"20":1,"23":2,"61":1,"89":13,"90":8}}],["innerchunks",{"2":{"90":1}}],["inner",{"2":{"89":9,"90":3}}],["insize",{"2":{"90":1}}],["inside",{"2":{"89":3}}],["installed",{"2":{"97":1}}],["installation",{"0":{"95":1}}],["install",{"0":{"98":1},"2":{"93":1,"95":1,"99":1}}],["instantaneous",{"2":{"33":2}}],["instead",{"2":{"8":1,"9":1,"13":1,"51":1,"56":1,"71":1,"74":1}}],["inds",{"2":{"90":1}}],["indeed",{"2":{"87":1}}],["independently",{"2":{"65":1}}],["indexing",{"2":{"69":2,"70":2,"87":1,"97":1}}],["index",{"2":{"42":2,"90":2,"103":2}}],["indices",{"2":{"90":1,"101":1}}],["indicate",{"2":{"89":1}}],["indicating",{"2":{"9":1,"22":1,"89":1}}],["indims=indims",{"2":{"22":1,"23":1}}],["indims",{"0":{"18":1,"19":1,"21":1},"2":{"16":8,"18":4,"20":7,"21":3,"89":7}}],["individually",{"2":{"13":2}}],["individual",{"2":{"0":1,"42":1,"43":1}}],["initialization",{"2":{"42":1,"103":1}}],["initially",{"2":{"22":1}}],["information",{"2":{"41":1,"46":1,"84":1,"90":2}}],["info",{"2":{"16":2,"27":1,"31":1,"34":1,"43":11,"51":1,"78":1,"83":4,"86":1,"97":1,"108":1}}],["introducing",{"2":{"76":1}}],["int",{"2":{"52":1,"66":1,"101":3}}],["interoperability",{"0":{"99":1}}],["internal",{"0":{"90":1},"2":{"90":9}}],["internally",{"2":{"75":1}}],["interface",{"2":{"89":2,"113":1}}],["interested",{"2":{"111":1}}],["interest",{"2":{"46":1}}],["intervalsets",{"2":{"71":1}}],["intervals",{"0":{"71":1},"2":{"56":1}}],["interval",{"2":{"43":1,"46":3,"68":2,"69":3,"70":4,"71":6}}],["interactive",{"2":{"0":1}}],["integer",{"2":{"29":1,"69":1,"70":1,"74":1}}],["int64",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"16":8,"17":1,"18":1,"19":1,"21":7,"25":2,"27":2,"29":3,"33":4,"34":6,"35":6,"37":5,"39":18,"47":2,"48":7,"49":2,"51":9,"52":7,"53":4,"56":15,"58":4,"59":7,"61":3,"63":1,"64":5,"66":5,"85":3,"86":6,"90":1,"96":2}}],["into",{"0":{"45":1,"114":1},"1":{"46":1},"2":{"0":1,"1":1,"2":1,"7":1,"8":1,"16":1,"22":1,"24":2,"27":1,"33":1,"40":1,"45":1,"59":4,"66":1,"76":2,"84":1,"87":1,"89":6,"90":3,"93":1,"108":1,"109":1}}],["in",{"0":{"20":1,"62":1},"1":{"63":1,"64":1},"2":{"0":5,"1":1,"2":1,"4":2,"5":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":2,"14":4,"16":5,"17":1,"18":2,"19":2,"21":5,"22":8,"23":3,"24":2,"25":1,"26":1,"27":2,"29":2,"32":2,"33":3,"34":2,"36":3,"37":1,"39":4,"42":2,"43":4,"45":1,"46":9,"47":2,"48":1,"49":1,"51":1,"52":3,"53":2,"56":5,"57":1,"59":1,"60":3,"61":5,"65":4,"66":2,"68":2,"69":3,"70":4,"71":7,"72":1,"73":1,"74":5,"75":1,"76":2,"78":3,"86":2,"87":1,"89":15,"90":9,"93":2,"95":1,"96":4,"98":2,"101":2,"103":1,"108":2,"111":3,"113":4}}],["iter",{"2":{"89":1}}],["iterate",{"2":{"113":1}}],["iteration",{"0":{"113":1}}],["iterator",{"2":{"61":1}}],["iterators",{"2":{"22":1}}],["iterable",{"2":{"61":2,"89":2}}],["itself",{"2":{"89":1,"90":1}}],["its",{"2":{"0":1,"41":1}}],["it",{"2":{"0":2,"1":3,"12":1,"16":1,"18":1,"20":1,"23":2,"35":1,"37":1,"39":1,"43":1,"48":1,"51":1,"53":1,"54":1,"59":2,"61":2,"65":2,"66":1,"67":1,"74":2,"75":1,"77":1,"78":1,"83":1,"84":1,"86":2,"87":1,"89":10,"90":5,"93":1,"95":1,"108":2}}],["lscene",{"2":{"107":1}}],["lmdz",{"2":{"43":1,"67":1,"79":1,"85":1}}],["link",{"2":{"92":1}}],["linewidth=0",{"2":{"105":1,"106":1}}],["linewidth=2",{"2":{"102":2}}],["linewidth=1",{"2":{"100":1,"102":1}}],["linestyle=",{"2":{"102":2}}],["lines",{"2":{"100":1,"102":3,"109":3}}],["line",{"2":{"61":1}}],["library",{"2":{"108":1}}],["libraries",{"2":{"56":1,"74":1}}],["libray",{"2":{"55":1}}],["limits=",{"2":{"108":1,"109":1}}],["lim",{"2":{"43":1,"67":1,"79":1,"85":1}}],["little",{"2":{"23":1}}],["list",{"2":{"22":1,"47":2,"65":5,"89":7,"90":6}}],["like",{"2":{"0":1,"47":1,"61":1,"65":1,"89":2,"90":1,"92":1,"108":1}}],["learn",{"2":{"113":1}}],["learning",{"2":{"74":1,"111":1}}],["leap",{"2":{"100":1}}],["least",{"2":{"59":1,"65":1,"89":1}}],["length",{"2":{"34":2,"35":1,"37":3,"48":1,"89":1,"90":3}}],["length=20",{"2":{"54":1,"96":1}}],["length=365",{"2":{"100":1}}],["length=3",{"2":{"17":1}}],["length=4",{"2":{"17":1}}],["length=15",{"2":{"10":1,"22":1,"23":1,"29":1,"54":1,"96":1}}],["length=10",{"2":{"10":1,"22":1,"23":1,"29":1,"54":1,"96":1}}],["level",{"2":{"21":1,"65":1,"81":1,"83":1,"92":1,"93":1,"108":1}}],["left",{"2":{"14":2}}],["let",{"2":{"10":1,"16":2,"18":1,"19":1,"39":1,"41":1,"45":1,"52":1,"54":1,"56":1,"58":1,"59":1,"67":1,"101":1,"108":3,"109":2}}],["loopinds",{"2":{"90":2}}],["looping",{"2":{"89":1,"90":1}}],["loopcachesize",{"2":{"90":1}}],["loopchunksize",{"2":{"89":1}}],["loopaxes",{"2":{"90":1}}],["loopvars",{"2":{"89":1,"90":1}}],["loops",{"2":{"89":1}}],["loop",{"2":{"89":1,"90":2}}],["looped",{"2":{"89":3,"90":3}}],["look",{"2":{"84":1,"89":1,"90":1,"92":1,"93":1}}],["looking",{"2":{"78":1}}],["looks",{"2":{"61":1,"65":1}}],["lookups",{"2":{"34":15,"35":10,"37":11,"38":5,"39":38,"49":1,"72":3}}],["lookup",{"2":{"34":1,"36":1,"103":3}}],["low",{"2":{"65":4}}],["lowclip",{"2":{"39":4}}],["located",{"2":{"111":1}}],["locate",{"2":{"93":1}}],["location",{"2":{"90":3}}],["locations",{"2":{"75":1,"76":1}}],["localhost",{"2":{"93":1}}],["locally",{"0":{"93":1},"2":{"93":1}}],["local",{"2":{"23":1,"42":1}}],["lock",{"2":{"43":3}}],["locks",{"2":{"43":1}}],["lost",{"2":{"24":1}}],["lo",{"2":{"16":4}}],["loadorgenerate",{"2":{"90":1}}],["loading",{"2":{"44":1,"46":1,"87":1}}],["load",{"0":{"45":1},"1":{"46":1},"2":{"16":1,"33":1,"45":1,"46":1,"56":1,"59":2,"74":1}}],["loaded",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":2,"25":1,"27":1,"29":2,"33":2,"37":1,"42":1,"43":1,"46":8,"47":1,"51":1,"52":3,"53":1,"54":1,"56":5,"59":2,"60":3,"61":3,"66":2,"68":2,"69":3,"70":3,"71":5,"86":1,"96":2,"101":1,"109":1}}],["lon=50",{"2":{"109":2}}],["lon=1",{"2":{"56":1,"58":1}}],["lonlat",{"2":{"58":1}}],["long",{"2":{"33":2,"39":1,"42":1,"43":1,"46":4,"68":2,"69":3,"70":3,"71":5,"109":1}}],["longitudes=longitudes",{"2":{"59":1}}],["longitudes",{"2":{"59":12}}],["longitude",{"2":{"21":1,"44":1,"56":1,"78":6,"96":2}}],["lon",{"0":{"78":1},"2":{"10":2,"12":1,"13":1,"14":2,"16":10,"17":2,"18":1,"19":1,"20":1,"21":5,"22":12,"23":1,"26":2,"29":3,"30":1,"42":2,"43":2,"46":3,"47":5,"48":3,"49":1,"54":2,"56":7,"58":3,"60":4,"61":3,"67":1,"68":2,"69":3,"70":6,"71":10,"72":2,"78":8,"79":1,"85":1,"96":2,"103":2,"105":3,"108":2,"109":4,"110":1}}],["lazy",{"2":{"89":1}}],["lazily",{"2":{"9":1,"13":1,"16":2,"33":1,"42":1,"43":1,"46":1,"47":1,"54":1,"68":2,"69":3,"70":3,"71":5,"109":1}}],["layername",{"2":{"89":2}}],["layername=",{"2":{"86":2,"90":1}}],["layer",{"2":{"48":3,"49":1,"86":1,"89":1,"90":1}}],["layout",{"2":{"39":2,"109":3}}],["labelled",{"2":{"89":1}}],["labels",{"2":{"39":1,"72":1,"76":1,"77":1}}],["label=false",{"2":{"39":1}}],["label=",{"2":{"39":1,"102":3}}],["label=cb",{"2":{"39":1}}],["label",{"2":{"39":3,"42":1,"78":1,"103":1}}],["last",{"2":{"16":1,"23":1}}],["la",{"2":{"16":4}}],["latest",{"2":{"97":1,"98":1}}],["later",{"2":{"18":1}}],["lat=50",{"2":{"110":1}}],["lat=5",{"2":{"56":1,"58":1}}],["latitudes=latitudes",{"2":{"59":1}}],["latitudes",{"2":{"59":11}}],["latitude",{"2":{"21":1,"44":1,"56":1,"78":6,"96":2}}],["lat",{"0":{"78":1},"2":{"10":2,"12":1,"13":1,"14":2,"16":7,"17":2,"18":1,"19":1,"20":1,"21":5,"22":12,"23":1,"26":2,"29":3,"30":1,"42":2,"43":2,"46":3,"47":5,"48":3,"49":1,"54":2,"56":7,"58":3,"60":4,"61":3,"67":1,"68":2,"69":3,"70":5,"71":5,"72":2,"78":8,"79":1,"85":1,"89":1,"96":2,"103":3,"105":1,"106":1,"108":2,"109":5,"110":1}}],["larger",{"2":{"24":1}}],["large",{"2":{"0":2,"24":1,"33":1,"74":1}}]],"serializationVersion":2}';export{e as default}; diff --git a/previews/PR484/assets/chunks/@localSearchIndexroot.D9GWZ9z_.js b/previews/PR484/assets/chunks/@localSearchIndexroot.D9GWZ9z_.js new file mode 100644 index 00000000..0d78d04c --- /dev/null +++ b/previews/PR484/assets/chunks/@localSearchIndexroot.D9GWZ9z_.js @@ -0,0 +1 @@ +const e='{"documentCount":116,"nextId":116,"documentIds":{"0":"/YAXArrays.jl/previews/PR484/UserGuide/cache.html#Caching-YAXArrays","1":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunk-YAXArrays","2":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunking-YAXArrays","3":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Chunking-Datasets","4":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-Chunks-by-Axis","5":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-chunking-by-Variable","6":"/YAXArrays.jl/previews/PR484/UserGuide/chunk.html#Set-chunking-for-all-variables","7":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#Combine-YAXArrays","8":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#cat-along-an-existing-dimension","9":"/YAXArrays.jl/previews/PR484/UserGuide/combine.html#concatenatecubes-to-a-new-dimension","10":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Compute-YAXArrays","11":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Modify-elements-of-a-YAXArray","12":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#arithmetics","13":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#map","14":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#mapslices","15":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#mapCube","16":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Operations-over-several-YAXArrays","17":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#OutDims-and-YAXArray-Properties","18":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#One-InDims-to-many-OutDims","19":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Many-InDims-to-many-OutDims","20":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Specify-path-in-OutDims","21":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Different-InDims-names","22":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Creating-a-vector-array","23":"/YAXArrays.jl/previews/PR484/UserGuide/compute.html#Distributed-Computation","24":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-YAXArrays","25":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-Base.Array","26":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-Raster","27":"/YAXArrays.jl/previews/PR484/UserGuide/convert.html#Convert-DimArray","28":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-YAXArrays-and-Datasets","29":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-a-YAXArray","30":"/YAXArrays.jl/previews/PR484/UserGuide/create.html#Create-a-Dataset","31":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Frequently-Asked-Questions-(FAQ)","32":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Extract-the-axes-names-from-a-Cube","33":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#rebuild","34":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Obtain-values-from-axes-and-data-from-the-cube","35":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-concatenate-cubes","36":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-subset-a-YAXArray-(-Cube-)-or-Dataset?","37":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-YAXArray","38":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset","39":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset-whose-variables-share-all-their-dimensions","40":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Subsetting-a-Dataset-whose-variables-share-some-but-not-all-of-their-dimensions","41":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-apply-map-algebra?","42":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-use-the-CubeTable-function?","43":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#How-do-I-assign-variable-names-to-YAXArrays-in-a-Dataset","44":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#One-variable-name","45":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Multiple-variable-names","46":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Ho-do-I-construct-a-Dataset-from-a-TimeArray","47":"/YAXArrays.jl/previews/PR484/UserGuide/faq.html#Create-a-YAXArray-with-unions-containing-Strings","48":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Group-YAXArrays-and-Datasets","49":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Seasonal-Averages-from-Time-Series-of-Monthly-Means","50":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#Download-the-data","51":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#GroupBy:-seasons","52":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#dropdims","53":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#seasons","54":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#GroupBy:-weight","55":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#weights","56":"/YAXArrays.jl/previews/PR484/UserGuide/group.html#weighted-seasons","57":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-YAXArrays-and-Datasets","58":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#open-dataset","59":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-Zarr","60":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-NetCDF","61":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Read-GDAL-(GeoTIFF,-GeoJSON)","62":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#Load-data-into-memory","63":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#readcubedata","64":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#open-mfdataset","65":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#along-a-new-dimension","66":"/YAXArrays.jl/previews/PR484/UserGuide/read.html#along-a-existing-dimension","67":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-YAXArrays-and-Datasets","68":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-a-YAXArray","69":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-elements","70":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Select-ranges","71":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Closed-and-open-intervals","72":"/YAXArrays.jl/previews/PR484/UserGuide/select.html#Get-a-dimension","73":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#types","74":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#yaxarray","75":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#dataset","76":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#(Data)-Cube","77":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#dimensions","78":"/YAXArrays.jl/previews/PR484/UserGuide/types.html#Lon,-Lat,-time","79":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-YAXArrays-and-Datasets","80":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-Zarr","81":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#zarr-compression","82":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Write-NetCDF","83":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#netcdf-compression","84":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Overwrite-a-Dataset","85":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Append-to-a-Dataset","86":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Save-Skeleton","87":"/YAXArrays.jl/previews/PR484/UserGuide/write.html#Update-values-of-dataset","88":"/YAXArrays.jl/previews/PR484/api.html#API-Reference","89":"/YAXArrays.jl/previews/PR484/api.html#Public-API","90":"/YAXArrays.jl/previews/PR484/api.html#Internal-API","91":"/YAXArrays.jl/previews/PR484/development/contribute.html#Contribute-to-YAXArrays.jl","92":"/YAXArrays.jl/previews/PR484/development/contribute.html#Contribute-to-Documentation","93":"/YAXArrays.jl/previews/PR484/development/contribute.html#Build-docs-locally","94":"/YAXArrays.jl/previews/PR484/#How-to-Install-YAXArrays.jl?","95":"/YAXArrays.jl/previews/PR484/#Want-interoperability?","96":"/YAXArrays.jl/previews/PR484/get_started.html#Getting-Started","97":"/YAXArrays.jl/previews/PR484/get_started.html#installation","98":"/YAXArrays.jl/previews/PR484/get_started.html#quickstart","99":"/YAXArrays.jl/previews/PR484/get_started.html#updates","100":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Mean-Seasonal-Cycle-for-a-single-pixel","101":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Define-the-cube","102":"/YAXArrays.jl/previews/PR484/tutorials/mean_seasonal_cycle.html#Plot-results:-mean-seasonal-cycle","103":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Other-tutorials","104":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#General-overview-of-the-functionality-of-YAXArrays","105":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Table-style-iteration-over-YAXArrays","106":"/YAXArrays.jl/previews/PR484/tutorials/other_tutorials.html#Combining-multiple-tiff-files-into-a-zarr-based-datacube","107":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Plotting-maps","108":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Heatmap-plot","109":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Wintri-Projection","110":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Moll-projection","111":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#3D-sphere-plot","112":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#algebraofgraphics-jl","113":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#faceting","114":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#Time-series","115":"/YAXArrays.jl/previews/PR484/tutorials/plottingmaps.html#analysis"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[2,1,86],"1":[2,1,58],"2":[2,2,57],"3":[2,2,9],"4":[4,4,76],"5":[4,4,76],"6":[5,4,81],"7":[2,1,31],"8":[5,2,82],"9":[5,2,92],"10":[2,1,119],"11":[5,2,30],"12":[1,2,72],"13":[1,2,120],"14":[1,2,88],"15":[1,2,22],"16":[4,3,211],"17":[4,3,100],"18":[5,7,128],"19":[5,7,98],"20":[4,7,90],"21":[3,3,150],"22":[4,3,245],"23":[2,2,138],"24":[2,1,52],"25":[3,2,85],"26":[2,2,41],"27":[2,2,122],"28":[4,1,14],"29":[3,4,109],"30":[3,4,45],"31":[5,1,19],"32":[7,5,77],"33":[1,11,90],"34":[8,5,76],"35":[5,5,90],"36":[10,5,33],"37":[3,14,142],"38":[3,14,18],"39":[9,14,69],"40":[13,14,158],"41":[7,5,113],"42":[8,5,168],"43":[11,5,1],"44":[3,15,24],"45":[3,15,59],"46":[8,5,139],"47":[7,5,79],"48":[4,1,32],"49":[8,4,35],"50":[3,4,131],"51":[2,4,170],"52":[1,6,101],"53":[1,6,48],"54":[2,4,111],"55":[1,6,84],"56":[2,6,348],"57":[4,1,14],"58":[2,4,75],"59":[2,6,187],"60":[2,6,251],"61":[5,6,90],"62":[4,6,42],"63":[1,10,142],"64":[2,4,94],"65":[4,6,87],"66":[4,6,93],"67":[4,1,165],"68":[3,4,105],"69":[2,4,115],"70":[2,4,129],"71":[4,4,143],"72":[3,4,71],"73":[1,1,16],"74":[1,1,113],"75":[1,1,78],"76":[3,1,70],"77":[1,1,32],"78":[3,2,100],"79":[4,1,146],"80":[2,4,19],"81":[2,5,52],"82":[2,4,20],"83":[2,5,44],"84":[3,4,73],"85":[4,4,157],"86":[2,4,154],"87":[4,4,93],"88":[2,1,10],"89":[2,2,597],"90":[2,2,463],"91":[4,1,15],"92":[3,4,40],"93":[3,5,75],"94":[6,1,37],"95":[3,1,21],"96":[2,1,1],"97":[1,2,34],"98":[1,2,199],"99":[1,2,49],"100":[7,1,73],"101":[3,7,133],"102":[5,7,48],"103":[2,1,49],"104":[6,2,12],"105":[5,2,38],"106":[9,2,1],"107":[2,1,136],"108":[2,2,21],"109":[2,1,47],"110":[2,2,34],"111":[3,2,48],"112":[2,2,158],"113":[1,4,170],"114":[2,4,136],"115":[1,4,39]},"averageFieldLength":[3.4137931034482767,3.9224137931034497,93.06896551724138],"storedFields":{"0":{"title":"Caching YAXArrays","titles":[]},"1":{"title":"Chunk YAXArrays","titles":[]},"2":{"title":"Chunking YAXArrays","titles":["Chunk YAXArrays"]},"3":{"title":"Chunking Datasets","titles":["Chunk YAXArrays"]},"4":{"title":"Set Chunks by Axis","titles":["Chunk YAXArrays","Chunking Datasets"]},"5":{"title":"Set chunking by Variable","titles":["Chunk YAXArrays","Chunking Datasets"]},"6":{"title":"Set chunking for all variables","titles":["Chunk YAXArrays","Chunking Datasets"]},"7":{"title":"Combine YAXArrays","titles":[]},"8":{"title":"cat along an existing dimension","titles":["Combine YAXArrays"]},"9":{"title":"concatenatecubes to a new dimension","titles":["Combine YAXArrays"]},"10":{"title":"Compute YAXArrays","titles":[]},"11":{"title":"Modify elements of a YAXArray","titles":["Compute YAXArrays"]},"12":{"title":"Arithmetics","titles":["Compute YAXArrays"]},"13":{"title":"map","titles":["Compute YAXArrays"]},"14":{"title":"mapslices","titles":["Compute YAXArrays"]},"15":{"title":"mapCube","titles":["Compute YAXArrays"]},"16":{"title":"Operations over several YAXArrays","titles":["Compute YAXArrays","mapCube"]},"17":{"title":"OutDims and YAXArray Properties","titles":["Compute YAXArrays","mapCube"]},"18":{"title":"One InDims to many OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"19":{"title":"Many InDims to many OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"20":{"title":"Specify path in OutDims","titles":["Compute YAXArrays","mapCube","OutDims and YAXArray Properties"]},"21":{"title":"Different InDims names","titles":["Compute YAXArrays","mapCube"]},"22":{"title":"Creating a vector array","titles":["Compute YAXArrays","mapCube"]},"23":{"title":"Distributed Computation","titles":["Compute YAXArrays"]},"24":{"title":"Convert YAXArrays","titles":[]},"25":{"title":"Convert Base.Array","titles":["Convert YAXArrays"]},"26":{"title":"Convert Raster","titles":["Convert YAXArrays"]},"27":{"title":"Convert DimArray","titles":["Convert YAXArrays"]},"28":{"title":"Create YAXArrays and Datasets","titles":[]},"29":{"title":"Create a YAXArray","titles":["Create YAXArrays and Datasets"]},"30":{"title":"Create a Dataset","titles":["Create YAXArrays and Datasets"]},"31":{"title":"Frequently Asked Questions (FAQ)","titles":[]},"32":{"title":"Extract the axes names from a Cube","titles":["Frequently Asked Questions (FAQ)"]},"33":{"title":"rebuild","titles":["Frequently Asked Questions (FAQ)","Extract the axes names from a Cube"]},"34":{"title":"Obtain values from axes and data from the cube","titles":["Frequently Asked Questions (FAQ)"]},"35":{"title":"How do I concatenate cubes","titles":["Frequently Asked Questions (FAQ)"]},"36":{"title":"How do I subset a YAXArray ( Cube ) or Dataset?","titles":["Frequently Asked Questions (FAQ)"]},"37":{"title":"Subsetting a YAXArray","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?"]},"38":{"title":"Subsetting a Dataset","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?"]},"39":{"title":"Subsetting a Dataset whose variables share all their dimensions","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?","Subsetting a Dataset"]},"40":{"title":"Subsetting a Dataset whose variables share some but not all of their dimensions","titles":["Frequently Asked Questions (FAQ)","How do I subset a YAXArray ( Cube ) or Dataset?","Subsetting a Dataset"]},"41":{"title":"How do I apply map algebra?","titles":["Frequently Asked Questions (FAQ)"]},"42":{"title":"How do I use the CubeTable function?","titles":["Frequently Asked Questions (FAQ)"]},"43":{"title":"How do I assign variable names to YAXArrays in a Dataset","titles":["Frequently Asked Questions (FAQ)"]},"44":{"title":"One variable name","titles":["Frequently Asked Questions (FAQ)","How do I assign variable names to YAXArrays in a Dataset"]},"45":{"title":"Multiple variable names","titles":["Frequently Asked Questions (FAQ)","How do I assign variable names to YAXArrays in a Dataset"]},"46":{"title":"Ho do I construct a Dataset from a TimeArray","titles":["Frequently Asked Questions (FAQ)"]},"47":{"title":"Create a YAXArray with unions containing Strings","titles":["Frequently Asked Questions (FAQ)"]},"48":{"title":"Group YAXArrays and Datasets","titles":[]},"49":{"title":"Seasonal Averages from Time Series of Monthly Means","titles":["Group YAXArrays and Datasets"]},"50":{"title":"Download the data","titles":["Group YAXArrays and Datasets"]},"51":{"title":"GroupBy: seasons","titles":["Group YAXArrays and Datasets"]},"52":{"title":"dropdims","titles":["Group YAXArrays and Datasets","GroupBy: seasons"]},"53":{"title":"seasons","titles":["Group YAXArrays and Datasets","GroupBy: seasons"]},"54":{"title":"GroupBy: weight","titles":["Group YAXArrays and Datasets"]},"55":{"title":"weights","titles":["Group YAXArrays and Datasets","GroupBy: weight"]},"56":{"title":"weighted seasons","titles":["Group YAXArrays and Datasets","GroupBy: weight"]},"57":{"title":"Read YAXArrays and Datasets","titles":[]},"58":{"title":"open_dataset","titles":["Read YAXArrays and Datasets"]},"59":{"title":"Read Zarr","titles":["Read YAXArrays and Datasets","open_dataset"]},"60":{"title":"Read NetCDF","titles":["Read YAXArrays and Datasets","open_dataset"]},"61":{"title":"Read GDAL (GeoTIFF, GeoJSON)","titles":["Read YAXArrays and Datasets","open_dataset"]},"62":{"title":"Load data into memory","titles":["Read YAXArrays and Datasets","open_dataset"]},"63":{"title":"readcubedata","titles":["Read YAXArrays and Datasets","open_dataset","Load data into memory"]},"64":{"title":"open_mfdataset","titles":["Read YAXArrays and Datasets"]},"65":{"title":"along a new dimension","titles":["Read YAXArrays and Datasets","open_mfdataset"]},"66":{"title":"along a existing dimension","titles":["Read YAXArrays and Datasets","open_mfdataset"]},"67":{"title":"Select YAXArrays and Datasets","titles":[]},"68":{"title":"Select a YAXArray","titles":["Select YAXArrays and Datasets"]},"69":{"title":"Select elements","titles":["Select YAXArrays and Datasets"]},"70":{"title":"Select ranges","titles":["Select YAXArrays and Datasets"]},"71":{"title":"Closed and open intervals","titles":["Select YAXArrays and Datasets"]},"72":{"title":"Get a dimension","titles":["Select YAXArrays and Datasets"]},"73":{"title":"Types","titles":[]},"74":{"title":"YAXArray","titles":["Types"]},"75":{"title":"Dataset","titles":["Types"]},"76":{"title":"(Data) Cube","titles":["Types"]},"77":{"title":"Dimensions","titles":["Types"]},"78":{"title":"Lon, Lat, time","titles":["Types","Dimensions"]},"79":{"title":"Write YAXArrays and Datasets","titles":[]},"80":{"title":"Write Zarr","titles":["Write YAXArrays and Datasets"]},"81":{"title":"zarr compression","titles":["Write YAXArrays and Datasets","Write Zarr"]},"82":{"title":"Write NetCDF","titles":["Write YAXArrays and Datasets"]},"83":{"title":"netcdf compression","titles":["Write YAXArrays and Datasets","Write NetCDF"]},"84":{"title":"Overwrite a Dataset","titles":["Write YAXArrays and Datasets"]},"85":{"title":"Append to a Dataset","titles":["Write YAXArrays and Datasets"]},"86":{"title":"Save Skeleton","titles":["Write YAXArrays and Datasets"]},"87":{"title":"Update values of dataset","titles":["Write YAXArrays and Datasets"]},"88":{"title":"API Reference","titles":[]},"89":{"title":"Public API","titles":["API Reference"]},"90":{"title":"Internal API","titles":["API Reference"]},"91":{"title":"Contribute to YAXArrays.jl","titles":[]},"92":{"title":"Contribute to Documentation","titles":["Contribute to YAXArrays.jl"]},"93":{"title":"Build docs locally","titles":["Contribute to YAXArrays.jl","Contribute to Documentation"]},"94":{"title":"How to Install YAXArrays.jl?","titles":[]},"95":{"title":"Want interoperability?","titles":[]},"96":{"title":"Getting Started","titles":[]},"97":{"title":"Installation","titles":["Getting Started"]},"98":{"title":"Quickstart","titles":["Getting Started"]},"99":{"title":"Updates","titles":["Getting Started"]},"100":{"title":"Mean Seasonal Cycle for a single pixel","titles":[]},"101":{"title":"Define the cube","titles":["Mean Seasonal Cycle for a single pixel"]},"102":{"title":"Plot results: mean seasonal cycle","titles":["Mean Seasonal Cycle for a single pixel"]},"103":{"title":"Other tutorials","titles":[]},"104":{"title":"General overview of the functionality of YAXArrays","titles":["Other tutorials"]},"105":{"title":"Table-style iteration over YAXArrays","titles":["Other tutorials"]},"106":{"title":"Combining multiple tiff files into a zarr based datacube","titles":["Other tutorials"]},"107":{"title":"Plotting maps","titles":[]},"108":{"title":"Heatmap plot","titles":["Plotting maps"]},"109":{"title":"Wintri Projection","titles":[]},"110":{"title":"Moll projection","titles":["Wintri Projection"]},"111":{"title":"3D sphere plot","titles":["Wintri Projection"]},"112":{"title":"AlgebraOfGraphics.jl","titles":["Wintri Projection"]},"113":{"title":"Faceting","titles":["Wintri Projection","AlgebraOfGraphics.jl"]},"114":{"title":"Time series","titles":["Wintri Projection","AlgebraOfGraphics.jl"]},"115":{"title":"Analysis","titles":["Wintri Projection","AlgebraOfGraphics.jl"]}},"dirtCount":0,"index":[["δlon",{"2":{"109":1}}],["✘",{"2":{"78":8}}],["✔",{"2":{"78":9}}],["├──────────────────────┴────────────────────────────────────────",{"2":{"47":1}}],["├──────────────────────────┴─────────────────────────",{"2":{"37":1}}],["├──────────────────────────┴────────────────────────────────────",{"2":{"98":1}}],["├──────────────────────────┴─────────────────────────────────────",{"2":{"33":1}}],["├──────────────────────────┴─────────────────────────────────────────────",{"2":{"34":1,"42":1}}],["├──────────────────────────┴────────────────────────────────────────",{"2":{"19":1}}],["├──────────────────────────┴─────────────────────────────────",{"2":{"27":2}}],["├──────────────────────────┴────────────────────────────────",{"2":{"9":1}}],["├───────────────────────────┴───────────────────────────────────",{"2":{"25":1}}],["├───────────────────────────┴────────────────────────────────────────────",{"2":{"22":1,"37":1}}],["├─────────────────────────────┴──────────────────────────────────────────",{"2":{"37":2,"114":1}}],["├──────────────────────────────┴─────────────────────────────────",{"2":{"29":1}}],["├──────────────────────────────┴─────────────────────────────────────────",{"2":{"16":1,"32":1}}],["├────────────────────────────────┴───────────────────────────────────────",{"2":{"55":1,"113":1}}],["├───────────────────────────────────┴────────────────────────────────────",{"2":{"101":1}}],["├─────────────────────────────────────┴──────────────────────────────────",{"2":{"59":1}}],["├───────────────────────────────────────┴───────────────────────",{"2":{"47":1}}],["├────────────────────────────────────────",{"2":{"37":1}}],["├───────────────────────────────────────────┴────────────────────────────",{"2":{"22":1,"42":1}}],["├──────────────────────────────────────────────┴────────────────",{"2":{"69":1}}],["├────────────────────────────────────────────────┴───────────────────────",{"2":{"42":1,"54":1,"70":1,"71":5}}],["├────────────────────────────────────────────────",{"2":{"27":1,"37":1}}],["├─────────────────────────────────────────────────",{"2":{"21":1}}],["├─────────────────────────────────────────────────┴──────────────────────",{"2":{"14":1,"60":1,"63":3,"68":2,"69":2}}],["├──────────────────────────────────────────────────┴─────────────────────",{"2":{"51":1}}],["├────────────────────────────────────────────────────",{"2":{"29":1,"33":1}}],["├────────────────────────────────────────────────────────",{"2":{"27":2}}],["├───────────────────────────────────────────────────────────",{"2":{"25":1,"47":2,"98":1}}],["├────────────────────────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"14":2,"16":3,"17":1,"18":1,"21":2,"22":2,"29":2,"32":1,"33":3,"34":1,"37":4,"41":3,"42":3,"50":1,"54":1,"63":3,"86":1,"98":1,"101":1,"114":1}}],["├─────────────────────────────────────────────────────────────────",{"2":{"69":1}}],["├──────────────────────────────────────────────────────────────────",{"2":{"51":1,"54":1}}],["├─────────────────────────────────────────────────────────────────────┴",{"2":{"69":1}}],["├────────────────────────────────────────────────────────────────────────",{"2":{"51":1,"52":1,"54":1,"55":1,"56":3}}],["├────────────────────────────────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"21":2,"22":3,"29":1,"32":1,"33":2,"34":1,"35":1,"37":4,"41":3,"42":3,"50":2,"51":2,"52":1,"54":3,"55":2,"56":3,"59":1,"60":1,"63":3,"64":1,"68":2,"69":2,"70":3,"71":5,"86":1,"98":1,"101":1,"113":1,"114":1}}],["├───────────────────────────────────────────────────────────────",{"2":{"16":2,"19":1,"35":1,"50":1,"59":1,"60":1,"64":1,"68":2,"69":2,"70":3,"71":5,"113":1}}],["├─────────────────────────────────────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────────────────────────────",{"2":{"9":1,"19":1}}],["├─────────────────────────────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────────────────────────",{"2":{"25":1,"47":2,"98":1}}],["├──────────────────────────────────────────────────",{"2":{"9":1}}],["├───────────────────────────────────────────────┴────────────────────────",{"2":{"16":2,"41":1,"70":2}}],["├────────────────────────────────────────────┴───────────────────────────",{"2":{"14":1,"18":1,"21":1,"86":1}}],["├─────────────────────────────────────────",{"2":{"21":1}}],["├──────────────────────────────────┴────────────────────────────",{"2":{"72":1}}],["├─────────────────────────────────┴──────────────────────────────────────",{"2":{"35":1,"50":2,"98":1}}],["├─────────────────────────────────┴───────────────────────────────",{"2":{"8":1}}],["├───────────────────────────────┴────────────────────────────────────────",{"2":{"10":1,"12":1,"13":1,"16":2,"22":1,"29":1,"41":2,"54":1}}],["├────────────────────────────┴────────────────────────",{"2":{"21":1}}],["├────────────────────────────┴───────────────────────────────────────────",{"2":{"17":1,"21":1,"22":1,"33":2,"37":1,"64":1}}],["π",{"2":{"41":2,"100":1,"102":1}}],[">var",{"2":{"101":1}}],[">dates",{"2":{"101":1}}],[">month",{"2":{"89":1}}],[">abs",{"2":{"89":1}}],[">=",{"2":{"40":4}}],[">",{"2":{"40":2,"41":2,"101":1}}],["└──────────────────────────────────────────────────────────┘",{"2":{"37":1}}],["└───────────────────────────────────────────────────────────┘",{"2":{"21":1}}],["└──────────────────────────────────────────────────────────────────┘",{"2":{"27":2}}],["└──────────────────────────────────────────────────────────────────────┘",{"2":{"29":1,"33":1}}],["└────────────────────────────────────────────────────────────────────────────────┘",{"2":{"69":1}}],["└──────────────────────────────────────────────────────────────────────────────┘",{"2":{"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"21":2,"22":4,"29":1,"32":1,"33":2,"34":1,"35":1,"37":4,"41":3,"42":3,"50":2,"51":2,"52":1,"54":3,"55":2,"56":3,"59":1,"60":1,"63":3,"64":1,"68":2,"69":2,"70":3,"71":5,"86":1,"98":1,"101":1,"113":1,"114":1}}],["└─────────────────────────────────────────────────────────────────────────┘",{"2":{"19":1}}],["└───────────────────────────────────────────────────────────────────────┘",{"2":{"8":1}}],["└─────────────────────────────────────────────────────────────────────┘",{"2":{"25":1,"47":2,"72":1,"98":1}}],["└─────────────────────────────────────────────────────────────────┘",{"2":{"9":1}}],["`diskarrays",{"2":{"90":1}}],["`a",{"2":{"37":1}}],["`layer`",{"2":{"18":1}}],["quickstart",{"0":{"98":1}}],["query",{"2":{"67":1}}],["querying",{"2":{"63":1}}],["questions",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1}}],["quot",{"2":{"16":2,"42":2,"86":4,"89":8,"90":12,"112":2}}],["jj+1",{"2":{"60":1,"67":1,"79":1,"85":1}}],["jj",{"2":{"60":1,"67":1,"79":1,"85":1}}],["joinname",{"2":{"89":1}}],["joinname=",{"2":{"89":1}}],["job",{"2":{"78":1}}],["journal",{"2":{"60":1,"67":1,"79":1,"85":1}}],["joe",{"2":{"49":1,"56":1}}],["j",{"2":{"56":8}}],["jan",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["jl",{"0":{"91":1,"94":1,"112":1},"1":{"92":1,"93":1,"113":1,"114":1,"115":1},"2":{"26":1,"27":1,"42":1,"46":2,"50":1,"51":1,"56":1,"74":1,"77":1,"78":1,"91":1,"93":2,"94":2,"97":1,"98":2,"99":3,"105":1,"112":2,"115":1}}],["jussieu",{"2":{"60":1,"67":1,"79":1,"85":1}}],["just",{"2":{"22":1,"74":1,"76":1,"89":1,"90":2}}],["jul",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["juliaδlon",{"2":{"109":1}}],["juliax",{"2":{"100":1}}],["juliaplt",{"2":{"112":1,"113":4,"114":1}}],["juliapkg>",{"2":{"94":1,"97":1,"99":1}}],["juliapermuteloopaxes",{"2":{"90":1}}],["juliaproperties",{"2":{"19":1}}],["juliacopydata",{"2":{"90":1}}],["juliacollect",{"2":{"34":1,"72":1}}],["juliaclean",{"2":{"90":1}}],["juliacube",{"2":{"89":1}}],["juliacubefittable",{"2":{"89":1}}],["juliacubetable",{"2":{"89":1}}],["juliacaxes",{"2":{"89":1}}],["julian",{"2":{"81":1,"83":1}}],["juliaspecs",{"2":{"115":1}}],["juliastore",{"2":{"112":1}}],["juliasavecube",{"2":{"89":1}}],["juliasavedataset",{"2":{"80":1,"82":1,"84":2,"89":1}}],["juliasetchunks",{"2":{"89":1,"90":1}}],["juliaseasons",{"2":{"53":1}}],["juliaglmakie",{"2":{"108":1}}],["juliagroupby",{"2":{"78":1}}],["juliagetloopchunks",{"2":{"90":1}}],["juliagetouttype",{"2":{"90":1}}],["juliagetoutaxis",{"2":{"90":1}}],["juliaget",{"2":{"90":1}}],["juliagetaxis",{"2":{"89":1}}],["juliagettarrayaxes",{"2":{"46":1}}],["juliagen",{"2":{"16":1}}],["julialon",{"2":{"107":1}}],["julialookup",{"2":{"72":1}}],["julialatitudes",{"2":{"40":1}}],["juliaoptifunc",{"2":{"90":1}}],["juliaopen",{"2":{"58":1,"89":2}}],["juliaoutdims",{"2":{"89":1}}],["juliaoffset",{"2":{"13":1}}],["juliawith",{"2":{"56":1}}],["julia>",{"2":{"56":1,"93":1,"94":2,"101":2}}],["juliaurl",{"2":{"50":1}}],["juliausing",{"2":{"0":1,"2":1,"4":1,"5":1,"6":1,"8":1,"9":1,"10":1,"16":1,"17":1,"22":1,"23":2,"25":1,"26":1,"27":1,"29":2,"32":1,"33":1,"35":1,"37":1,"39":1,"40":1,"42":2,"46":1,"48":1,"56":1,"59":1,"60":1,"61":1,"64":1,"65":1,"66":1,"67":1,"69":1,"71":1,"78":1,"79":1,"80":1,"82":1,"86":1,"95":4,"98":1,"100":1,"107":1,"111":1,"112":1,"113":1}}],["juliakeylist",{"2":{"45":1}}],["juliaylonlat",{"2":{"37":1}}],["juliaytime3",{"2":{"37":1}}],["juliaytime2",{"2":{"37":1}}],["juliaytime",{"2":{"37":1}}],["juliay",{"2":{"37":1}}],["juliayaxcolumn",{"2":{"90":1}}],["juliayaxarray",{"2":{"89":1}}],["juliayax",{"2":{"0":1,"46":2}}],["juliato",{"2":{"89":1}}],["juliatos",{"2":{"68":2,"69":2,"70":3,"71":1,"72":1}}],["juliatempo",{"2":{"54":1}}],["juliatest",{"2":{"47":2}}],["juliat",{"2":{"37":1,"42":1,"100":1}}],["juliatspan",{"2":{"16":1}}],["juliamutable",{"2":{"90":1}}],["juliamatch",{"2":{"90":1}}],["juliamapcube",{"2":{"89":2}}],["juliamapslices",{"2":{"14":1,"23":1}}],["juliamovingwindow",{"2":{"89":1}}],["juliamy",{"2":{"60":1}}],["juliamean",{"2":{"56":1}}],["juliam2",{"2":{"25":1}}],["julia",{"2":{"24":1,"50":1,"60":1,"90":1,"93":1,"94":2,"97":2,"98":1,"99":2}}],["juliavector",{"2":{"22":1}}],["juliadata",{"2":{"112":1}}],["juliadataset",{"2":{"89":1}}],["juliadata3",{"2":{"30":1}}],["juliadim",{"2":{"27":1,"112":1,"113":1,"114":1}}],["juliadimarray",{"2":{"22":1}}],["juliads2",{"2":{"85":1}}],["juliads",{"2":{"18":2,"20":2,"21":1,"39":1,"40":1,"58":1,"59":1,"60":1,"63":2,"83":1,"86":2,"87":3,"89":1}}],["juliar",{"2":{"86":1}}],["juliareadcubedata",{"2":{"63":1,"89":1}}],["juliaregions",{"2":{"22":2}}],["juliaras2",{"2":{"26":1}}],["juliarandom",{"2":{"21":2}}],["juliaindims",{"2":{"18":1,"20":1,"89":1}}],["juliaimport",{"2":{"14":1,"97":1}}],["juliajulia>",{"2":{"16":5,"32":3,"33":2,"34":1,"35":1,"41":3,"42":3,"44":1,"45":1,"46":2,"51":2,"52":1,"54":2,"55":2,"56":3,"66":1,"71":4,"85":1,"86":1,"94":1,"101":2,"107":3}}],["juliaall",{"2":{"86":1}}],["juliaaxes",{"2":{"37":1}}],["juliaa2",{"2":{"12":2,"29":2,"98":1}}],["juliaa",{"2":{"2":1,"11":3}}],["juliafig",{"2":{"100":1,"102":1,"109":1,"110":1}}],["juliafindaxis",{"2":{"90":1}}],["juliafittable",{"2":{"89":2}}],["juliafiles",{"2":{"65":2,"89":2}}],["juliafunction",{"2":{"16":1,"18":1,"19":1,"21":1,"51":1,"89":1,"90":1,"101":1}}],["juliaf",{"2":{"2":1,"4":1,"5":1,"6":1,"16":1}}],["jun",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["∘",{"2":{"23":1}}],["|>",{"2":{"22":2,"112":1,"114":1}}],["⋱",{"2":{"22":1}}],["⋮",{"2":{"22":2,"72":1,"101":1}}],["^2",{"2":{"21":1}}],["⬔",{"2":{"17":1,"18":1,"35":1,"65":1,"98":1}}],["921",{"2":{"87":2}}],["923876",{"2":{"87":2}}],["926096",{"2":{"27":1}}],["991508",{"2":{"87":2}}],["957463",{"2":{"98":1}}],["952795",{"2":{"98":1}}],["958973",{"2":{"98":1}}],["95",{"2":{"56":1}}],["959705",{"2":{"98":1}}],["95965",{"2":{"87":2}}],["959",{"2":{"56":1}}],["953391",{"2":{"27":1}}],["97",{"2":{"113":1}}],["97643",{"2":{"98":1}}],["97649",{"2":{"56":1}}],["973442",{"2":{"98":1}}],["973332",{"2":{"27":1}}],["97047",{"2":{"56":1}}],["94534",{"2":{"56":1}}],["9404",{"2":{"51":1,"52":1}}],["9432",{"2":{"51":1,"52":1}}],["949935",{"2":{"25":1}}],["982108",{"2":{"98":1}}],["986",{"2":{"56":1}}],["98",{"2":{"40":6}}],["984803",{"2":{"22":1}}],["900",{"2":{"113":1}}],["908084",{"2":{"98":1}}],["903079",{"2":{"98":1}}],["90365",{"2":{"56":1}}],["90712",{"2":{"56":1}}],["90",{"2":{"40":2,"61":1,"71":5,"112":2,"113":2}}],["9122",{"2":{"61":1}}],["9192",{"2":{"56":1}}],["91",{"2":{"32":1,"71":5}}],["916686",{"2":{"27":1}}],["918555",{"2":{"25":1}}],["9375",{"2":{"59":2,"107":1,"113":1,"114":1}}],["93743",{"2":{"56":1}}],["9362",{"2":{"56":1}}],["935631",{"2":{"25":1}}],["93986",{"2":{"22":1}}],["9",{"2":{"16":14,"22":2,"34":1,"37":1,"50":2,"54":4,"70":4,"81":2,"83":1,"90":1}}],["96x71x19",{"2":{"60":1,"67":1,"79":1,"85":1}}],["96f0",{"2":{"60":1,"67":1,"79":1}}],["9682",{"2":{"51":1,"52":1}}],["96921e36",{"2":{"50":2}}],["960",{"2":{"17":1,"18":1,"22":1}}],["96",{"2":{"8":1,"9":1,"40":6,"69":2,"85":1}}],["8×1×24",{"2":{"114":1}}],["8901",{"2":{"61":1}}],["89",{"2":{"59":4,"60":2,"61":1,"63":3,"67":1,"68":2,"69":1,"70":1,"71":5,"72":3,"79":1,"85":1,"107":2,"113":2}}],["8984",{"2":{"56":1}}],["89237",{"2":{"56":1}}],["86",{"2":{"72":2}}],["86457",{"2":{"56":1}}],["862644",{"2":{"27":1}}],["85",{"2":{"72":2,"109":1,"110":1}}],["850",{"2":{"56":1}}],["85ºn",{"2":{"40":1}}],["85714",{"2":{"22":1}}],["88",{"2":{"35":1,"59":4,"72":2,"98":1,"107":2,"113":2}}],["889583",{"2":{"22":1}}],["81",{"2":{"29":1}}],["833498",{"2":{"98":1}}],["831968",{"2":{"87":2}}],["830391",{"2":{"25":1}}],["83556",{"2":{"25":1}}],["879677",{"2":{"98":1}}],["87",{"2":{"72":2}}],["87705",{"2":{"56":1}}],["872575",{"2":{"27":1}}],["870826",{"2":{"25":1}}],["875658",{"2":{"22":1}}],["847062",{"2":{"87":2}}],["840",{"2":{"64":1}}],["840389",{"2":{"22":1}}],["84",{"2":{"61":2}}],["845983",{"2":{"25":1}}],["828388",{"2":{"98":1}}],["825496",{"2":{"98":1}}],["827727",{"2":{"98":1}}],["82421875",{"2":{"61":2}}],["824354",{"2":{"22":1}}],["829062",{"2":{"22":1}}],["8",{"2":{"16":12,"22":2,"34":1,"37":1,"60":2,"63":3,"67":1,"68":2,"79":1,"85":1,"101":1}}],["80871",{"2":{"98":1}}],["80759",{"2":{"56":1}}],["800",{"2":{"33":3,"34":1,"37":1,"114":1}}],["80",{"2":{"16":1,"40":2}}],["v",{"2":{"60":1,"67":1,"79":1,"85":1}}],["v1",{"2":{"60":2,"67":2,"79":2,"85":2,"97":1}}],["v20190710",{"2":{"59":1,"107":2,"112":1}}],["vol",{"2":{"60":1,"67":1,"79":1,"85":1}}],["volume",{"2":{"46":4}}],["voilà",{"2":{"46":1}}],["visit",{"2":{"115":1}}],["visual",{"2":{"112":2,"113":4,"114":1,"115":1}}],["visualizations",{"2":{"112":1}}],["visualization",{"2":{"42":1}}],["video",{"2":{"103":1}}],["videos",{"2":{"103":1}}],["via",{"2":{"51":1}}],["vice",{"2":{"24":1}}],["view",{"2":{"22":1,"98":1}}],["version",{"2":{"59":1,"60":1,"67":1,"79":1,"85":1,"89":1,"94":1,"99":2,"107":1}}],["versa",{"2":{"24":1}}],["verify",{"2":{"55":1,"87":1}}],["very",{"2":{"13":1,"42":1,"74":1}}],["vector",{"0":{"22":1},"2":{"22":4,"34":1,"47":1,"51":1,"53":1,"54":3,"55":2,"56":1,"66":1,"74":1,"89":2,"90":3}}],["val",{"2":{"34":2,"72":1}}],["vals",{"2":{"22":1}}],["value",{"2":{"12":1,"14":3,"16":2,"41":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"89":4,"90":1,"112":2,"113":6,"114":1,"115":1}}],["values=ds1",{"2":{"42":1}}],["values",{"0":{"34":1,"87":1},"2":{"9":1,"20":1,"21":1,"22":2,"28":1,"29":2,"32":2,"33":1,"34":1,"40":3,"42":4,"45":1,"46":2,"65":2,"66":1,"70":1,"72":2,"74":1,"75":1,"86":1,"87":3,"89":9,"98":1,"107":1}}],["varoables",{"2":{"89":1}}],["variant",{"2":{"59":1,"107":1}}],["variable",{"0":{"5":1,"43":1,"44":1,"45":1},"1":{"44":1,"45":1},"2":{"5":1,"9":1,"40":3,"59":1,"63":2,"86":2,"89":1,"90":6,"98":1,"100":1,"101":1,"102":1,"107":1}}],["variables=at",{"2":{"41":2,"98":1}}],["variables",{"0":{"6":1,"39":1,"40":1},"2":{"4":5,"5":4,"6":2,"9":4,"17":2,"18":1,"19":1,"20":1,"21":1,"24":1,"30":1,"35":2,"38":1,"39":2,"40":11,"44":1,"45":4,"46":11,"59":4,"60":1,"61":1,"62":1,"63":1,"65":3,"66":1,"67":1,"75":1,"76":1,"78":3,"79":1,"85":4,"86":1,"89":5,"90":1,"98":2,"107":4}}],["varlist",{"2":{"45":2}}],["var2=var2",{"2":{"39":1}}],["var2",{"2":{"35":2,"39":3,"41":1}}],["var1=var1",{"2":{"39":1}}],["var1",{"2":{"35":2,"39":3,"41":1}}],["var",{"2":{"9":2,"100":2,"101":2,"102":2}}],["uv",{"2":{"111":1}}],["u",{"2":{"101":1}}],["up",{"2":{"89":1}}],["update=false",{"2":{"111":1}}],["updates",{"0":{"99":1}}],["updated",{"2":{"87":1}}],["update",{"0":{"87":1},"2":{"87":2,"89":1}}],["updating",{"2":{"48":1,"87":1}}],["ucar",{"2":{"60":1,"67":1,"75":1,"79":1}}],["urls",{"2":{"57":1}}],["url",{"2":{"50":1,"59":1}}],["unreleased",{"2":{"94":1}}],["unpermuted",{"2":{"90":2}}],["unpractical",{"2":{"50":1}}],["underlying",{"2":{"89":1,"90":1,"99":1}}],["unlike",{"2":{"76":1}}],["unweighted",{"2":{"51":1,"56":1}}],["unique",{"2":{"101":1}}],["unidata",{"2":{"60":1,"67":1,"75":1,"79":1}}],["unit",{"2":{"61":1}}],["unitrange",{"2":{"51":2,"52":2,"56":6}}],["units",{"2":{"50":2,"59":1,"60":2,"63":6,"68":4,"69":6,"70":6,"71":10,"113":1,"114":1}}],["unions",{"0":{"47":1}}],["union",{"2":{"14":2,"16":4,"18":2,"20":1,"21":1,"22":1,"41":1,"42":2,"47":2,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"86":2,"87":1}}],["unordered",{"2":{"46":4,"51":2,"52":1,"53":1,"54":2,"55":2,"56":3}}],["unnecessary",{"2":{"22":1}}],["unchanged",{"2":{"13":1}}],["usage",{"2":{"78":1}}],["usually",{"2":{"59":1,"74":2,"75":2,"113":1,"114":1}}],["usual",{"2":{"51":1,"58":1}}],["us",{"2":{"22":1,"66":1}}],["useable",{"2":{"58":1,"89":1}}],["used",{"2":{"22":1,"23":1,"37":1,"51":1,"67":1,"72":1,"73":1,"74":1,"77":1,"78":1,"89":6,"90":3,"112":1}}],["uses",{"2":{"20":1,"42":1,"60":1}}],["userguide",{"2":{"92":2}}],["users",{"2":{"90":1}}],["user",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1,"90":1}}],["use",{"0":{"42":1},"2":{"0":1,"8":1,"9":1,"10":4,"13":1,"23":2,"32":2,"37":1,"39":1,"40":1,"41":1,"42":2,"46":2,"48":1,"50":1,"52":1,"62":1,"64":1,"66":1,"71":2,"76":1,"81":1,"86":1,"89":4,"90":1,"94":1,"103":1,"105":1,"107":2}}],["useful",{"2":{"0":1,"76":1}}],["using",{"2":{"0":1,"8":2,"9":2,"10":2,"16":3,"17":4,"22":3,"23":8,"27":1,"29":1,"32":1,"33":2,"35":2,"37":2,"39":2,"40":2,"41":1,"42":1,"46":3,"48":5,"58":1,"59":2,"60":3,"61":2,"62":1,"64":1,"65":1,"66":1,"67":2,"69":3,"70":2,"78":1,"79":2,"85":1,"86":3,"94":1,"98":1,"99":1,"100":2,"101":2,"107":3,"111":1,"112":6}}],["+proj=moll",{"2":{"110":1}}],["+",{"2":{"12":2,"13":1,"16":2,"18":2,"21":1,"64":2,"65":1,"100":1,"109":1,"112":1,"115":1}}],["kwargs",{"2":{"89":5,"90":2}}],["know",{"2":{"63":1}}],["k",{"2":{"46":5,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["keyword",{"2":{"58":1,"85":1,"89":7,"90":2}}],["key",{"2":{"48":1,"89":1}}],["keys=",{"2":{"58":1,"89":1}}],["keyset",{"2":{"46":1}}],["keys",{"2":{"46":7,"58":3,"89":4}}],["keylist",{"2":{"45":1}}],["keeps",{"2":{"13":1}}],["keep",{"2":{"0":1,"90":1,"112":1}}],["kb",{"2":{"10":1,"12":1,"13":1,"14":1,"16":2,"22":1,"29":2,"32":1,"35":1,"37":4,"41":3,"42":1,"69":1,"70":3,"71":5,"98":1,"101":1}}],["↗",{"2":{"10":1,"12":1,"13":1,"16":2,"17":1,"18":1,"19":1,"20":1,"21":3,"22":1,"29":3,"30":1,"32":3,"35":1,"37":5,"39":2,"41":3,"50":2,"51":1,"59":2,"60":2,"63":3,"64":1,"65":3,"66":1,"67":1,"68":2,"70":3,"71":5,"79":1,"85":2,"86":2,"98":1,"107":1,"113":1,"114":1}}],["0e8",{"2":{"89":1}}],["04",{"2":{"114":1}}],["0436",{"2":{"98":1}}],["04t00",{"2":{"65":1,"66":1,"114":1}}],["0465",{"2":{"56":1}}],["029247418895843032",{"2":{"101":1}}],["022312156353890087",{"2":{"101":1}}],["02345835017256051",{"2":{"101":1}}],["0247931",{"2":{"98":1}}],["02t00",{"2":{"65":1,"66":2}}],["02",{"2":{"59":1,"65":2}}],["0210077",{"2":{"25":1}}],["0214057",{"2":{"25":1}}],["0f20",{"2":{"59":1,"60":2,"63":6,"68":4,"69":6,"70":6,"71":10,"113":1,"114":1}}],["0f32",{"2":{"16":2}}],["039451611552802975",{"2":{"101":1}}],["03528277758302477",{"2":{"101":1}}],["0358348",{"2":{"25":1}}],["03t00",{"2":{"66":1}}],["03",{"2":{"65":2}}],["03361",{"2":{"56":1}}],["06417594925348342",{"2":{"101":1}}],["06159722707791853",{"2":{"101":1}}],["06t00",{"2":{"66":1}}],["062270000476910094",{"2":{"101":1}}],["0625",{"2":{"59":2,"107":1,"113":1}}],["0620649",{"2":{"27":1}}],["06755",{"2":{"56":1}}],["08158557886952912",{"2":{"101":1}}],["08058305464254185",{"2":{"101":1}}],["0833026",{"2":{"98":1}}],["08",{"2":{"50":2,"54":1}}],["09689360224777122",{"2":{"101":1}}],["0962708",{"2":{"98":1}}],["0940127",{"2":{"87":2}}],["09",{"2":{"50":2,"54":1}}],["0ºe",{"2":{"40":1}}],["0750790675265741",{"2":{"101":1}}],["07t00",{"2":{"66":2}}],["07",{"2":{"59":2,"64":1,"107":1,"113":1,"114":1}}],["0702532",{"2":{"27":1}}],["0723492",{"2":{"22":1}}],["00722034",{"2":{"56":1}}],["00709111",{"2":{"56":1}}],["00684233",{"2":{"56":1}}],["00693713",{"2":{"56":1}}],["00990356",{"2":{"56":1}}],["0057",{"2":{"56":1}}],["00388",{"2":{"56":1}}],["00",{"2":{"20":4,"46":16,"50":8,"54":4,"59":9,"60":8,"63":12,"65":4,"66":16,"67":4,"68":8,"69":8,"70":12,"71":20,"79":4,"85":4,"107":5,"113":6,"114":4}}],["05742042630154354",{"2":{"101":1}}],["0571978",{"2":{"98":1}}],["05611581504766607",{"2":{"101":1}}],["0566881",{"2":{"27":1}}],["05846",{"2":{"56":1}}],["0537",{"2":{"51":1,"52":1}}],["052264",{"2":{"27":1}}],["05t00",{"2":{"20":1,"66":1}}],["05",{"2":{"17":2,"18":1,"21":3,"37":3,"64":1}}],["01t21",{"2":{"113":2}}],["01t03",{"2":{"59":2,"107":1,"113":1,"114":1}}],["01t00",{"2":{"20":1,"46":4,"59":2,"107":1}}],["0174532925199433",{"2":{"61":1}}],["0178074",{"2":{"56":1}}],["0114824",{"2":{"98":1}}],["0117519",{"2":{"56":1}}],["0115514",{"2":{"56":1}}],["0127077",{"2":{"56":1}}],["0123091",{"2":{"56":1}}],["0121037",{"2":{"56":1}}],["019016",{"2":{"56":1}}],["018571",{"2":{"56":1}}],["0182373",{"2":{"56":1}}],["0180572",{"2":{"56":1}}],["0183003",{"2":{"56":1}}],["018",{"2":{"51":1,"52":1}}],["01",{"2":{"10":6,"12":3,"13":3,"14":3,"16":12,"17":6,"18":3,"20":2,"21":9,"22":9,"23":3,"29":9,"30":3,"37":22,"39":8,"40":11,"46":8,"59":5,"60":4,"63":6,"64":2,"65":6,"66":8,"67":2,"68":4,"69":6,"70":6,"71":10,"79":2,"85":2,"100":2,"101":4,"107":5,"113":5,"114":5}}],["0",{"2":{"8":1,"9":1,"10":6,"11":2,"12":6,"13":6,"14":7,"16":303,"17":7,"18":7,"19":7,"20":6,"21":10,"22":75,"25":36,"27":45,"29":12,"30":6,"33":3,"34":1,"35":9,"37":1,"40":4,"41":27,"42":11,"47":2,"54":2,"55":40,"56":19,"59":7,"60":10,"61":6,"63":12,"64":1,"67":6,"68":8,"69":6,"70":14,"71":20,"72":7,"79":6,"81":1,"83":1,"84":1,"85":6,"86":1,"87":40,"89":2,"90":1,"98":80,"99":1,"100":2,"101":19,"102":1,"107":4,"109":2,"110":2,"111":2,"112":1,"113":4,"114":5}}],["┤",{"2":{"8":2,"9":2,"10":2,"12":2,"13":2,"14":4,"16":10,"17":2,"18":2,"19":2,"21":6,"22":5,"25":2,"27":3,"29":4,"32":2,"33":6,"34":2,"35":2,"37":10,"41":6,"42":6,"47":4,"50":4,"51":4,"52":2,"54":6,"55":3,"56":6,"59":2,"60":2,"63":6,"64":2,"68":4,"69":5,"70":6,"71":10,"86":2,"98":4,"101":2,"113":2,"114":2}}],["┐",{"2":{"8":2,"9":2,"10":2,"12":2,"13":2,"14":4,"16":10,"17":2,"18":2,"19":2,"21":6,"22":8,"25":2,"27":4,"29":4,"32":2,"33":6,"34":2,"35":2,"37":10,"41":6,"42":6,"47":4,"50":4,"51":3,"52":1,"54":5,"55":3,"56":3,"59":2,"60":2,"63":6,"64":2,"68":4,"69":7,"70":6,"71":10,"72":2,"86":2,"98":4,"101":2,"113":2,"114":2}}],["┌",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":4,"25":1,"27":2,"29":2,"32":1,"33":3,"34":1,"35":1,"37":5,"41":3,"42":3,"47":2,"50":2,"51":2,"52":1,"54":3,"55":2,"56":3,"59":1,"60":1,"63":3,"64":1,"68":2,"69":3,"70":3,"71":5,"72":1,"86":1,"98":2,"101":1,"113":1,"114":1}}],["768",{"2":{"114":1}}],["76",{"2":{"72":2}}],["700",{"2":{"115":1}}],["70",{"2":{"70":3}}],["7030",{"2":{"61":1}}],["701332",{"2":{"22":1}}],["730",{"2":{"102":1}}],["7341",{"2":{"56":1}}],["73",{"2":{"56":1}}],["731779",{"2":{"27":1}}],["790617",{"2":{"98":1}}],["79472",{"2":{"98":1}}],["79",{"2":{"60":2,"63":3,"67":1,"68":2,"69":2,"70":4,"71":5,"72":3,"79":1,"85":1}}],["79502",{"2":{"56":1}}],["796375",{"2":{"27":1}}],["757781",{"2":{"98":1}}],["75",{"2":{"72":2}}],["7593",{"2":{"56":1}}],["75891",{"2":{"56":1}}],["75269",{"2":{"25":1}}],["752417",{"2":{"22":1}}],["776172",{"2":{"98":1}}],["77687",{"2":{"56":1}}],["77",{"2":{"72":2}}],["77587",{"2":{"56":1}}],["770949",{"2":{"27":1}}],["743343",{"2":{"98":1}}],["748725",{"2":{"98":1}}],["746259",{"2":{"87":2}}],["74",{"2":{"72":2}}],["744521",{"2":{"27":1}}],["74732",{"2":{"25":1}}],["716721",{"2":{"98":1}}],["716952",{"2":{"87":2}}],["717",{"2":{"71":5}}],["71",{"2":{"70":1}}],["7158",{"2":{"51":1,"52":1}}],["7119",{"2":{"51":1,"52":1}}],["718667",{"2":{"27":1}}],["71314",{"2":{"27":1}}],["71429",{"2":{"22":2}}],["78064",{"2":{"98":1}}],["783779",{"2":{"98":1}}],["787476",{"2":{"98":1}}],["78",{"2":{"70":1,"72":2}}],["78467",{"2":{"25":1}}],["789891",{"2":{"25":1}}],["781773",{"2":{"22":1}}],["7",{"2":{"8":1,"16":10,"21":3,"22":1,"29":1,"34":1,"50":2,"59":1,"64":9,"65":3,"66":1,"83":1,"107":1,"113":1}}],["→",{"2":{"4":1,"5":1,"6":1,"9":1,"10":1,"12":1,"13":1,"14":1,"16":2,"17":1,"18":1,"19":1,"20":1,"21":3,"22":6,"25":1,"27":3,"29":3,"30":1,"32":3,"33":3,"34":1,"35":1,"37":6,"39":2,"40":2,"41":3,"42":2,"45":2,"46":4,"47":2,"50":2,"51":1,"59":2,"60":2,"61":1,"63":3,"64":1,"65":3,"66":1,"67":1,"68":2,"69":1,"70":3,"71":5,"79":1,"85":2,"86":2,"98":2,"107":1,"113":1,"114":1}}],["↓",{"2":{"4":3,"5":3,"6":1,"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"20":1,"21":3,"22":6,"25":1,"27":3,"29":3,"30":1,"32":3,"33":3,"34":1,"35":1,"37":6,"39":2,"40":8,"41":3,"42":3,"44":1,"45":3,"46":4,"47":2,"50":2,"51":3,"52":1,"54":4,"55":2,"56":3,"59":2,"60":2,"61":1,"63":3,"64":1,"65":3,"66":1,"67":1,"68":2,"69":3,"70":3,"71":5,"72":1,"79":1,"85":2,"86":2,"98":2,"101":2,"107":1,"113":1,"114":1}}],["45×170×24",{"2":{"71":5}}],["456765",{"2":{"25":1}}],["415137",{"2":{"98":1}}],["4198",{"2":{"56":1}}],["41241",{"2":{"56":1}}],["41049",{"2":{"56":1}}],["41634",{"2":{"56":1}}],["417937",{"2":{"22":1}}],["487093",{"2":{"98":1}}],["487315",{"2":{"98":1}}],["48367",{"2":{"56":1}}],["48",{"2":{"50":2,"98":1}}],["480",{"2":{"21":2,"42":1}}],["40",{"2":{"40":2}}],["400",{"2":{"25":1,"86":1,"100":1,"102":1,"112":1,"113":2,"114":1,"115":1}}],["44",{"2":{"37":1,"41":3}}],["496429",{"2":{"98":1}}],["499743",{"2":{"98":1}}],["49909",{"2":{"56":1}}],["4947",{"2":{"56":1}}],["492817",{"2":{"27":1}}],["497189",{"2":{"22":1}}],["4326",{"2":{"61":1}}],["43254",{"2":{"56":1}}],["4325",{"2":{"51":1,"52":1}}],["432286",{"2":{"22":1}}],["435994",{"2":{"27":1}}],["475725",{"2":{"27":1}}],["472308",{"2":{"22":1}}],["4×30",{"2":{"22":1}}],["4×3×7",{"2":{"21":1}}],["4×3×2",{"2":{"19":1}}],["4675308904227747",{"2":{"114":1}}],["46506",{"2":{"56":1}}],["465103",{"2":{"22":1}}],["46",{"2":{"35":1,"98":1}}],["463503",{"2":{"22":1}}],["426519",{"2":{"25":1}}],["42857",{"2":{"22":2}}],["42",{"2":{"11":3}}],["4",{"2":{"4":4,"5":4,"16":4,"17":4,"18":2,"19":2,"20":1,"21":8,"22":9,"27":1,"34":1,"35":1,"40":6,"51":2,"52":1,"53":1,"54":2,"55":2,"56":4,"64":1,"86":3,"87":2,"98":3,"100":1,"102":1}}],["3d",{"0":{"111":1}}],["3hr",{"2":{"59":2,"107":3,"112":1}}],["34818",{"2":{"56":1}}],["34832",{"2":{"56":1}}],["348362",{"2":{"25":1}}],["34549",{"2":{"56":1}}],["34218",{"2":{"56":1}}],["337016",{"2":{"87":2}}],["337926",{"2":{"25":1}}],["33565",{"2":{"56":1}}],["320869",{"2":{"98":1}}],["320052",{"2":{"98":1}}],["32555",{"2":{"56":1}}],["3252",{"2":{"51":1,"52":1}}],["32149",{"2":{"56":1}}],["3×3",{"2":{"47":1}}],["3×20",{"2":{"42":1}}],["384×192×7",{"2":{"113":1}}],["384×192×251288",{"2":{"59":1}}],["3866",{"2":{"56":1}}],["38364",{"2":{"56":1}}],["3835",{"2":{"51":1,"52":1}}],["38",{"2":{"37":1,"70":3}}],["312",{"2":{"56":1}}],["31753",{"2":{"56":1}}],["3169",{"2":{"56":1}}],["3188",{"2":{"56":1}}],["31",{"2":{"37":2,"39":1,"40":1,"100":1,"101":2}}],["360",{"2":{"112":1,"113":1}}],["3600",{"2":{"37":1,"39":2}}],["366",{"2":{"102":1}}],["366625",{"2":{"27":1}}],["365×1",{"2":{"101":1}}],["365",{"2":{"101":1,"102":4}}],["36126",{"2":{"56":1}}],["36142",{"2":{"56":1}}],["36836",{"2":{"56":1}}],["369",{"2":{"40":1}}],["36",{"2":{"37":1,"39":2,"40":1,"54":1}}],["364288",{"2":{"25":1}}],["374138",{"2":{"98":1}}],["37",{"2":{"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["372",{"2":{"56":1}}],["372761",{"2":{"22":1}}],["37878",{"2":{"56":1}}],["376135",{"2":{"22":1}}],["35762",{"2":{"87":2}}],["35700351866494",{"2":{"59":4,"107":2,"113":2}}],["35432",{"2":{"56":1}}],["35483",{"2":{"56":1}}],["359",{"2":{"40":1,"59":2,"60":2,"63":3,"67":1,"68":2,"69":1,"72":2,"79":1,"85":1,"107":1,"113":1}}],["35",{"2":{"10":1,"12":1,"13":1,"22":1,"29":1}}],["303359",{"2":{"98":1}}],["309666",{"2":{"98":1}}],["307f8f0e584a39a050c042849004e6a2bd674f99",{"2":{"61":1}}],["3069",{"2":{"56":1}}],["30018",{"2":{"56":1}}],["30142",{"2":{"56":1}}],["30113",{"2":{"56":1}}],["30×15×10",{"2":{"16":1}}],["30×10×15",{"2":{"10":1,"12":1,"13":1,"22":1,"29":1}}],["30",{"2":{"10":3,"12":1,"13":1,"14":2,"16":5,"22":5,"23":2,"26":2,"29":4,"30":2,"56":2,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"107":1}}],["3906860099151811",{"2":{"11":1}}],["39",{"2":{"10":1,"16":3,"18":1,"19":1,"33":1,"35":1,"37":1,"39":1,"40":1,"41":2,"56":1,"58":1,"62":1,"63":1,"67":1,"77":1,"81":1,"89":2,"92":4,"101":3,"112":4,"113":2,"114":1}}],["3",{"2":{"4":8,"5":8,"6":10,"10":1,"11":3,"12":3,"13":2,"16":4,"17":3,"18":1,"19":3,"20":1,"21":14,"22":6,"27":1,"29":3,"32":5,"34":1,"37":4,"41":4,"42":5,"46":1,"47":2,"50":2,"51":2,"56":31,"59":1,"60":1,"63":3,"64":5,"68":2,"70":4,"71":5,"85":1,"86":3,"89":1,"98":3,"100":2,"113":1,"114":1}}],["zoom",{"2":{"111":1}}],["zopen",{"2":{"59":1,"87":1,"107":1,"112":1}}],["zeros",{"2":{"86":3,"101":1}}],["z",{"2":{"4":2,"5":3,"6":2,"85":2}}],["zarray",{"2":{"87":1}}],["zarr",{"0":{"59":1,"80":1,"81":1,"106":1},"1":{"81":1},"2":{"0":1,"2":2,"4":2,"5":2,"6":2,"16":5,"17":1,"20":2,"23":1,"27":1,"47":1,"58":2,"59":3,"80":5,"81":5,"84":3,"85":4,"86":6,"87":2,"89":4,"90":2,"95":2,"107":1,"112":1}}],["xticklabelalign",{"2":{"100":1,"102":1}}],["xticklabelrotation",{"2":{"100":1,"102":1}}],["xlabel=",{"2":{"100":1,"102":1}}],["xdim",{"2":{"78":3}}],["xx",{"2":{"60":1,"67":1,"79":1,"85":1}}],["xc",{"2":{"50":2}}],["xarray",{"2":{"49":1,"50":1}}],["x26",{"2":{"22":12,"40":12}}],["x3c",{"2":{"22":12,"40":4,"89":1}}],["xyz",{"2":{"21":2}}],["xy",{"2":{"19":2}}],["xyt",{"2":{"19":2,"21":2}}],["xin",{"2":{"18":8,"19":11,"21":8,"22":3,"41":3}}],["xout",{"2":{"16":2,"18":6,"19":6,"21":2,"22":3}}],["x",{"2":{"4":2,"5":3,"6":2,"13":2,"26":1,"27":3,"41":4,"47":2,"50":2,"51":2,"52":1,"56":3,"61":1,"74":1,"87":2,"90":1,"98":3,"100":1,"101":6}}],["ndata",{"2":{"109":2,"110":1,"111":1}}],["ndays",{"2":{"101":4}}],["nlon",{"2":{"109":2,"110":1}}],["npy",{"2":{"100":2,"101":2}}],["nin",{"2":{"90":2}}],["ntr",{"2":{"90":1}}],["ntuple",{"2":{"90":4}}],["nthreads",{"2":{"89":2}}],["nvalid",{"2":{"89":1}}],["n",{"2":{"73":1,"89":3}}],["n256",{"2":{"56":1}}],["nan",{"2":{"50":2,"51":48,"52":48,"56":384}}],["name=cube",{"2":{"89":1}}],["named",{"2":{"67":1,"69":1,"70":1,"74":1,"78":1,"89":2,"99":1}}],["namedtuple",{"2":{"18":1,"20":1,"89":1,"90":3}}],["names",{"0":{"21":1,"32":1,"43":1,"45":1},"1":{"33":1,"44":1,"45":1},"2":{"29":2,"46":1,"53":1,"74":2,"89":2,"90":1}}],["namely",{"2":{"16":1,"17":1}}],["name",{"0":{"44":1},"2":{"2":1,"18":4,"20":1,"45":1,"50":4,"51":1,"56":1,"59":3,"60":4,"63":12,"65":1,"68":8,"69":12,"70":12,"71":20,"77":1,"86":2,"89":6,"90":5,"98":1,"113":3,"114":3}}],["nc",{"2":{"50":2,"60":2,"64":4,"65":6,"66":2,"67":2,"79":2,"82":2,"83":3,"89":6}}],["number",{"2":{"49":1,"54":1,"81":1,"83":1,"89":2,"90":1,"101":1}}],["numbers",{"2":{"10":1,"98":1}}],["nout",{"2":{"90":2}}],["normal",{"2":{"89":1,"111":1}}],["north",{"2":{"61":1}}],["nometadata",{"2":{"51":3,"52":2,"54":3,"55":1,"56":10}}],["november",{"2":{"60":1,"67":1,"79":1,"85":1}}],["nov",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["nonnumeric",{"2":{"113":3,"114":1,"115":1}}],["nonmissingtype",{"2":{"90":1}}],["none",{"2":{"40":2,"45":1,"46":1,"59":1,"85":1,"107":1}}],["non",{"2":{"23":1,"89":1,"90":1,"100":1}}],["now",{"2":{"16":3,"18":1,"22":1,"33":1,"35":1,"37":1,"42":1,"46":1,"51":1,"52":1,"54":1,"56":1,"58":1,"86":2,"87":1,"93":1,"112":2}}],["no",{"2":{"14":1,"21":1,"27":1,"36":1,"81":1,"83":1,"86":1,"89":1,"90":1}}],["notice",{"2":{"81":1}}],["notation",{"2":{"37":1,"71":1}}],["nothing",{"2":{"18":1,"19":1,"21":1,"51":2,"54":4,"55":2,"56":5,"90":1}}],["note",{"2":{"9":1,"13":1,"16":4,"18":1,"21":1,"22":1,"33":1,"40":1,"47":1,"51":1,"52":1,"60":1,"63":1,"65":1,"86":1,"89":1,"90":1,"112":1}}],["not",{"0":{"40":1},"2":{"0":1,"1":1,"13":1,"36":1,"40":3,"45":1,"46":2,"47":1,"50":1,"60":1,"78":1,"86":2,"89":3,"90":3,"112":1}}],["neighbour",{"2":{"89":1}}],["neighboring",{"2":{"13":1}}],["near",{"2":{"59":2,"71":1,"107":1,"113":2,"114":2}}],["needed",{"2":{"89":1}}],["need",{"2":{"45":1,"87":1,"89":1,"90":1,"92":1}}],["next",{"2":{"41":1,"42":1,"53":1,"78":1,"93":2}}],["netcdf4",{"2":{"60":1}}],["netcdf",{"0":{"60":1,"82":1,"83":1},"1":{"83":1},"2":{"27":1,"47":1,"48":2,"58":1,"60":4,"62":1,"64":3,"65":1,"66":1,"67":2,"75":3,"79":2,"82":3,"83":2,"84":1,"89":3,"95":2}}],["necessary",{"2":{"16":1,"49":1,"50":1,"87":1,"90":4}}],["newdim",{"2":{"78":2,"89":1}}],["new",{"0":{"9":1,"65":1},"2":{"10":1,"12":1,"16":1,"29":1,"32":1,"33":3,"48":1,"53":1,"64":1,"65":2,"76":1,"84":1,"85":1,"86":1,"89":5,"90":4,"92":6,"101":1}}],["bit",{"2":{"114":1}}],["bits",{"2":{"89":2}}],["big",{"2":{"74":1}}],["black",{"2":{"102":1}}],["blocks",{"2":{"89":1}}],["blosccompressor",{"2":{"81":1}}],["blue",{"2":{"61":1,"75":1}}],["boundaries",{"2":{"90":1}}],["bounds",{"2":{"89":1}}],["both",{"2":{"66":1}}],["bold",{"2":{"56":1}}],["bool=true",{"2":{"90":1}}],["bool=false",{"2":{"89":1,"90":1}}],["boolean",{"2":{"89":3}}],["bool",{"2":{"47":3,"90":6}}],["bwr",{"2":{"56":1}}],["b`",{"2":{"37":1}}],["broad",{"2":{"104":1}}],["broadcasts",{"2":{"90":1}}],["broadcast",{"2":{"51":1,"56":1}}],["broadcasted",{"2":{"16":2,"89":1,"90":1}}],["brown",{"2":{"102":1}}],["browser",{"2":{"93":1}}],["brightness",{"2":{"74":1,"75":1}}],["brings",{"2":{"90":1}}],["bring",{"2":{"34":1}}],["branch",{"2":{"59":1,"107":1}}],["built",{"2":{"112":1}}],["build",{"0":{"93":1},"2":{"32":1,"93":1}}],["bug",{"2":{"91":1}}],["bundle",{"2":{"75":1}}],["but",{"0":{"40":1},"2":{"8":1,"16":2,"32":1,"33":2,"40":2,"45":1,"46":2,"60":1,"69":1,"70":1,"78":1,"89":2}}],["b",{"2":{"17":2,"18":1,"19":1,"20":1,"22":13,"45":2,"58":1,"71":2,"89":3}}],["basic",{"2":{"115":1}}],["based",{"0":{"106":1},"2":{"89":1,"90":1}}],["base",{"0":{"25":1},"2":{"4":4,"5":4,"6":2,"18":1,"20":1,"25":4,"29":3,"32":9,"33":6,"44":1,"45":5,"47":4,"51":1,"86":6,"90":1,"98":2}}],["backgroundcolor=",{"2":{"111":1}}],["back",{"2":{"89":1}}],["backend",{"2":{"89":6}}],["backendlist",{"2":{"48":1,"89":1}}],["backend=",{"2":{"2":1,"16":2,"84":1,"85":1,"89":1}}],["by=",{"2":{"42":2,"89":2}}],["bytes",{"2":{"8":1,"9":1,"14":1,"16":3,"17":1,"18":1,"19":1,"21":3,"22":1,"25":1,"27":1,"33":3,"34":1,"37":1,"42":2,"47":2,"54":1,"64":1,"69":2,"83":4,"86":1,"98":1,"114":1}}],["by",{"0":{"4":1,"5":1},"2":{"2":1,"10":2,"14":1,"16":1,"22":1,"28":1,"29":1,"33":1,"36":1,"37":6,"40":2,"42":1,"49":1,"50":1,"53":1,"54":1,"55":1,"56":1,"59":1,"60":1,"74":3,"76":1,"77":1,"78":2,"84":1,"87":2,"89":12,"90":6,"92":1,"93":1,"97":1,"101":1,"113":1,"114":1}}],["beware",{"2":{"103":1}}],["best",{"2":{"90":1,"105":1}}],["become",{"2":{"89":1}}],["because",{"2":{"1":1,"13":1,"14":1,"16":1}}],["before",{"2":{"86":1,"89":1,"93":1}}],["belonging",{"2":{"75":1}}],["belongs",{"2":{"22":1}}],["being",{"2":{"46":1,"112":1}}],["been",{"2":{"40":1,"78":2,"87":1}}],["between",{"2":{"26":1,"27":1,"37":1,"39":1,"40":2,"71":1,"81":1,"83":1,"89":1}}],["begin",{"2":{"23":1}}],["be",{"2":{"0":5,"2":1,"3":1,"4":1,"13":1,"15":1,"16":2,"22":1,"24":1,"37":1,"40":1,"41":1,"42":2,"45":1,"46":1,"50":1,"59":2,"60":1,"61":1,"62":2,"63":1,"72":1,"74":1,"76":2,"78":2,"84":1,"85":1,"86":1,"89":23,"90":9,"92":1,"94":1,"99":1,"103":1,"107":1,"115":1}}],["623962",{"2":{"98":1}}],["622774",{"2":{"98":1}}],["666534",{"2":{"98":1}}],["665274",{"2":{"98":1}}],["665723",{"2":{"25":1}}],["6326",{"2":{"61":1}}],["6378137",{"2":{"61":1}}],["63006",{"2":{"56":1}}],["69",{"2":{"59":1}}],["69085",{"2":{"56":1}}],["600",{"2":{"100":1,"102":1,"108":1,"109":1,"110":1,"112":1,"113":1}}],["60764",{"2":{"98":1}}],["60265",{"2":{"59":1,"107":1}}],["60918",{"2":{"56":1}}],["60175",{"2":{"56":1}}],["650",{"2":{"113":2}}],["65105",{"2":{"56":1}}],["652339",{"2":{"25":1}}],["645512",{"2":{"98":1}}],["645758",{"2":{"25":1}}],["64976",{"2":{"56":1}}],["642",{"2":{"50":1}}],["6122",{"2":{"56":1}}],["61197",{"2":{"56":1}}],["611084",{"2":{"25":1}}],["619",{"2":{"51":1,"52":1}}],["617023",{"2":{"27":1}}],["673373",{"2":{"25":1}}],["671662",{"2":{"22":1}}],["672",{"2":{"21":1}}],["683599",{"2":{"98":1}}],["687891",{"2":{"27":1}}],["684389",{"2":{"22":1}}],["685454",{"2":{"22":1}}],["6×2",{"2":{"9":1}}],["6",{"2":{"2":6,"4":6,"5":6,"6":6,"8":4,"9":5,"16":8,"22":1,"34":1,"37":1,"59":1,"66":1,"107":1}}],["1e8",{"2":{"90":1}}],["1f2",{"2":{"47":1}}],["191898",{"2":{"98":1}}],["1992",{"2":{"89":1}}],["1991",{"2":{"89":1}}],["1990",{"2":{"89":1}}],["198806",{"2":{"98":1}}],["1984",{"2":{"61":1}}],["1983",{"2":{"50":2,"54":1}}],["1980",{"2":{"50":2,"54":1}}],["193109",{"2":{"27":1}}],["197238",{"2":{"25":1}}],["19241",{"2":{"56":1}}],["192",{"2":{"19":1,"109":1}}],["19",{"2":{"16":16,"70":3,"71":5}}],["182371",{"2":{"87":2}}],["18583",{"2":{"56":1}}],["18892",{"2":{"56":1}}],["18434",{"2":{"56":1}}],["180×170",{"2":{"69":1}}],["180×170×24",{"2":{"60":1,"63":3,"68":2}}],["180",{"2":{"40":2,"61":1,"71":5,"109":1}}],["180ºe",{"2":{"40":1}}],["18",{"2":{"16":18}}],["14715175267308206",{"2":{"101":1}}],["1437",{"2":{"56":1}}],["145747",{"2":{"22":1}}],["14286",{"2":{"22":1}}],["14",{"2":{"16":20,"27":1}}],["137114",{"2":{"98":1}}],["1372",{"2":{"51":1,"52":1}}],["136",{"2":{"60":1,"67":1,"79":1,"85":1}}],["1363",{"2":{"51":1,"52":1}}],["13z",{"2":{"59":2,"107":1,"113":1,"114":1}}],["13205",{"2":{"27":1}}],["13",{"2":{"16":20,"27":1,"60":1,"67":1,"79":1,"85":1}}],["170",{"2":{"72":1}}],["179919",{"2":{"98":1}}],["179",{"2":{"61":1,"71":5}}],["17578125",{"2":{"61":2}}],["17593",{"2":{"22":1}}],["17434",{"2":{"56":1}}],["174934",{"2":{"25":1}}],["17852",{"2":{"56":1}}],["17863",{"2":{"56":1}}],["178603",{"2":{"22":1}}],["17647",{"2":{"56":1}}],["1762",{"2":{"51":1,"52":1}}],["17t00",{"2":{"50":2,"54":1}}],["172",{"2":{"47":1}}],["17",{"2":{"14":1,"16":22,"42":1,"70":1}}],["16t00",{"2":{"60":4,"63":6,"67":2,"68":4,"69":4,"70":6,"71":10,"79":2,"85":2}}],["16t12",{"2":{"50":2,"54":1}}],["1644",{"2":{"56":1}}],["16824",{"2":{"56":1}}],["16581",{"2":{"56":1}}],["16631",{"2":{"56":1}}],["166212",{"2":{"25":1}}],["16713",{"2":{"56":1}}],["167676",{"2":{"22":1}}],["16258",{"2":{"56":1}}],["169284",{"2":{"25":1}}],["16",{"2":{"10":1,"12":1,"13":1,"16":20,"22":1,"29":1,"60":2,"63":3,"67":1,"68":2,"69":4,"70":3,"71":5,"79":1,"85":1}}],["156",{"2":{"114":1}}],["15644",{"2":{"56":1}}],["157",{"2":{"114":1}}],["150",{"2":{"114":2}}],["155874",{"2":{"98":1}}],["15532",{"2":{"56":1}}],["158741",{"2":{"87":2}}],["159",{"2":{"70":1}}],["151146",{"2":{"25":1}}],["152534",{"2":{"25":1}}],["15394",{"2":{"22":1}}],["15×10×30",{"2":{"16":1}}],["15×10",{"2":{"16":2}}],["15",{"2":{"10":1,"16":25,"22":6,"23":1,"27":4,"29":1,"30":1,"35":2,"42":1,"50":2,"98":1}}],["128",{"2":{"111":1}}],["128204",{"2":{"25":1}}],["1242",{"2":{"56":1}}],["12575",{"2":{"56":1}}],["121",{"2":{"47":1}}],["121947",{"2":{"22":1}}],["12370988510072528",{"2":{"101":1}}],["123",{"2":{"17":1,"21":2}}],["1200",{"2":{"108":1,"109":1,"110":1}}],["120997",{"2":{"22":1}}],["120",{"2":{"16":1}}],["12",{"2":{"8":4,"16":20,"27":1,"37":10,"39":3,"40":4,"60":2,"63":3,"67":1,"68":2,"69":2,"70":3,"71":5,"79":1,"85":1,"100":1,"101":2}}],["1=5",{"2":{"2":1}}],["11391077060238619",{"2":{"101":1}}],["113553",{"2":{"55":3}}],["111379",{"2":{"98":1}}],["1159916",{"2":{"83":1}}],["119",{"2":{"69":1}}],["1181",{"2":{"56":1}}],["112319",{"2":{"55":12}}],["114815",{"2":{"55":6}}],["11",{"2":{"2":6,"4":6,"5":6,"6":6,"8":1,"16":18,"27":1,"51":4,"52":4,"56":4,"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["1",{"2":{"2":12,"4":19,"5":20,"6":22,"8":5,"9":3,"10":8,"11":3,"12":7,"13":5,"14":6,"16":24,"17":10,"18":9,"19":8,"20":5,"21":17,"22":34,"23":3,"25":1,"26":2,"27":6,"29":15,"30":4,"32":3,"33":3,"34":8,"35":8,"37":23,"39":10,"40":8,"41":15,"42":14,"44":1,"45":3,"46":1,"47":5,"50":4,"51":4,"52":2,"54":6,"55":10,"56":54,"59":4,"60":12,"63":12,"64":17,"65":17,"66":4,"67":4,"68":8,"69":13,"70":18,"71":15,"72":4,"79":4,"85":11,"86":2,"87":2,"90":1,"98":11,"100":2,"101":5,"102":5,"107":3,"109":4,"110":2,"111":5,"113":2,"114":2}}],["10291543325743235",{"2":{"101":1}}],["1095",{"2":{"101":1}}],["10989",{"2":{"55":6}}],["10mb",{"2":{"89":2}}],["1083",{"2":{"56":1}}],["108696",{"2":{"55":6}}],["103704",{"2":{"55":3}}],["10×170×24",{"2":{"70":1}}],["10×10×24",{"2":{"70":2}}],["10×10×8",{"2":{"37":1}}],["10×10×12",{"2":{"37":1}}],["10×10×36",{"2":{"37":1}}],["10×10×5",{"2":{"32":1}}],["10×10",{"2":{"33":3,"34":1,"37":1}}],["10×15×20",{"2":{"41":1}}],["10×15",{"2":{"14":1,"22":2,"42":1,"98":1}}],["10×20×5",{"2":{"29":1}}],["100",{"2":{"40":7,"113":1}}],["100622",{"2":{"27":1}}],["1000",{"2":{"0":1,"109":1,"110":1}}],["10x15",{"2":{"22":1}}],["101524",{"2":{"22":1}}],["10",{"2":{"2":14,"4":16,"5":18,"6":17,"10":3,"12":1,"13":1,"14":1,"16":21,"22":15,"23":3,"25":2,"27":4,"29":6,"30":2,"32":8,"33":12,"34":5,"35":4,"37":16,"39":10,"41":3,"42":2,"44":2,"45":4,"59":1,"60":2,"63":3,"68":2,"69":3,"70":6,"71":5,"85":2,"97":1,"98":3,"113":1,"114":1}}],["garbage",{"2":{"90":1}}],["gc",{"2":{"90":2}}],["gt",{"2":{"89":1,"90":3,"93":1}}],["gdalworkshop",{"2":{"61":1}}],["gdal",{"0":{"61":1},"2":{"61":1}}],["gb",{"2":{"59":1}}],["gn",{"2":{"59":1,"107":2,"112":1}}],["gs",{"2":{"59":1,"107":2,"112":1}}],["ggplot2",{"2":{"56":1,"112":1}}],["github",{"2":{"50":2,"61":1,"91":1}}],["gives",{"2":{"22":1}}],["given",{"2":{"2":1,"22":2,"58":1,"74":1,"76":1,"84":1,"89":6,"90":3,"98":1}}],["glob",{"2":{"89":1}}],["globalproperties=dict",{"2":{"90":1}}],["global",{"2":{"89":1,"90":1}}],["glmakie",{"2":{"42":2,"95":1,"107":2,"111":4,"112":3}}],["glue",{"2":{"8":1}}],["graphics",{"2":{"112":2}}],["grammar",{"2":{"112":1}}],["gradient",{"2":{"108":1,"109":1,"110":1,"111":1}}],["gradually",{"2":{"86":1}}],["grey25",{"2":{"111":1}}],["grey15",{"2":{"42":1,"56":1}}],["greenwich",{"2":{"61":1}}],["green",{"2":{"61":1,"75":1}}],["grouped",{"2":{"89":1}}],["groups",{"2":{"55":1}}],["groupby",{"0":{"51":1,"54":1},"1":{"52":1,"53":1,"55":1,"56":1},"2":{"48":1,"50":1,"51":6,"52":1,"53":1,"54":3,"55":3,"56":3,"89":1,"101":1}}],["group",{"0":{"48":1},"1":{"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1},"2":{"51":1,"53":1,"54":2,"75":1,"89":3}}],["grouping",{"2":{"42":2,"53":2}}],["grid=false",{"2":{"56":1}}],["grid",{"2":{"23":1,"74":1,"89":1}}],["gridchunks",{"2":{"2":3,"4":1,"5":1,"6":1,"89":1,"90":1}}],["go",{"2":{"93":2}}],["going",{"2":{"90":1}}],["good",{"2":{"56":1}}],["goal",{"2":{"21":1,"33":1,"49":1}}],["goes",{"2":{"16":2,"89":1,"90":1}}],["guide",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1}}],["gen",{"2":{"16":6}}],["general",{"0":{"104":1},"2":{"89":1,"94":1}}],["generated",{"2":{"60":1,"67":1,"79":1,"85":1,"90":1}}],["generate",{"2":{"16":2,"37":1,"39":1,"40":1,"89":1,"93":1}}],["generic",{"2":{"16":2,"18":1,"19":1,"21":1,"29":1,"89":1}}],["getting",{"0":{"96":1},"1":{"97":1,"98":1,"99":1}}],["gettarrayaxes",{"2":{"46":1}}],["getarrayinfo",{"2":{"90":1}}],["getaxis",{"2":{"34":1,"42":2,"89":1}}],["getloopchunks",{"2":{"90":1}}],["getloopcachesize",{"2":{"90":1}}],["getouttype",{"2":{"90":1}}],["getoutaxis",{"2":{"90":1}}],["getfrontperm",{"2":{"90":1}}],["gets",{"2":{"89":1,"90":1}}],["get",{"0":{"72":1},"2":{"10":1,"18":1,"32":1,"54":1,"68":1,"70":1,"72":1,"90":3,"98":1,"101":1,"107":1}}],["geoaxis",{"2":{"109":1,"110":1}}],["geometrybasics",{"2":{"107":1,"111":1,"112":1}}],["geomakie",{"2":{"95":1,"107":1,"109":2,"110":1}}],["geogcs",{"2":{"61":1}}],["geojson",{"0":{"61":1}}],["geotiff",{"0":{"61":1}}],["geo",{"2":{"1":1}}],["g",{"2":{"7":1,"10":1,"11":1,"13":1,"16":4,"23":1,"29":1,"51":26,"52":2,"53":2,"54":2,"55":1,"56":18,"58":2,"72":1,"74":1,"77":1,"89":5,"107":2,"112":2}}],["2π",{"2":{"100":1}}],["2×3",{"2":{"98":1}}],["2×2×3",{"2":{"4":1,"5":1,"6":1}}],["2×2",{"2":{"2":3,"47":1}}],["2x2l31",{"2":{"60":1,"67":1,"79":1,"85":1}}],["2963860",{"2":{"83":1}}],["298617",{"2":{"87":2}}],["298",{"2":{"61":1}}],["29816",{"2":{"56":1}}],["29473",{"2":{"56":1}}],["29564",{"2":{"56":1}}],["274902",{"2":{"98":1}}],["2747",{"2":{"56":1}}],["273",{"2":{"54":1}}],["276",{"2":{"54":2}}],["270",{"2":{"54":1}}],["27",{"2":{"51":1,"52":1,"56":1}}],["275265",{"2":{"87":2}}],["275×205×9",{"2":{"51":4}}],["275×205×36",{"2":{"50":2}}],["275",{"2":{"50":2}}],["2f0",{"2":{"47":1}}],["28422753251364",{"2":{"59":4,"107":2,"113":2}}],["28008",{"2":{"56":1}}],["2894",{"2":{"56":1}}],["288",{"2":{"54":1}}],["2818",{"2":{"51":1,"52":1}}],["28",{"2":{"37":1,"51":3,"52":3,"56":3}}],["28571",{"2":{"22":2}}],["2857142857142857",{"2":{"10":1,"12":1,"13":1,"14":1,"22":3,"29":2,"30":1,"35":1,"41":3,"42":1,"98":1}}],["2d",{"2":{"19":5,"20":3,"21":2}}],["26274",{"2":{"56":1}}],["268675",{"2":{"27":1}}],["265797",{"2":{"25":1}}],["26",{"2":{"16":2,"59":2,"107":1,"113":1,"114":1}}],["253383",{"2":{"98":1}}],["259455",{"2":{"87":2}}],["257223563",{"2":{"61":1}}],["25153",{"2":{"56":1}}],["25",{"2":{"16":4,"26":2,"37":1,"100":1}}],["24375",{"2":{"56":1}}],["2434",{"2":{"56":1}}],["241882",{"2":{"25":1}}],["24",{"2":{"16":6,"42":1,"69":2}}],["240",{"2":{"14":1,"16":1,"27":1}}],["233118",{"2":{"98":1}}],["23",{"2":{"16":8,"41":3,"56":1,"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["22990067443344916",{"2":{"101":1}}],["224959",{"2":{"98":1}}],["22211",{"2":{"56":1}}],["225542",{"2":{"27":1}}],["22",{"2":{"16":10}}],["211397",{"2":{"98":1}}],["21t06",{"2":{"59":2,"107":1,"113":1,"114":1}}],["21t19",{"2":{"46":4}}],["2101",{"2":{"59":2,"107":1}}],["21699",{"2":{"56":1}}],["21209",{"2":{"56":1}}],["215973",{"2":{"27":1}}],["21",{"2":{"16":12,"51":8,"52":8,"56":8}}],["2=10",{"2":{"2":1}}],["2",{"2":{"2":3,"4":8,"5":9,"6":10,"8":1,"9":1,"11":3,"12":2,"13":1,"14":1,"17":1,"18":2,"19":2,"20":1,"22":9,"23":1,"25":2,"27":3,"29":1,"32":3,"33":6,"34":3,"37":1,"40":6,"42":6,"45":4,"46":1,"47":8,"51":1,"52":1,"56":40,"59":3,"60":3,"63":6,"64":2,"65":2,"67":1,"68":4,"69":2,"70":2,"71":5,"72":2,"79":1,"85":2,"86":2,"89":2,"98":5,"107":3,"109":2,"111":1,"112":1,"113":1,"114":1}}],["207967",{"2":{"98":1}}],["209357",{"2":{"98":1}}],["2003",{"2":{"60":1,"67":1,"79":1,"85":1}}],["2004",{"2":{"60":1,"67":1,"79":1,"85":1}}],["2005",{"2":{"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1}}],["2002",{"2":{"60":3,"63":3,"67":2,"68":2,"69":2,"70":3,"71":5,"79":2,"85":1}}],["2001",{"2":{"60":3,"63":3,"67":2,"68":2,"69":3,"70":3,"71":5,"79":2,"85":1}}],["2000",{"2":{"26":1}}],["2019",{"2":{"59":2,"107":1,"113":1,"114":1}}],["2015",{"2":{"59":2,"60":1,"67":1,"79":1,"85":1,"107":2,"113":4,"114":4}}],["205",{"2":{"50":2}}],["20×10×15",{"2":{"41":2}}],["20×10×15×2",{"2":{"35":1,"98":1}}],["20ºn",{"2":{"40":1}}],["203714",{"2":{"27":1}}],["2023",{"2":{"100":1,"101":2}}],["2021",{"2":{"37":9,"100":1,"101":2,"102":1}}],["2020",{"2":{"37":5,"39":3,"40":4,"46":8,"64":4,"65":2,"66":8,"76":1}}],["2024",{"2":{"26":1,"65":5}}],["2022",{"2":{"10":4,"12":2,"13":2,"14":2,"16":8,"17":4,"18":2,"20":2,"21":6,"22":6,"23":2,"29":6,"30":2,"37":5,"39":3,"40":4,"102":1}}],["20",{"2":{"2":7,"4":10,"5":10,"6":10,"16":14,"29":2,"35":4,"40":2,"41":3,"42":1,"56":1,"85":2,"98":3}}],["5625",{"2":{"114":1}}],["56632",{"2":{"56":1}}],["55",{"2":{"101":1,"115":1}}],["551487",{"2":{"98":1}}],["551732",{"2":{"22":1}}],["55245",{"2":{"98":1}}],["552582",{"2":{"98":1}}],["514759",{"2":{"98":1}}],["514979",{"2":{"22":1}}],["5173",{"2":{"93":1}}],["542756",{"2":{"98":1}}],["547668",{"2":{"98":1}}],["547738",{"2":{"87":2}}],["54942",{"2":{"87":2}}],["540514",{"2":{"27":1}}],["5743",{"2":{"56":1}}],["57873",{"2":{"56":1}}],["57695",{"2":{"56":1}}],["57143",{"2":{"22":2}}],["52419",{"2":{"56":1}}],["59",{"2":{"113":1}}],["598769",{"2":{"98":1}}],["599987",{"2":{"87":2}}],["59212",{"2":{"56":1}}],["59085",{"2":{"56":1}}],["594514",{"2":{"25":1}}],["595405",{"2":{"22":1}}],["5×4",{"2":{"87":2}}],["5×4×5",{"2":{"86":1}}],["5×4×3",{"2":{"21":2}}],["5×4×3×2",{"2":{"17":1,"18":1}}],["5×7×3",{"2":{"64":1}}],["5×6×36",{"2":{"37":1}}],["5×6",{"2":{"27":2}}],["5×10",{"2":{"25":2}}],["507229",{"2":{"98":1}}],["506947",{"2":{"87":2}}],["508557",{"2":{"22":1}}],["500909",{"2":{"98":1}}],["50089",{"2":{"56":1}}],["500",{"2":{"0":1,"56":1,"111":2}}],["500mb",{"2":{"0":2}}],["53",{"2":{"69":1}}],["538981",{"2":{"22":1}}],["536399",{"2":{"22":1}}],["5843",{"2":{"51":1,"52":1}}],["581312",{"2":{"25":1}}],["58",{"2":{"16":2}}],["5",{"2":{"2":7,"4":16,"5":18,"6":7,"10":2,"12":3,"13":2,"14":1,"16":6,"17":2,"21":4,"22":10,"23":1,"25":2,"27":4,"29":5,"30":1,"32":4,"34":1,"35":2,"37":3,"39":4,"41":3,"42":2,"45":4,"56":5,"60":4,"63":6,"64":9,"65":3,"66":1,"67":2,"68":4,"69":3,"70":10,"71":10,"72":24,"79":2,"85":4,"86":6,"87":3,"98":2,"99":1,"102":2,"111":2}}],["rotate",{"2":{"111":1}}],["row",{"2":{"77":1,"89":1}}],["rowgap",{"2":{"56":1}}],["right",{"2":{"100":1,"102":1}}],["rights",{"2":{"87":1}}],["r",{"2":{"86":1,"112":1}}],["rlon",{"2":{"78":2}}],["rlat",{"2":{"78":2}}],["r1i1p1f1",{"2":{"59":2,"107":3,"112":1}}],["running",{"2":{"93":1}}],["run",{"2":{"23":1,"93":3,"94":2}}],["runs",{"2":{"13":1,"90":1}}],["ram",{"2":{"62":1}}],["race",{"2":{"60":1}}],["rafaqz",{"2":{"50":1}}],["raw",{"2":{"50":1,"61":1}}],["rasm",{"2":{"50":2}}],["ras",{"2":{"26":3}}],["rasters",{"2":{"26":2}}],["raster",{"0":{"26":1},"2":{"22":11,"26":3}}],["ranges",{"0":{"70":1},"2":{"34":1,"67":1}}],["range",{"2":{"10":2,"16":2,"17":2,"22":2,"23":2,"29":2,"35":3,"37":1,"66":1,"90":1,"98":3,"100":1}}],["randn",{"2":{"100":1}}],["random",{"2":{"17":2,"40":2,"46":3,"98":1}}],["rand",{"2":{"2":1,"4":3,"5":3,"6":3,"8":2,"9":2,"10":1,"17":1,"19":1,"21":3,"22":1,"23":1,"25":1,"26":1,"27":1,"29":2,"30":1,"32":1,"33":2,"35":2,"40":3,"42":1,"44":1,"45":3,"64":4,"85":1,"87":1,"98":2}}],["remaining",{"2":{"78":1}}],["removes",{"2":{"90":1}}],["remove",{"2":{"52":1}}],["removed",{"2":{"15":1,"90":1}}],["remote",{"2":{"0":1}}],["relational",{"2":{"74":1}}],["related",{"2":{"50":1}}],["rect",{"2":{"112":1,"113":2}}],["recommend",{"2":{"99":1}}],["recommended",{"2":{"71":1}}],["rechunking",{"2":{"90":1}}],["recalculate",{"2":{"90":1}}],["recal",{"2":{"90":1}}],["recently",{"2":{"0":1}}],["reentrantlock",{"2":{"60":1}}],["rewrote",{"2":{"59":1,"60":1,"67":1,"79":1,"85":1,"107":1}}],["realization",{"2":{"60":1,"67":1,"79":1,"85":1}}],["realm",{"2":{"59":1,"107":1}}],["reading",{"2":{"58":1}}],["readcubedata",{"0":{"63":1},"2":{"40":2,"62":1,"63":1,"89":1,"112":1,"113":1,"114":1}}],["read",{"0":{"57":1,"59":1,"60":1,"61":1},"1":{"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1},"2":{"1":1,"40":1,"57":1,"61":1,"65":3,"70":1,"89":1,"112":1,"113":1}}],["red",{"2":{"56":1,"61":1,"75":1}}],["reduce",{"2":{"10":1,"14":1,"19":1}}],["reverse",{"2":{"56":1}}],["reverseordered",{"2":{"9":1,"61":1,"98":1}}],["rename",{"2":{"45":1}}],["resets",{"2":{"89":1,"90":1}}],["respectively",{"2":{"75":1}}],["reshape",{"2":{"37":1,"39":2}}],["result",{"2":{"34":1,"42":1}}],["resulting",{"2":{"8":1,"9":1,"14":1,"89":1,"90":1}}],["results",{"0":{"102":1},"2":{"2":1,"5":1,"56":2,"89":1,"90":1}}],["referencing",{"2":{"51":1}}],["references",{"2":{"60":1,"67":1,"79":1,"85":1}}],["reference",{"0":{"88":1},"1":{"89":1,"90":1},"2":{"46":1}}],["ref",{"2":{"35":1,"89":1,"90":1}}],["rebuild",{"0":{"33":1},"2":{"32":1,"33":2,"46":2,"50":1}}],["repeat",{"2":{"100":1}}],["repl",{"2":{"94":1,"97":1}}],["replace",{"2":{"23":1,"50":2,"111":1}}],["repository",{"2":{"91":1,"103":1}}],["reports",{"2":{"91":1}}],["rep",{"2":{"50":2}}],["reproduces",{"2":{"49":1}}],["represented",{"2":{"89":1,"105":1}}],["represents",{"2":{"75":1}}],["representing",{"2":{"22":2,"90":1}}],["representation",{"2":{"1":1,"89":2,"90":3}}],["re",{"2":{"22":1}}],["registry",{"2":{"94":1}}],["registration",{"2":{"90":2}}],["registered",{"2":{"90":1,"94":1}}],["regions",{"2":{"22":8}}],["region",{"2":{"22":12}}],["regular",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":3,"18":3,"19":2,"20":2,"21":9,"22":8,"25":2,"27":4,"29":9,"30":3,"32":9,"33":6,"34":2,"35":3,"37":14,"39":6,"40":4,"41":9,"42":3,"44":1,"45":5,"47":4,"50":4,"51":2,"52":2,"56":6,"59":2,"60":4,"61":2,"63":6,"64":2,"65":7,"66":2,"67":2,"68":4,"69":2,"70":3,"71":10,"72":3,"79":2,"85":5,"86":6,"98":5,"101":1,"107":1,"113":1,"114":1}}],["regularchunks",{"2":{"2":6,"4":3,"5":3,"6":3}}],["returned",{"2":{"89":1}}],["returns",{"2":{"89":5,"90":2}}],["return",{"2":{"18":1,"19":1,"21":2,"22":4,"51":1,"89":1,"90":1,"101":1}}],["requests",{"2":{"91":1}}],["requested",{"2":{"13":1}}],["requirements",{"2":{"60":1,"67":1,"79":1,"85":1}}],["required",{"2":{"37":1}}],["requires",{"2":{"16":1}}],["http",{"2":{"93":1}}],["https",{"2":{"50":2,"60":1,"61":1,"67":1,"75":1,"79":1}}],["html",{"2":{"75":1}}],["hdf5",{"2":{"60":1}}],["hr",{"2":{"59":1,"107":2,"112":1}}],["history",{"2":{"59":2,"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"107":1,"113":1,"114":1}}],["hidedecorations",{"2":{"56":1}}],["highclip",{"2":{"56":4}}],["high",{"2":{"46":4,"112":1}}],["hm",{"2":{"56":8}}],["hold",{"2":{"89":1}}],["holds",{"2":{"89":1,"90":1}}],["ho",{"0":{"46":1}}],["however",{"2":{"24":1,"37":1,"65":1}}],["how",{"0":{"35":1,"36":1,"41":1,"42":1,"43":1,"94":1},"1":{"37":1,"38":1,"39":1,"40":1,"44":1,"45":1},"2":{"6":1,"7":1,"10":1,"17":2,"18":1,"24":1,"28":1,"31":1,"42":1,"51":1,"57":1,"63":3,"87":1,"89":1,"103":1,"105":1}}],["happens",{"2":{"90":1}}],["had",{"2":{"87":1,"89":1,"90":1}}],["hard",{"2":{"63":1}}],["hamman",{"2":{"49":1,"56":1}}],["handled",{"2":{"90":1}}],["handle",{"2":{"74":1,"90":1}}],["handling",{"2":{"9":1,"89":1}}],["handy",{"2":{"42":1}}],["has",{"2":{"8":1,"9":1,"22":1,"26":1,"27":1,"40":1,"49":1,"52":1,"90":1}}],["half",{"2":{"8":5}}],["have",{"2":{"6":1,"9":1,"22":1,"29":1,"38":1,"40":2,"51":1,"65":1,"76":1,"78":2,"89":3}}],["having",{"2":{"1":1,"22":1}}],["help",{"2":{"89":1,"90":2}}],["height",{"2":{"59":2,"78":2,"107":1,"112":1,"113":1,"114":1}}],["heatmap",{"0":{"108":1},"2":{"42":1,"56":3,"108":1,"112":1}}],["hereby",{"2":{"22":1}}],["here",{"2":{"8":1,"9":1,"13":1,"16":2,"17":1,"21":1,"22":1,"36":1,"42":1,"70":1,"86":1,"92":2}}],["hence",{"2":{"1":1}}],["yet",{"2":{"89":1}}],["yeesian",{"2":{"61":1}}],["years",{"2":{"37":1,"100":1,"101":1}}],["year",{"2":{"8":4,"102":1}}],["yyyy",{"2":{"60":2,"67":2,"79":2,"85":2}}],["ylabel=",{"2":{"100":1,"102":1}}],["ylabel",{"2":{"56":3}}],["yc",{"2":{"50":2}}],["yasxa",{"2":{"40":6}}],["yaxcolumn",{"2":{"90":1}}],["yaxconvert",{"2":{"27":2}}],["yaxdefaults",{"2":{"90":1}}],["yaxarraybase",{"2":{"27":1,"89":1,"90":1}}],["yaxarray",{"0":{"11":1,"17":1,"29":1,"36":1,"37":1,"47":1,"68":1,"74":1},"1":{"18":1,"19":1,"20":1,"37":1,"38":1,"39":1,"40":1},"2":{"2":1,"4":4,"5":4,"6":4,"7":1,"8":3,"9":3,"10":2,"12":1,"13":1,"14":2,"16":8,"17":2,"18":1,"19":2,"20":1,"21":6,"22":3,"23":1,"25":4,"26":2,"27":5,"29":5,"30":2,"32":3,"33":5,"34":1,"35":3,"36":1,"37":15,"39":4,"40":6,"41":3,"42":4,"44":2,"45":4,"46":4,"47":4,"50":2,"51":7,"52":1,"54":9,"55":1,"56":3,"59":2,"60":2,"61":1,"63":3,"64":5,"65":3,"66":1,"67":2,"68":2,"69":3,"70":3,"71":5,"74":1,"76":1,"79":1,"80":1,"82":1,"85":2,"86":4,"89":10,"90":3,"98":5,"101":2,"105":1,"107":1,"113":1,"114":1}}],["yaxarrays",{"0":{"0":1,"1":1,"2":1,"7":1,"10":1,"16":1,"24":1,"28":1,"43":1,"48":1,"57":1,"67":1,"79":1,"91":1,"94":1,"104":1,"105":1},"1":{"2":1,"3":1,"4":1,"5":1,"6":1,"8":1,"9":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1,"25":1,"26":1,"27":1,"29":1,"30":1,"44":1,"45":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"92":1,"93":1},"2":{"0":3,"2":1,"4":1,"5":1,"6":1,"8":3,"9":3,"10":4,"16":6,"17":3,"22":3,"23":4,"24":2,"25":1,"29":3,"32":1,"33":1,"35":3,"36":1,"37":1,"38":1,"39":2,"40":4,"44":1,"45":1,"46":4,"48":3,"51":2,"54":2,"55":1,"56":1,"57":1,"58":1,"59":1,"60":1,"61":2,"64":3,"65":3,"66":3,"67":1,"73":1,"75":1,"78":3,"79":1,"84":1,"86":1,"89":28,"90":28,"91":1,"93":1,"94":4,"97":3,"98":5,"99":2,"101":3,"103":1,"104":1,"107":1,"112":1}}],["yax",{"2":{"0":1,"8":3,"9":3,"10":2,"16":11,"17":3,"18":1,"19":1,"20":3,"21":5,"22":2,"23":2,"29":2,"33":1,"35":2,"37":1,"39":1,"40":1,"46":5,"47":2,"48":1,"51":4,"54":1,"64":3,"65":4,"66":2,"78":18,"89":1,"98":2,"101":2}}],["y",{"2":{"4":2,"5":3,"6":2,"26":1,"27":3,"37":4,"41":4,"50":2,"51":2,"52":1,"56":3,"61":1,"74":1,"98":3}}],["you",{"2":{"1":1,"23":1,"36":1,"40":3,"45":2,"62":1,"63":1,"78":4,"81":1,"89":1,"90":2,"92":1,"93":2,"94":3,"97":2,"99":1,"103":3,"105":2,"112":1}}],["yourself",{"2":{"93":1}}],["your",{"2":{"1":2,"40":2,"60":1,"78":3,"84":2,"86":1,"89":1,"92":4,"93":4}}],["circshift",{"2":{"109":1}}],["ct1",{"2":{"107":4,"108":1}}],["cycle",{"0":{"100":1,"102":1},"1":{"101":1,"102":1},"2":{"101":4}}],["cycle=12",{"2":{"51":2,"52":1,"54":2,"55":2,"56":3}}],["cdata",{"2":{"90":1}}],["center",{"2":{"89":1,"100":1,"102":1}}],["certain",{"2":{"64":1,"67":2,"90":1}}],["cell",{"2":{"59":2,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"89":1,"113":2,"114":2}}],["cf",{"2":{"59":2,"60":2,"67":2,"79":2,"85":2,"107":2}}],["cftime",{"2":{"50":6,"51":2,"54":7,"55":2,"56":2,"60":6,"63":9,"67":3,"68":6,"69":7,"70":9,"71":15,"79":3,"85":3}}],["cmpcachmisses",{"2":{"90":1}}],["cm4",{"2":{"60":4,"67":4,"79":4,"85":4}}],["cmip",{"2":{"59":1,"107":1}}],["cmip6",{"2":{"59":3,"107":6,"112":3}}],["cmor",{"2":{"59":2,"60":3,"63":3,"67":2,"68":2,"69":3,"70":3,"71":5,"79":2,"85":2,"107":1,"113":1,"114":1}}],["c54",{"2":{"56":1}}],["cb",{"2":{"56":1}}],["cbar",{"2":{"42":1}}],["cgrad",{"2":{"42":1}}],["cl",{"2":{"109":1,"110":1}}],["cl=lines",{"2":{"109":1,"110":1}}],["clean",{"2":{"90":1}}],["cleanme",{"2":{"90":4}}],["cleaner",{"2":{"89":2}}],["clevel=n",{"2":{"81":1}}],["climate",{"2":{"60":1,"67":1,"79":1,"85":1}}],["clashes",{"2":{"51":1}}],["classes=classes",{"2":{"42":1}}],["classes",{"2":{"42":8}}],["classification",{"2":{"42":2}}],["class",{"2":{"42":3}}],["closedinterval",{"2":{"71":1}}],["closed",{"0":{"71":1},"2":{"71":3}}],["close",{"2":{"46":4}}],["cloud",{"2":{"11":1,"59":1}}],["clustermanagers",{"2":{"23":2}}],["cluster",{"2":{"23":1}}],["cpus",{"2":{"23":1}}],["cpu",{"2":{"23":1}}],["c",{"2":{"22":11,"32":5,"33":7,"34":3,"42":2,"45":2,"50":2,"58":1,"75":1,"78":4,"81":1,"83":4,"89":6,"90":3,"101":4,"107":2,"112":2,"113":1,"114":1}}],["cumbersome",{"2":{"112":1}}],["custom",{"2":{"29":1,"89":1}}],["current",{"2":{"22":2,"75":1,"89":1,"102":1,"112":1}}],["currently",{"2":{"16":1,"46":1,"50":1,"103":1}}],["cubeaxis",{"2":{"90":1}}],["cubeaxes",{"2":{"89":1}}],["cubedir",{"2":{"90":1}}],["cube2",{"2":{"89":1}}],["cube1",{"2":{"89":1}}],["cubelist",{"2":{"89":1}}],["cubefittable",{"2":{"42":2,"89":1}}],["cubetable",{"0":{"42":1},"2":{"42":3,"89":3}}],["cubes",{"0":{"35":1},"2":{"9":2,"17":1,"21":1,"35":2,"40":1,"41":2,"42":1,"68":1,"76":1,"89":18,"90":9}}],["cube",{"0":{"32":1,"34":1,"36":1,"76":1,"101":1},"1":{"33":1,"37":1,"38":1,"39":1,"40":1},"2":{"2":1,"4":1,"5":1,"6":1,"16":11,"17":2,"19":2,"21":2,"32":1,"34":1,"36":2,"40":1,"41":1,"42":2,"50":1,"76":3,"86":1,"89":34,"90":19,"105":1}}],["chose",{"2":{"75":1}}],["child",{"2":{"59":1,"107":1}}],["check",{"2":{"16":1,"86":1,"99":1}}],["changed",{"2":{"99":1,"103":1}}],["changes",{"2":{"63":1}}],["change",{"2":{"10":1,"89":1,"90":1}}],["chunkoffset",{"2":{"90":1}}],["chunksize`",{"2":{"90":1}}],["chunksizes",{"2":{"89":2}}],["chunksize",{"2":{"89":1,"90":3}}],["chunks",{"0":{"4":1},"2":{"2":5,"4":1,"5":1,"6":2,"89":4,"90":11}}],["chunked",{"2":{"2":5}}],["chunking",{"0":{"2":1,"3":1,"5":1,"6":1},"1":{"4":1,"5":1,"6":1},"2":{"1":1,"5":1,"89":4,"90":3}}],["chunk",{"0":{"1":1},"1":{"2":1,"3":1,"4":1,"5":1,"6":1},"2":{"1":1,"2":1,"4":1,"5":1,"89":4,"90":4}}],["criteria",{"2":{"42":1}}],["creation",{"2":{"47":1,"64":1}}],["creating",{"0":{"22":1},"2":{"10":1,"33":1,"37":1,"86":1,"92":1,"112":1}}],["createdataset",{"2":{"90":2}}],["created",{"2":{"90":2}}],["creates",{"2":{"42":1,"89":2,"90":1}}],["create",{"0":{"28":1,"29":1,"30":1,"47":1},"1":{"29":1,"30":1},"2":{"10":1,"16":1,"22":2,"28":1,"29":1,"33":1,"35":1,"37":2,"42":1,"46":1,"54":1,"79":1,"84":1,"86":3,"89":1,"90":1,"98":1,"100":1,"112":1}}],["crucial",{"2":{"1":1}}],["coastlines",{"2":{"109":3,"110":1}}],["cosd",{"2":{"89":1}}],["country",{"2":{"89":4}}],["country=cube2",{"2":{"89":1}}],["could",{"2":{"33":1,"46":1,"62":1}}],["copies",{"2":{"90":1}}],["copied",{"2":{"86":1}}],["copybuf",{"2":{"90":2}}],["copydata",{"2":{"90":1}}],["copy",{"2":{"32":1,"89":1,"93":1}}],["coordinates",{"2":{"50":2,"59":1,"113":1,"114":1}}],["college",{"2":{"103":1}}],["collected",{"2":{"90":1}}],["collectfromhandle",{"2":{"90":1}}],["collection",{"2":{"31":1,"74":1}}],["collect",{"2":{"25":1,"34":3,"101":1}}],["colonperm",{"2":{"90":1}}],["colorblind",{"2":{"114":1}}],["colorbar",{"2":{"42":1,"56":2}}],["color=",{"2":{"102":3,"112":2,"113":2,"114":1,"115":1}}],["color",{"2":{"100":1,"109":1,"110":1,"111":1,"112":1,"113":3,"114":1}}],["colormap=",{"2":{"56":1}}],["colormap=makie",{"2":{"42":1}}],["colormap",{"2":{"56":3,"108":1,"109":1,"110":1,"111":1,"112":1,"113":1}}],["colorrange=",{"2":{"56":1}}],["colorrange",{"2":{"56":3}}],["column",{"2":{"77":1,"90":1}}],["colgap",{"2":{"56":1}}],["colnames",{"2":{"46":1}}],["configuration",{"2":{"90":2}}],["concatenating",{"2":{"89":1}}],["concatenates",{"2":{"89":2}}],["concatenate",{"0":{"35":1},"2":{"35":2,"64":2,"66":1,"89":2}}],["concatenatecubes",{"0":{"9":1},"2":{"9":2,"35":2,"89":2}}],["concrete",{"2":{"89":2}}],["contributing",{"2":{"92":1}}],["contribute",{"0":{"91":1,"92":1},"1":{"92":1,"93":2}}],["contrast",{"2":{"89":1}}],["content",{"2":{"89":1}}],["contents",{"2":{"66":1}}],["contact",{"2":{"60":1,"67":1,"79":1,"85":1}}],["contains",{"2":{"71":1,"89":1,"90":1}}],["contain",{"2":{"59":1,"60":1,"90":1}}],["containing",{"0":{"47":1},"2":{"8":1,"42":1,"75":1,"76":1,"89":1}}],["continue",{"2":{"51":1,"112":1}}],["consolidated=true",{"2":{"59":1,"107":1,"112":1}}],["constructor",{"2":{"89":1}}],["constructs",{"2":{"89":1}}],["construct",{"0":{"46":1},"2":{"89":2,"112":1}}],["consistent",{"2":{"59":1,"107":1}}],["consisting",{"2":{"8":1}}],["considering",{"2":{"49":1}}],["considered",{"2":{"42":1}}],["consider",{"2":{"17":1,"19":1,"21":1,"33":1,"113":1}}],["convinient",{"2":{"31":1}}],["conventions",{"2":{"60":1,"67":1,"79":1,"85":1}}],["convenience",{"2":{"51":1,"78":1}}],["convenient",{"2":{"23":1}}],["conversion",{"2":{"24":1,"26":1,"27":1}}],["conversions",{"2":{"24":1}}],["converted",{"2":{"76":1}}],["convert",{"0":{"24":1,"25":1,"26":1,"27":1},"1":{"25":1,"26":1,"27":1},"2":{"24":1,"25":2,"27":2,"89":1,"90":1}}],["corresponding",{"2":{"7":1,"21":2,"22":2,"76":1,"89":1}}],["combining",{"0":{"106":1}}],["combined",{"2":{"9":2,"76":2}}],["combine",{"0":{"7":1},"1":{"8":1,"9":1},"2":{"7":1,"8":1,"9":1,"105":1}}],["command",{"2":{"94":2}}],["comment",{"2":{"59":1,"113":1,"114":1}}],["common",{"2":{"40":5,"58":1,"89":2}}],["com",{"2":{"50":2,"61":1}}],["compiler",{"2":{"99":1}}],["compuation",{"2":{"89":1}}],["computing",{"2":{"42":1}}],["computations",{"2":{"13":1,"41":1}}],["computation",{"0":{"23":1},"2":{"13":1,"74":1,"89":3,"90":3}}],["computed",{"2":{"90":1}}],["compute",{"0":{"10":1},"1":{"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1,"23":1},"2":{"101":1}}],["compares",{"2":{"90":1}}],["comparing",{"2":{"83":1}}],["compatible",{"2":{"61":1}}],["compress",{"2":{"83":2}}],["compress=n",{"2":{"83":1}}],["compressors",{"2":{"81":1}}],["compressor=compression",{"2":{"81":1}}],["compression",{"0":{"81":1,"83":1},"2":{"81":5,"83":4}}],["completely",{"2":{"62":1}}],["complexity",{"2":{"41":1}}],["complex",{"2":{"10":2,"98":1,"112":1}}],["comply",{"2":{"60":1,"67":1,"79":1,"85":1}}],["comes",{"2":{"1":1}}],["code",{"2":{"6":1,"13":1,"23":2,"31":1,"46":1,"60":2,"112":1}}],["captialisation",{"2":{"90":1}}],["cameracontrols",{"2":{"111":1}}],["came",{"2":{"76":1}}],["cairomakie",{"2":{"56":1,"100":2}}],["caxes",{"2":{"32":2,"89":2}}],["car",{"2":{"22":1}}],["cartesianindex",{"2":{"22":11}}],["caluclate",{"2":{"89":1}}],["calculations",{"2":{"56":1,"90":1}}],["calculating",{"2":{"14":1,"89":1}}],["calculates",{"2":{"89":1}}],["calculated",{"2":{"42":2,"51":1}}],["calculate",{"2":{"14":1,"22":1,"42":2,"48":1,"49":2,"51":1,"56":1,"90":2,"101":1}}],["calling",{"2":{"56":1,"78":1}}],["called",{"2":{"16":1,"51":1,"74":3,"90":1}}],["call",{"2":{"1":1,"23":1}}],["case",{"2":{"13":1,"19":1,"40":1,"53":1,"59":1,"63":1,"66":2}}],["cases",{"2":{"0":1,"62":1,"71":1,"103":1}}],["cataxis",{"2":{"89":2}}],["categoricalaxis",{"2":{"89":1}}],["categorical",{"2":{"9":1,"17":1,"18":1,"19":1,"22":1,"35":1,"42":1,"46":4,"51":2,"52":1,"53":1,"54":2,"55":2,"56":3,"89":1,"90":1,"98":1}}],["cat",{"0":{"8":1},"2":{"8":2}}],["cache=1gb",{"2":{"89":1}}],["cache=1e9",{"2":{"16":2}}],["cache=",{"2":{"89":1}}],["cache=5",{"2":{"89":1}}],["cache=5e8",{"2":{"84":1,"89":1}}],["cache=yaxdefaults",{"2":{"89":1}}],["caches",{"2":{"0":1}}],["cachesize",{"2":{"0":2,"90":1}}],["cache",{"2":{"0":6,"89":3,"90":7}}],["caching",{"0":{"0":1}}],["can",{"2":{"0":5,"2":1,"3":1,"13":2,"14":1,"16":3,"20":1,"22":1,"23":3,"29":2,"35":1,"36":1,"38":1,"40":1,"41":1,"42":2,"46":1,"52":1,"56":1,"59":2,"60":1,"61":1,"62":1,"64":1,"72":1,"74":3,"75":2,"76":1,"78":2,"85":1,"86":1,"87":1,"89":13,"90":6,"92":1,"94":2,"97":2,"103":2,"115":1}}],["msc",{"2":{"101":3,"102":2}}],["mscarray",{"2":{"101":2}}],["md",{"2":{"92":2}}],["mfdataset",{"0":{"64":1},"1":{"65":1,"66":1},"2":{"65":3,"66":2,"89":5}}],["mpi",{"2":{"59":1,"107":2,"112":1}}],["m",{"2":{"25":2}}],["miss",{"2":{"90":1}}],["missing",{"2":{"14":2,"16":6,"18":1,"21":1,"22":2,"41":1,"42":2,"60":12,"63":6,"68":4,"69":6,"70":6,"71":10,"86":3,"87":1,"89":2,"90":2,"111":1}}],["mind",{"2":{"112":1}}],["minimal",{"2":{"112":1}}],["minimized",{"2":{"90":1}}],["minutes",{"2":{"60":1,"63":3,"68":2,"69":3,"70":3,"71":5}}],["might",{"2":{"24":1,"62":1,"103":1}}],["mix",{"2":{"21":2}}],["mm",{"2":{"20":3,"60":2,"67":2,"79":2,"85":2}}],["mymean",{"2":{"23":4}}],["my",{"2":{"16":2,"60":1}}],["magma",{"2":{"113":1}}],["mahecha",{"2":{"76":1}}],["manager",{"2":{"97":1}}],["manual",{"2":{"60":1}}],["many",{"0":{"18":1,"19":2},"2":{"18":2,"19":2,"20":4,"63":1,"74":1,"90":1}}],["marker=",{"2":{"112":1,"113":2}}],["marketdata",{"2":{"46":2}}],["mar",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["master",{"2":{"50":1,"94":1}}],["mask",{"2":{"42":2}}],["makie",{"2":{"56":1,"112":1,"113":1}}],["making",{"2":{"11":1,"60":1,"67":1,"112":1}}],["make",{"2":{"39":1,"40":2,"86":1,"89":1,"90":2,"93":1}}],["main",{"2":{"36":1,"90":1}}],["machine",{"2":{"23":1,"74":1}}],["matching",{"2":{"98":1}}],["match",{"2":{"90":2}}],["matched",{"2":{"89":1}}],["matches",{"2":{"20":1}}],["mat",{"2":{"22":4}}],["matrix",{"2":{"16":2,"22":1,"25":1,"46":1,"52":1,"56":2,"74":1,"87":2,"101":1}}],["maximal",{"2":{"90":1}}],["maximum",{"2":{"41":1,"89":1,"90":1}}],["maxbuf",{"2":{"90":1}}],["max",{"2":{"16":2,"81":1,"83":1,"84":1,"89":8,"90":2}}],["maxsize",{"2":{"0":2}}],["may",{"2":{"10":1,"15":1,"51":4,"52":2,"53":1,"54":4,"55":4,"56":6,"59":1,"60":1,"99":1}}],["maps",{"0":{"107":1},"1":{"108":1}}],["mapslice",{"2":{"23":1}}],["mapslices",{"0":{"14":1},"2":{"10":1,"13":1,"14":1,"23":1,"41":1,"101":1}}],["mapped",{"2":{"89":1}}],["mapping",{"2":{"89":1,"90":3,"112":2,"113":4,"114":1,"115":1}}],["mapcube",{"0":{"15":1},"1":{"16":1,"17":1,"18":1,"19":1,"20":1,"21":1,"22":1},"2":{"10":1,"13":1,"15":1,"16":4,"18":1,"20":1,"21":2,"22":2,"23":3,"89":5,"90":2}}],["map",{"0":{"13":1,"41":1},"2":{"10":1,"13":2,"21":1,"22":3,"23":3,"41":4,"42":1,"51":2,"55":1,"56":1,"89":2,"98":1,"101":2}}],["moll",{"0":{"110":1}}],["mowingwindow",{"2":{"89":1}}],["module",{"2":{"89":1}}],["model",{"2":{"60":1,"67":1,"75":2,"79":1,"85":1}}],["modification",{"2":{"11":1,"23":1}}],["modify",{"0":{"11":1}}],["monthday",{"2":{"101":4}}],["monthly",{"0":{"49":1}}],["month",{"2":{"37":7,"39":3,"40":4,"49":1,"51":4,"52":1,"53":1,"54":5,"55":2,"56":3,"89":1,"101":2}}],["moment",{"2":{"27":1}}],["movingwindow",{"2":{"21":1,"89":4}}],["more",{"2":{"9":1,"10":1,"36":1,"41":1,"42":1,"58":1,"70":1,"71":1,"76":1,"81":1,"84":1,"89":3,"90":1,"98":1,"113":1,"114":1,"115":1}}],["most",{"2":{"1":1,"15":1,"24":1,"113":1}}],["mesh",{"2":{"111":2}}],["merely",{"2":{"86":1}}],["merged",{"2":{"66":1}}],["measured",{"2":{"75":1,"76":1}}],["measure",{"2":{"74":1}}],["measures",{"2":{"59":1,"113":1,"114":1}}],["means",{"0":{"49":1},"2":{"14":1,"89":1}}],["mean",{"0":{"100":1,"102":1},"1":{"101":1,"102":1},"2":{"10":1,"14":3,"23":4,"42":4,"51":10,"52":2,"53":1,"56":2,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"89":1,"101":5,"113":1,"114":1}}],["meter",{"2":{"59":1,"113":1,"114":1}}],["method",{"2":{"16":2,"18":1,"19":1,"21":1,"58":1,"89":1}}],["methods",{"2":{"7":1,"23":1,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["metadata",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":3,"24":1,"25":1,"27":3,"29":2,"32":1,"33":3,"34":1,"35":1,"37":5,"41":3,"42":3,"47":2,"50":2,"51":2,"52":1,"54":3,"55":2,"56":3,"59":1,"60":1,"63":3,"64":1,"68":2,"69":3,"70":3,"71":5,"86":2,"89":1,"98":3,"101":1,"113":1,"114":1}}],["members",{"2":{"90":1}}],["member",{"2":{"6":1}}],["memory",{"0":{"62":1},"1":{"63":1},"2":{"1":1,"8":1,"10":1,"12":1,"13":1,"14":2,"16":3,"17":1,"18":1,"19":1,"21":3,"22":3,"24":3,"25":1,"27":1,"29":2,"32":1,"33":3,"34":1,"37":5,"40":4,"41":3,"42":3,"47":2,"50":3,"54":1,"62":1,"63":4,"74":1,"86":2,"89":2,"90":1,"98":2,"101":1,"112":1,"113":1,"114":1}}],["multi",{"2":{"17":2,"21":2}}],["multiplying",{"2":{"41":1}}],["multiply",{"2":{"10":1,"41":1}}],["multiple",{"0":{"45":1,"106":1},"2":{"7":1,"21":1,"23":1,"59":1,"60":1,"74":1,"89":1}}],["must",{"2":{"0":1,"76":1,"89":1,"90":1}}],["mb",{"2":{"0":1,"50":2,"60":1,"63":3,"68":2,"113":1}}],["pkg",{"2":{"94":2,"95":8,"97":2}}],["pkg>",{"2":{"93":1,"94":1}}],["purple",{"2":{"100":1}}],["purpose",{"2":{"31":1,"41":1}}],["pull",{"2":{"91":1}}],["public",{"0":{"89":1}}],["published",{"2":{"56":1}}],["pydata",{"2":{"50":1}}],["p",{"2":{"40":10,"60":1,"67":1,"79":1,"85":1}}],["picture",{"2":{"74":1,"75":1}}],["pieces",{"2":{"31":1}}],["pixel",{"0":{"100":1},"1":{"101":1,"102":1},"2":{"21":1,"23":2}}],["post=getpostfunction",{"2":{"89":1}}],["positions",{"2":{"90":2}}],["position",{"2":{"74":1}}],["positional",{"2":{"69":1,"70":1}}],["possible",{"2":{"23":2,"24":1,"35":1,"47":1,"86":1,"89":3,"90":1}}],["pos",{"2":{"22":2}}],["point3f",{"2":{"111":1}}],["point",{"2":{"22":3,"59":1,"98":1,"112":1,"113":1,"114":1}}],["points",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":4,"16":9,"17":3,"18":3,"19":2,"20":3,"21":9,"22":16,"23":1,"25":2,"27":4,"29":9,"30":3,"32":9,"33":6,"34":2,"35":3,"37":14,"39":6,"40":21,"41":9,"42":5,"44":1,"45":5,"46":4,"47":4,"50":6,"51":3,"52":2,"54":3,"55":1,"56":7,"59":6,"60":6,"61":2,"63":9,"64":3,"65":10,"66":4,"67":3,"68":6,"69":4,"70":9,"71":16,"72":3,"74":2,"75":1,"79":3,"85":6,"86":6,"98":5,"101":1,"107":3,"113":3,"114":3}}],["plasma",{"2":{"112":1}}],["place",{"2":{"90":1}}],["plt",{"2":{"108":1,"112":1,"113":4,"114":1}}],["please",{"2":{"60":1,"81":1}}],["plots",{"2":{"112":1}}],["plot",{"0":{"102":1,"108":1,"111":1},"2":{"56":2,"112":1,"113":1,"114":1}}],["plotting",{"0":{"107":1},"1":{"108":1},"2":{"0":1,"95":1,"112":1}}],["plus",{"2":{"18":3,"50":1,"89":1}}],["palette",{"2":{"114":1}}],["paste",{"2":{"93":1}}],["pass",{"2":{"89":1}}],["passed",{"2":{"58":1,"89":5}}],["passing",{"2":{"21":1,"89":3}}],["pair",{"2":{"90":1}}],["pairs",{"2":{"18":1,"20":1}}],["partitioned",{"2":{"90":1}}],["participate",{"2":{"89":1}}],["particular",{"2":{"77":1}}],["parts",{"2":{"89":1}}],["parent",{"2":{"59":1,"107":1}}],["parallelized",{"2":{"90":1}}],["parallelisation",{"2":{"89":1}}],["parallel",{"2":{"23":1,"74":1}}],["package",{"2":{"23":1,"70":1,"72":1,"88":1,"95":1,"97":1}}],["packages",{"2":{"16":1,"24":1}}],["paths",{"2":{"64":1,"66":1,"89":1,"90":2}}],["path=",{"2":{"16":2,"59":1,"80":1,"81":1,"82":1,"83":1,"84":2,"85":1,"86":1,"89":1,"90":1}}],["path=f",{"2":{"4":1,"5":1,"6":1}}],["path",{"0":{"20":1},"2":{"0":1,"20":1,"50":2,"59":3,"60":2,"61":2,"67":2,"79":2,"84":2,"89":3,"93":1}}],["pr",{"2":{"93":1}}],["println",{"2":{"83":1}}],["printed",{"2":{"46":2}}],["primem",{"2":{"61":1}}],["prior",{"2":{"1":1}}],["props",{"2":{"98":2}}],["properly",{"2":{"49":1}}],["properties=dict",{"2":{"90":1}}],["properties=properties",{"2":{"18":2}}],["properties",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"10":2,"17":2,"18":2,"19":1,"20":2,"21":2,"23":2,"29":3,"30":3,"50":1,"56":1,"59":1,"60":1,"61":1,"67":1,"79":1,"85":1,"89":5,"90":1,"107":1}}],["probably",{"2":{"90":1}}],["process",{"2":{"74":1,"90":2}}],["processed",{"2":{"13":1}}],["provide",{"2":{"89":1}}],["provides",{"2":{"74":1,"104":1,"112":1}}],["provided",{"2":{"36":1,"86":1,"89":2}}],["providing",{"2":{"66":1}}],["projection",{"0":{"109":1,"110":1},"1":{"110":1,"111":1,"112":1,"113":1,"114":1,"115":1},"2":{"61":1}}],["progressmeter",{"2":{"89":1}}],["progress",{"2":{"50":1,"103":1,"105":1}}],["product",{"2":{"22":1}}],["pressing",{"2":{"97":1}}],["pressed",{"2":{"94":1}}],["pre",{"2":{"89":2}}],["previous",{"2":{"56":1,"84":1,"86":1,"89":1}}],["previously",{"2":{"42":1}}],["preferred",{"2":{"50":2}}],["prepared",{"2":{"60":1,"67":1,"79":1,"85":1}}],["prep",{"2":{"9":2}}],["precipitation",{"2":{"9":2,"75":1,"76":1,"98":2}}],["permute",{"2":{"90":1}}],["permuteloopaxes",{"2":{"90":1}}],["permutation",{"2":{"90":1}}],["persist",{"2":{"90":1}}],["persistend",{"2":{"90":1}}],["persistency",{"2":{"90":1}}],["persistent",{"2":{"89":1,"90":2}}],["persist=nothing",{"2":{"84":1,"89":1}}],["perform",{"2":{"90":1}}],["performed",{"2":{"13":2}}],["performing",{"2":{"10":1}}],["per",{"2":{"7":1,"14":1,"51":1,"54":1,"55":1,"112":1}}],["=interval",{"2":{"71":2}}],["===",{"2":{"46":1}}],["==",{"2":{"12":1,"46":1,"101":1}}],["=>nan",{"2":{"111":1}}],["=>",{"2":{"10":2,"12":1,"13":1,"16":2,"17":2,"18":3,"19":2,"20":1,"21":2,"22":5,"23":1,"29":3,"30":3,"44":1,"45":1,"46":5,"50":15,"51":5,"52":1,"54":3,"55":2,"56":3,"59":20,"60":20,"61":1,"63":30,"67":10,"68":20,"69":30,"70":30,"71":50,"78":1,"79":10,"85":10,"98":6,"107":10,"113":17,"114":12,"115":2}}],["=>2",{"2":{"4":1}}],["=>10",{"2":{"4":1}}],["=>5",{"2":{"4":1,"5":1}}],["=",{"2":{"0":5,"2":4,"4":9,"5":15,"6":9,"8":5,"9":5,"10":4,"11":1,"12":1,"13":1,"16":14,"17":4,"18":14,"19":7,"20":11,"21":12,"22":16,"23":5,"25":3,"26":5,"27":4,"29":5,"30":4,"32":1,"33":3,"35":6,"37":7,"39":6,"40":17,"42":7,"44":1,"45":3,"46":7,"47":4,"50":5,"51":16,"52":1,"53":1,"54":4,"55":1,"56":22,"58":3,"59":2,"60":3,"61":2,"63":1,"64":6,"65":7,"66":2,"67":2,"68":2,"69":6,"70":6,"71":3,"79":2,"81":2,"83":3,"85":2,"86":4,"87":5,"89":8,"90":7,"98":5,"100":10,"101":11,"102":5,"107":8,"108":5,"109":7,"110":5,"111":6,"112":10,"113":14,"114":6,"115":2}}],["dc",{"2":{"90":2}}],["dkrz",{"2":{"59":1,"107":2,"112":1}}],["dufresne",{"2":{"60":1,"67":1,"79":1,"85":1}}],["due",{"2":{"53":1}}],["dummy",{"2":{"35":1,"37":1,"100":1,"101":1}}],["during",{"2":{"22":1,"23":1,"24":1}}],["dd",{"2":{"32":1,"65":4,"66":2,"89":4,"101":1}}],["d",{"2":{"22":5,"46":5,"56":3,"101":1,"107":3,"109":5,"110":1}}],["draw",{"2":{"112":2,"113":4,"114":1,"115":1}}],["drop",{"2":{"56":1}}],["dropdims",{"0":{"52":1},"2":{"51":2,"52":2,"56":1}}],["drivers",{"2":{"58":1,"89":1}}],["driver",{"2":{"48":1,"58":3,"84":1,"89":5}}],["driver=backend",{"2":{"84":1,"89":1}}],["driver=",{"2":{"4":1,"5":1,"6":1,"58":3,"80":2,"81":1,"82":2,"83":1,"84":3,"85":1,"86":2,"89":5}}],["drei",{"2":{"19":2}}],["dash",{"2":{"102":1}}],["danger",{"2":{"84":1}}],["daysinmonth",{"2":{"51":1,"54":1}}],["days",{"2":{"49":1,"51":2,"53":1,"54":2,"55":2}}],["dayofyear",{"2":{"16":1}}],["day",{"2":{"10":2,"12":1,"13":1,"14":1,"16":4,"17":2,"18":1,"21":3,"22":3,"23":1,"29":3,"30":1,"64":2,"65":1,"100":1,"101":4,"102":1}}],["datconfig",{"2":{"90":2}}],["datset",{"2":{"89":1}}],["dat",{"2":{"89":8,"90":16}}],["datum",{"2":{"61":1}}],["datetime360day",{"2":{"60":6,"63":9,"67":3,"68":6,"69":7,"70":9,"71":15,"79":3,"85":3}}],["datetimenoleap",{"2":{"50":6,"51":2,"54":7,"55":2,"56":2}}],["datetime",{"2":{"20":1,"46":5,"59":2,"65":1,"66":3,"107":1,"113":2,"114":2}}],["date",{"2":{"10":5,"12":3,"13":3,"14":3,"16":12,"17":5,"18":3,"21":8,"22":11,"23":3,"29":8,"30":3,"37":24,"39":8,"40":11,"64":3,"65":7,"74":1,"78":2,"100":2,"101":5,"107":1}}],["datesid",{"2":{"101":2}}],["dates",{"2":{"10":2,"12":1,"13":1,"14":1,"16":5,"17":2,"18":1,"21":2,"22":3,"23":1,"29":3,"30":1,"37":8,"39":4,"40":5,"48":1,"51":1,"64":7,"65":5,"66":1,"76":1,"100":1,"101":2,"107":1,"112":1,"113":1}}],["data=cube1",{"2":{"89":1}}],["databases",{"2":{"74":1}}],["dataframe",{"2":{"42":1,"89":1}}],["dataframes",{"2":{"42":1}}],["datacubes",{"2":{"89":1}}],["datacube",{"0":{"106":1},"2":{"42":2,"86":1,"89":1}}],["datatypes",{"2":{"36":1}}],["data1",{"2":{"35":2}}],["data3",{"2":{"30":1}}],["data2",{"2":{"29":2,"35":2}}],["datasetaxis",{"2":{"89":2,"90":1}}],["datasetaxis=",{"2":{"89":1,"90":1}}],["dataset",{"0":{"30":1,"36":1,"38":1,"39":1,"40":1,"43":1,"46":1,"58":1,"75":1,"84":1,"85":1,"87":1},"1":{"37":1,"38":1,"39":2,"40":2,"44":1,"45":1,"59":1,"60":1,"61":1,"62":1,"63":1},"2":{"0":3,"3":1,"4":4,"5":2,"6":3,"9":1,"10":1,"18":1,"20":2,"24":1,"30":2,"38":1,"39":3,"40":5,"44":2,"45":3,"46":5,"58":4,"59":3,"60":3,"61":3,"64":1,"65":3,"66":1,"67":3,"68":1,"75":3,"76":2,"78":1,"79":3,"80":1,"81":1,"82":1,"83":1,"84":3,"85":4,"86":2,"87":2,"89":20,"90":9,"107":2,"112":2,"113":1}}],["datasets",{"0":{"3":1,"28":1,"48":1,"57":1,"67":1,"79":1},"1":{"4":1,"5":1,"6":1,"29":1,"30":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1},"2":{"0":2,"24":1,"28":1,"40":1,"57":1,"58":1,"62":1,"84":1,"89":9,"90":4,"105":1}}],["data",{"0":{"34":1,"50":1,"62":1,"76":1},"1":{"63":1},"2":{"0":3,"1":2,"7":1,"8":2,"9":1,"10":3,"11":1,"12":1,"13":1,"14":2,"16":9,"17":3,"18":1,"19":1,"21":6,"22":4,"23":2,"25":2,"26":1,"27":1,"29":2,"32":1,"33":3,"34":2,"35":1,"37":6,"39":1,"40":2,"41":3,"42":5,"50":4,"54":1,"59":3,"60":7,"63":6,"64":1,"67":3,"68":4,"69":6,"70":6,"71":10,"73":1,"74":3,"75":2,"76":3,"79":3,"84":2,"85":3,"86":4,"87":1,"89":20,"90":12,"98":6,"99":1,"100":2,"101":2,"105":4,"107":5,"109":1,"112":4,"113":7,"114":2,"115":2}}],["dev",{"2":{"93":1}}],["dependencies",{"2":{"93":1}}],["depth",{"2":{"21":8,"78":2}}],["deletes",{"2":{"84":1,"89":1}}],["delete",{"2":{"84":2,"86":1}}],["denoting",{"2":{"89":1}}],["dense",{"2":{"74":1}}],["denvil",{"2":{"60":2,"67":2,"79":2,"85":2}}],["degree",{"2":{"61":1}}],["degc",{"2":{"60":1,"63":3,"68":2,"69":3,"70":3,"71":5}}],["detect",{"2":{"58":1,"89":1,"90":1}}],["determined",{"2":{"90":1}}],["determines",{"2":{"89":1}}],["determine",{"2":{"1":1,"63":1,"89":1}}],["declarative",{"2":{"112":1}}],["dec",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["defaultfillval",{"2":{"90":1}}],["defaults",{"2":{"65":1,"89":7}}],["default",{"2":{"18":1,"58":1,"83":3,"86":1,"89":1,"90":4}}],["definition",{"2":{"76":1}}],["definitions",{"2":{"17":1,"19":1}}],["defining",{"2":{"23":1}}],["defines",{"2":{"89":1}}],["defined",{"2":{"18":1,"26":1,"27":1,"42":1,"51":1,"56":1,"72":1,"74":1,"77":1,"78":1,"86":1,"98":1}}],["define",{"0":{"101":1},"2":{"16":2,"18":1,"37":1,"42":1,"56":1,"78":1,"89":2,"100":1}}],["deal",{"2":{"17":1}}],["dest",{"2":{"110":1}}],["desc",{"2":{"89":3,"90":3}}],["descriptor",{"2":{"90":4}}],["descriptors",{"2":{"89":2}}],["descriptions",{"2":{"89":1}}],["description",{"2":{"17":2,"19":2,"21":2,"36":1,"89":4,"90":11}}],["described",{"2":{"105":1}}],["describe",{"2":{"89":2}}],["describes",{"2":{"7":1,"10":1,"24":1,"28":1,"57":1,"71":1,"73":1,"88":1,"90":1}}],["describing",{"2":{"89":1}}],["designed",{"2":{"24":2,"74":1}}],["desired",{"2":{"16":1,"90":4}}],["demand",{"2":{"13":1}}],["diverging",{"2":{"56":1}}],["divided",{"2":{"41":1}}],["differing",{"2":{"89":1}}],["difference",{"2":{"56":1}}],["differences",{"2":{"46":1,"51":1,"56":1,"90":1}}],["different",{"0":{"21":1},"2":{"9":2,"16":1,"17":2,"23":1,"32":1,"33":1,"45":1,"49":1,"58":1,"75":1,"89":3,"90":2,"103":1}}],["diff",{"2":{"51":2,"56":3}}],["directory",{"2":{"59":1,"80":2,"82":2}}],["directories",{"2":{"57":1,"90":1}}],["direct",{"2":{"46":1}}],["directly",{"2":{"16":1,"20":1,"27":1,"28":1,"29":1,"87":2}}],["dictionary",{"2":{"75":1,"89":3}}],["dict",{"2":{"4":1,"5":1,"8":1,"9":1,"10":2,"12":1,"13":1,"14":2,"16":5,"17":2,"18":3,"19":2,"20":1,"21":4,"22":4,"23":1,"25":1,"27":3,"29":4,"30":2,"32":1,"33":3,"34":1,"35":1,"37":5,"41":3,"42":3,"46":2,"47":2,"50":2,"51":3,"52":2,"54":4,"55":3,"56":3,"59":2,"60":2,"61":1,"63":3,"64":1,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"86":1,"89":3,"98":3,"101":1,"107":1,"113":1,"114":1}}],["dime",{"2":{"59":1,"113":1,"114":1}}],["dimensionaldata",{"2":{"22":1,"27":2,"32":1,"33":1,"37":1,"39":1,"40":1,"46":1,"48":1,"50":1,"51":15,"52":10,"54":12,"55":5,"56":38,"65":1,"66":2,"70":1,"71":2,"72":3,"74":1,"77":1,"78":1,"95":1,"99":3,"101":1,"107":1,"112":1}}],["dimensional",{"2":{"17":2,"19":2,"21":2,"73":1,"74":2,"89":1}}],["dimensions",{"0":{"39":1,"40":1,"77":1},"1":{"78":1},"2":{"9":1,"10":1,"13":1,"15":1,"16":2,"20":1,"21":1,"22":2,"23":1,"29":2,"33":1,"35":1,"38":1,"40":3,"41":2,"45":1,"51":16,"52":10,"54":11,"55":5,"56":38,"63":1,"66":1,"67":1,"72":2,"74":3,"75":1,"78":2,"89":8,"90":3,"98":3,"99":1}}],["dimension",{"0":{"8":1,"9":1,"65":1,"66":1,"72":1},"2":{"2":1,"8":2,"9":1,"10":1,"14":2,"16":3,"18":1,"19":1,"22":3,"37":1,"40":1,"51":1,"52":1,"53":1,"56":1,"64":2,"65":4,"66":3,"70":1,"72":1,"74":1,"76":1,"77":1,"78":4,"89":7,"90":3,"98":1}}],["dimvector",{"2":{"54":1,"89":1}}],["dimgroupbyarray",{"2":{"51":1,"54":1}}],["dimarray",{"0":{"27":1},"2":{"22":3,"27":6,"51":1,"52":1,"54":1,"55":2,"56":3,"65":3,"66":1,"72":1,"74":1,"89":2}}],["dims=2",{"2":{"101":1}}],["dims=",{"2":{"14":2,"23":1,"41":1,"51":5,"52":1,"54":1,"56":1}}],["dims",{"2":{"8":3,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":4,"25":1,"26":1,"27":2,"29":2,"32":3,"33":4,"34":1,"35":1,"37":5,"41":3,"42":3,"46":1,"47":2,"50":2,"51":6,"52":1,"54":5,"55":2,"56":5,"59":1,"60":1,"63":3,"64":1,"68":2,"69":3,"70":3,"71":5,"72":1,"86":1,"98":2,"101":1,"113":1,"114":1}}],["dim",{"2":{"2":2,"4":7,"5":8,"6":2,"21":1,"22":1,"25":2,"27":2,"29":4,"32":9,"33":6,"34":3,"35":1,"40":1,"44":1,"45":5,"47":4,"51":2,"52":2,"56":6,"78":3,"85":3,"86":6,"89":1,"98":2,"112":2,"113":6,"114":1,"115":1}}],["disregard",{"2":{"90":1}}],["display",{"2":{"111":1}}],["displayed",{"2":{"63":1}}],["dispatch",{"2":{"90":1}}],["discribe",{"2":{"89":2}}],["discussion",{"2":{"81":1}}],["distribute",{"2":{"23":1}}],["distributed",{"0":{"23":1},"2":{"0":1,"23":2}}],["diskarray",{"2":{"89":1}}],["diskarrays",{"2":{"2":9,"4":4,"5":4,"6":4,"89":2,"90":1}}],["disk",{"2":{"1":1,"16":1,"20":1,"27":1,"74":1,"86":3,"87":2,"89":1,"90":2}}],["dodgerblue",{"2":{"102":1}}],["documentation",{"0":{"92":1},"1":{"93":1}}],["doc",{"2":{"84":1}}],["docs",{"0":{"93":1},"2":{"75":1,"92":2,"93":6,"99":1,"112":1}}],["docstring",{"2":{"58":1,"89":1}}],["don",{"2":{"81":1}}],["done",{"2":{"33":1,"41":1,"56":1,"62":1,"92":2,"115":1}}],["double",{"2":{"50":2}}],["download",{"0":{"50":1},"2":{"50":1,"60":2,"61":2,"67":2,"79":2}}],["downloads",{"2":{"48":1,"50":1,"60":1,"61":1,"67":1,"79":1}}],["doing",{"2":{"23":1,"32":1,"34":1,"78":2,"93":1}}],["does",{"2":{"23":1,"86":1,"89":2,"90":1}}],["dot",{"2":{"21":1,"102":1}}],["do",{"0":{"35":1,"36":1,"41":1,"42":1,"43":1,"46":1},"1":{"37":1,"38":1,"39":1,"40":1,"44":1,"45":1},"2":{"1":1,"13":1,"16":1,"22":3,"23":1,"31":2,"41":1,"49":1,"56":1,"78":1,"86":1,"87":1,"90":1,"93":1,"97":1}}],["dsw",{"2":{"51":2,"56":2}}],["dsfinal",{"2":{"35":1,"41":2,"42":2}}],["ds2",{"2":{"35":3,"41":1,"85":1}}],["ds1",{"2":{"35":3,"41":3,"42":1}}],["dschunked",{"2":{"4":3,"5":3,"6":3}}],["ds",{"2":{"0":3,"4":2,"5":2,"6":2,"30":1,"39":2,"40":12,"44":1,"45":1,"46":2,"50":4,"51":10,"54":1,"56":3,"59":1,"60":2,"61":1,"63":3,"65":3,"66":2,"67":1,"68":2,"78":1,"79":1,"80":3,"81":2,"82":3,"83":7,"84":3,"85":2,"86":1,"87":5,"89":4,"90":1,"111":2}}],["written",{"2":{"89":1,"90":1}}],["writing",{"2":{"87":1}}],["writefac",{"2":{"90":1}}],["writefac=4",{"2":{"84":1,"89":1}}],["writes",{"2":{"89":1}}],["write",{"0":{"79":1,"80":1,"82":1},"1":{"80":1,"81":2,"82":1,"83":2,"84":1,"85":1,"86":1,"87":1},"2":{"86":1,"89":2}}],["wrapping",{"2":{"53":1,"66":1,"72":2}}],["wrapped",{"2":{"16":1}}],["wrap",{"2":{"0":1,"89":1}}],["would",{"2":{"64":1,"89":2}}],["world",{"2":{"61":2}}],["workarounds",{"2":{"112":1}}],["workdir",{"2":{"90":1}}],["worker",{"2":{"89":1}}],["workers",{"2":{"89":1}}],["workflow",{"2":{"62":1}}],["workflows",{"2":{"1":1}}],["work",{"2":{"24":2,"50":1,"66":1,"73":1,"89":1,"103":2,"105":1,"113":1}}],["workload",{"2":{"23":1}}],["working",{"2":{"16":1,"87":1}}],["works",{"2":{"6":1,"34":1,"39":1,"40":1,"65":1,"86":1}}],["wgs",{"2":{"61":3}}],["www",{"2":{"60":1,"67":1,"79":1}}],["w",{"2":{"56":2,"87":2}}],["was",{"2":{"20":1,"22":1,"23":1,"90":1}}],["way",{"2":{"15":1,"24":1,"32":1}}],["warning",{"2":{"11":1,"24":1,"32":1,"40":1,"45":1,"47":1,"50":1,"84":1,"86":1,"89":1,"112":1}}],["wanted",{"2":{"90":1}}],["wants",{"2":{"86":1}}],["want",{"0":{"95":1},"2":{"0":1,"1":1,"62":1,"66":1,"76":1,"78":2,"90":1,"93":1,"94":1,"105":1}}],["white",{"2":{"109":1,"110":1}}],["while",{"2":{"86":1}}],["which",{"2":{"9":1,"16":1,"22":2,"33":1,"40":2,"51":1,"56":1,"60":1,"63":1,"68":1,"71":1,"72":1,"76":3,"89":5,"90":4,"105":1}}],["what",{"2":{"51":1}}],["whose",{"0":{"39":1,"40":1}}],["whole",{"2":{"8":3}}],["whether",{"2":{"90":2}}],["when",{"2":{"1":1,"6":1,"13":1,"51":1,"63":1,"64":1,"66":1,"76":1,"78":1,"89":3,"90":1}}],["whereas",{"2":{"74":1}}],["where",{"2":{"0":1,"23":1,"40":4,"49":1,"66":1,"71":1,"87":1,"89":1,"90":4}}],["width",{"2":{"112":1}}],["wide",{"2":{"66":1}}],["wintri",{"0":{"109":1},"1":{"110":1,"111":1,"112":1,"113":1,"114":1,"115":1}}],["windowloopinds",{"2":{"90":1}}],["window",{"2":{"89":1,"90":1}}],["within",{"2":{"70":1}}],["without",{"2":{"65":1,"90":1}}],["with",{"0":{"47":1},"2":{"4":1,"5":1,"8":1,"10":1,"12":1,"13":1,"16":7,"17":3,"18":2,"19":2,"21":3,"22":4,"23":2,"24":1,"29":3,"32":1,"33":1,"40":6,"41":2,"42":3,"45":2,"46":3,"47":1,"50":2,"51":4,"52":1,"54":2,"55":2,"56":5,"58":1,"59":3,"60":2,"63":3,"66":2,"67":1,"68":2,"69":3,"70":3,"71":5,"73":1,"75":1,"79":1,"81":1,"83":1,"84":1,"85":2,"86":2,"87":1,"89":11,"90":1,"92":1,"98":4,"99":3,"103":1,"105":1,"107":2,"109":1,"112":2,"113":1,"114":1}}],["will",{"2":{"0":1,"1":1,"4":1,"5":1,"13":1,"16":3,"17":2,"18":1,"19":1,"22":1,"36":1,"40":1,"41":2,"42":2,"45":2,"46":1,"48":1,"53":2,"58":1,"60":1,"66":1,"84":3,"86":3,"87":1,"89":12,"90":3,"105":1}}],["wether",{"2":{"89":1}}],["weight=",{"2":{"89":1}}],["weight=nothing",{"2":{"89":1}}],["weight",{"0":{"54":1},"1":{"55":1,"56":1},"2":{"53":1,"55":1,"56":1}}],["weights",{"0":{"55":1},"2":{"51":3,"55":2,"56":1}}],["weightedmean",{"2":{"89":1}}],["weighted",{"0":{"56":1},"2":{"42":1,"49":1,"51":8,"56":8,"89":3}}],["well",{"2":{"42":1,"46":1,"86":1,"89":1}}],["welcome",{"2":{"6":1,"91":1}}],["were",{"2":{"13":2,"71":1,"90":1,"100":1}}],["we",{"2":{"0":1,"8":2,"9":1,"13":2,"14":1,"16":5,"17":3,"18":1,"19":1,"20":1,"22":5,"23":2,"29":2,"33":1,"35":1,"36":1,"37":1,"38":1,"40":2,"41":2,"42":5,"46":4,"51":3,"52":1,"53":2,"56":1,"59":1,"64":1,"66":1,"70":1,"76":1,"86":3,"87":4,"99":2,"100":1,"107":1,"112":1}}],["oob",{"2":{"89":1}}],["o1",{"2":{"60":2,"67":2,"79":2,"85":1}}],["ocean",{"2":{"60":1,"67":1,"79":1,"85":1}}],["oct",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["occuring",{"2":{"4":1}}],["o",{"2":{"50":3,"56":4,"89":5}}],["ohlcv",{"2":{"46":3}}],["ouput",{"2":{"93":1}}],["our",{"2":{"41":1,"42":1,"101":1,"113":1}}],["outcube",{"2":{"90":1}}],["outcubes",{"2":{"90":1}}],["outcs",{"2":{"90":1}}],["outsize",{"2":{"90":1}}],["outar",{"2":{"90":2}}],["out",{"2":{"50":1,"89":2,"90":1}}],["outtype",{"2":{"16":2,"89":1,"90":2}}],["outdims=outdims",{"2":{"22":1,"23":1}}],["outdims",{"0":{"17":1,"18":1,"19":1,"20":1},"1":{"18":1,"19":1,"20":1},"2":{"16":4,"18":12,"19":2,"20":11,"21":3,"89":6}}],["outputcube",{"2":{"90":3}}],["outputs",{"2":{"16":1,"18":2,"21":1}}],["output",{"2":{"6":1,"16":3,"17":1,"18":1,"22":1,"23":3,"60":1,"67":1,"79":1,"85":1,"89":11,"90":9}}],["optimal",{"2":{"90":1}}],["optifunc",{"2":{"90":1}}],["optionally",{"2":{"89":1}}],["option",{"2":{"37":1,"39":1,"81":1}}],["options",{"2":{"34":1,"58":1,"66":1,"89":1}}],["operates",{"2":{"89":1}}],["operate",{"2":{"21":1,"78":1}}],["operation",{"2":{"21":1,"90":1}}],["operations",{"0":{"16":1},"2":{"10":1,"51":1,"89":2,"90":3,"112":1}}],["operating",{"2":{"19":1}}],["opens",{"2":{"89":1}}],["openinterval",{"2":{"71":1}}],["opening",{"2":{"65":2}}],["open",{"0":{"58":1,"64":1,"71":1},"1":{"59":1,"60":1,"61":1,"62":1,"63":1,"65":1,"66":1},"2":{"0":2,"18":1,"20":2,"46":4,"58":3,"59":2,"60":2,"61":1,"64":1,"65":3,"66":3,"67":2,"71":2,"79":1,"81":1,"85":1,"87":6,"89":7,"107":1,"112":1}}],["obj",{"2":{"42":2,"100":1,"102":1}}],["objects",{"2":{"89":2}}],["object",{"2":{"11":1,"59":1,"89":5,"90":3}}],["obtain",{"0":{"34":1},"2":{"46":1,"53":1}}],["omit",{"2":{"23":1}}],["otherwise",{"2":{"89":1}}],["others",{"2":{"21":1,"46":1}}],["other",{"0":{"103":1},"1":{"104":1,"105":1,"106":1},"2":{"20":1,"24":1,"62":1,"103":1,"105":1,"112":1}}],["overwrite=false",{"2":{"84":1,"89":1}}],["overwrite=true",{"2":{"16":2,"84":3,"86":3,"89":1}}],["overwrite",{"0":{"84":1},"2":{"84":1,"89":2,"90":2}}],["overview",{"0":{"104":1},"2":{"78":1,"103":1,"104":1}}],["over",{"0":{"16":1,"105":1},"2":{"10":1,"15":1,"21":1,"23":1,"56":1,"89":8,"90":1,"105":1}}],["orca2",{"2":{"60":1,"67":1,"79":1,"85":1}}],["orangered",{"2":{"42":1}}],["ordered",{"2":{"74":1,"75":1}}],["ordereddict",{"2":{"22":1,"89":1}}],["orderedcollections",{"2":{"22":1}}],["order",{"2":{"16":1,"49":1,"87":1}}],["original",{"2":{"60":2,"63":6,"68":4,"69":6,"70":6,"71":10}}],["originates",{"2":{"9":1}}],["origin",{"2":{"10":2,"12":1,"13":1,"23":1,"29":3,"30":1,"98":2}}],["or",{"0":{"36":1},"1":{"37":1,"38":1,"39":1,"40":1},"2":{"1":2,"6":1,"10":1,"13":2,"15":1,"27":1,"33":1,"38":1,"47":2,"58":1,"59":1,"62":1,"67":2,"74":3,"77":2,"78":9,"81":1,"84":1,"89":24,"90":7,"94":1,"97":1,"98":2,"113":1}}],["once",{"2":{"56":1,"76":1,"90":1,"92":1}}],["onlinestat",{"2":{"89":2}}],["onlinestats",{"2":{"42":2}}],["only",{"2":{"6":1,"13":1,"14":1,"16":1,"20":1,"22":1,"24":1,"29":2,"41":1,"51":1,"60":1,"78":1,"86":1,"89":2}}],["on",{"2":{"1":2,"6":1,"7":1,"10":2,"13":2,"16":1,"23":2,"31":1,"60":2,"63":3,"67":1,"68":2,"69":3,"70":3,"71":5,"74":1,"78":1,"79":1,"81":1,"85":1,"86":1,"89":5,"90":4,"112":2}}],["ones",{"2":{"17":1,"33":1}}],["oneto",{"2":{"4":4,"5":4,"6":2,"25":2,"29":3,"32":9,"33":6,"44":1,"45":5,"47":4,"86":6,"98":2}}],["one",{"0":{"18":1,"44":1},"2":{"0":1,"7":1,"8":2,"14":2,"18":15,"19":5,"20":6,"21":2,"22":2,"42":1,"46":1,"52":1,"60":1,"64":1,"74":2,"75":1,"86":2,"89":9,"90":3,"103":1,"112":1}}],["own",{"2":{"0":1,"60":1,"78":1}}],["offsets",{"2":{"90":1}}],["offset",{"2":{"13":1}}],["often",{"2":{"7":1}}],["of",{"0":{"11":1,"40":1,"49":1,"87":1,"104":2},"2":{"0":2,"1":1,"6":1,"8":3,"9":1,"10":2,"11":1,"12":1,"13":2,"14":1,"15":1,"22":7,"23":3,"24":1,"26":1,"27":1,"31":3,"32":3,"36":1,"37":2,"38":1,"39":1,"40":2,"41":1,"42":1,"49":1,"50":1,"54":1,"60":1,"63":1,"64":3,"66":2,"67":3,"68":1,"70":1,"72":1,"74":7,"75":1,"76":2,"77":2,"78":1,"79":1,"85":1,"86":1,"87":1,"88":1,"89":53,"90":42,"98":1,"99":2,"101":2,"102":1,"103":1,"104":1,"112":2,"114":1}}],["eo",{"2":{"103":1}}],["esdltutorials",{"2":{"103":1}}],["esm1",{"2":{"59":1,"107":2,"112":1}}],["eltype",{"2":{"98":1}}],["elementtype",{"2":{"90":1}}],["element",{"2":{"8":1,"9":1,"10":2,"13":2,"14":1,"16":3,"22":2,"34":1,"42":1,"51":2,"52":1,"53":1,"54":7,"55":2,"56":3,"66":1,"69":2,"72":1,"75":1,"76":2,"89":1,"90":1,"101":1}}],["elements",{"0":{"11":1,"69":1},"2":{"8":1,"12":1,"13":2,"23":1,"67":1,"74":1,"89":1,"90":1}}],["empty",{"2":{"90":1}}],["embeds",{"2":{"89":1}}],["either",{"2":{"89":2}}],["error",{"2":{"84":1}}],["even",{"2":{"65":1}}],["everywhere",{"2":{"23":2}}],["every",{"2":{"0":1,"10":1,"13":1,"89":1}}],["epsg",{"2":{"61":5}}],["et",{"2":{"60":1,"67":1,"76":1,"79":1,"85":1}}],["edu",{"2":{"60":1,"67":1,"75":1,"79":1}}],["equivalent",{"2":{"56":1,"72":1}}],["equally",{"2":{"0":1}}],["effectively",{"2":{"41":1}}],["env",{"2":{"93":1}}],["ensure",{"2":{"60":1}}],["enabling",{"2":{"29":1}}],["enter",{"2":{"97":1}}],["entire",{"2":{"22":1,"24":1,"80":1,"82":1}}],["entries",{"2":{"22":1,"46":1,"50":2,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"87":1,"89":1,"98":1,"113":1,"114":1}}],["entry",{"2":{"10":1,"12":1,"13":1,"16":2,"17":1,"18":1,"19":1,"21":1,"29":2,"51":2,"52":1,"54":2,"55":2,"56":3,"89":1,"92":3}}],["enumerate",{"2":{"22":2,"56":2}}],["end",{"2":{"13":1,"16":1,"18":1,"19":2,"21":2,"22":4,"23":2,"41":1,"51":2,"56":2,"60":1,"101":2,"111":1}}],["exist",{"2":{"89":1}}],["exists",{"2":{"84":1,"89":1,"90":1}}],["existing",{"0":{"8":1,"66":1},"2":{"66":1,"84":1,"85":1}}],["expression",{"2":{"89":1}}],["exported",{"2":{"78":2}}],["experiment",{"2":{"60":3,"67":3,"79":3,"85":3}}],["explore",{"2":{"58":1}}],["explicitly",{"2":{"13":1,"33":1,"36":1,"51":1,"78":1,"90":1}}],["executes",{"2":{"89":1}}],["execute",{"2":{"23":1}}],["external",{"2":{"59":1,"107":1}}],["extension",{"2":{"58":1,"89":2}}],["extended",{"2":{"16":1,"89":1,"90":2}}],["extracts",{"2":{"90":1}}],["extract",{"0":{"32":1},"1":{"33":1},"2":{"90":1}}],["extracted",{"2":{"21":1}}],["extra",{"2":{"23":1}}],["exactly",{"2":{"5":1,"34":1,"46":1}}],["examples",{"2":{"6":1,"34":2,"48":1,"58":1,"60":1,"67":1,"79":1,"92":1}}],["example",{"2":{"0":1,"1":1,"5":1,"10":1,"17":1,"21":1,"23":2,"33":1,"39":1,"40":1,"41":1,"42":1,"49":1,"58":1,"60":1,"62":1,"64":1,"67":2,"74":2,"75":1,"76":1,"78":1,"79":2,"89":5,"90":1,"92":2,"98":2,"113":1,"115":1}}],["e",{"2":{"7":1,"8":1,"10":1,"11":1,"13":1,"22":2,"23":1,"26":1,"27":1,"29":1,"37":1,"58":1,"60":1,"72":1,"74":1,"77":1,"84":1,"89":7,"90":1,"93":1,"98":1}}],["east",{"2":{"61":1}}],["easier",{"2":{"29":1,"67":1}}],["easily",{"2":{"0":1,"23":1}}],["easy",{"2":{"26":1,"27":1,"112":1}}],["each",{"2":{"4":1,"5":1,"10":1,"13":1,"20":1,"22":5,"23":2,"41":2,"42":2,"49":1,"53":1,"63":1,"75":1,"77":1,"89":3,"90":3,"98":1}}],["features",{"2":{"104":1}}],["feel",{"2":{"81":1}}],["few",{"2":{"78":1}}],["feb",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["frame",{"2":{"105":1}}],["frames",{"2":{"74":1}}],["front",{"2":{"90":1}}],["from",{"0":{"32":1,"34":2,"46":1,"49":1},"1":{"33":1},"2":{"0":1,"8":1,"9":1,"24":1,"32":1,"33":1,"34":4,"40":3,"46":2,"51":1,"58":1,"63":1,"66":1,"71":1,"76":2,"87":1,"89":6,"90":6,"98":1,"101":1,"112":1,"113":1}}],["free",{"2":{"81":1}}],["frequently",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1}}],["fr",{"2":{"60":1,"67":1,"79":1,"85":1}}],["faceting",{"0":{"113":1},"2":{"113":1}}],["fallback",{"2":{"90":1}}],["falls",{"2":{"89":1}}],["false",{"2":{"18":1,"20":1,"47":1,"89":1,"90":1}}],["fails",{"2":{"89":1}}],["faq",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1}}],["faster",{"2":{"90":1}}],["fastest",{"2":{"1":1}}],["fast",{"2":{"1":1,"13":1}}],["f2mix",{"2":{"19":3}}],["f2",{"2":{"18":3}}],["f1",{"2":{"18":2,"19":1}}],["fu",{"2":{"90":1}}],["funtion",{"2":{"101":1}}],["fun",{"2":{"89":5}}],["functionality",{"0":{"104":1}}],["functions",{"2":{"10":2,"21":1,"74":2,"88":1,"89":1,"90":1,"113":1}}],["function",{"0":{"42":1},"2":{"0":1,"1":1,"13":2,"15":1,"16":6,"17":1,"18":2,"19":2,"21":5,"23":6,"32":2,"35":1,"41":1,"42":1,"46":1,"48":1,"51":1,"53":1,"56":1,"58":1,"62":1,"71":1,"86":1,"89":22,"90":12}}],["future",{"2":{"50":1}}],["further",{"2":{"13":1,"103":1}}],["flag",{"2":{"90":3}}],["flat",{"2":{"18":4,"19":2,"20":2}}],["float32",{"2":{"16":6,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"86":2,"87":4,"90":1,"113":1,"114":1}}],["float64",{"2":{"8":1,"9":1,"10":3,"12":3,"13":3,"14":4,"17":2,"18":2,"19":2,"20":2,"21":3,"22":9,"25":2,"27":4,"29":6,"30":2,"32":1,"33":3,"35":4,"41":12,"42":5,"46":2,"50":2,"51":3,"52":2,"55":3,"56":6,"59":4,"60":4,"61":2,"63":6,"64":1,"67":2,"68":4,"69":2,"70":6,"71":10,"72":4,"79":2,"85":2,"89":1,"90":1,"98":7,"101":2,"107":2,"113":2,"114":2}}],["flexible",{"2":{"9":1,"15":1}}],["focus",{"2":{"112":1}}],["folder",{"2":{"93":1}}],["follow",{"2":{"93":1,"103":1}}],["follows",{"2":{"16":2,"19":1,"21":1,"51":2,"56":1,"87":1}}],["following",{"2":{"2":1,"5":1,"6":1,"16":1,"17":1,"18":1,"21":1,"23":1,"33":1,"48":1,"49":1,"50":1,"89":2,"90":4,"94":2,"95":1,"103":1}}],["found",{"2":{"89":1,"90":1}}],["fourth",{"2":{"60":2,"67":2,"79":2,"85":2}}],["fontsize=24",{"2":{"108":1}}],["fontsize=18",{"2":{"56":1}}],["font=",{"2":{"56":1}}],["forwarded",{"2":{"89":1}}],["forwardordered",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":4,"18":4,"19":3,"20":3,"21":9,"22":9,"25":2,"27":4,"29":9,"30":3,"32":9,"33":6,"34":2,"35":4,"37":14,"39":6,"40":10,"41":9,"42":5,"44":1,"45":5,"46":4,"47":4,"50":6,"51":3,"52":2,"54":3,"55":1,"56":7,"59":6,"60":6,"61":1,"63":9,"64":3,"65":10,"66":4,"67":3,"68":6,"69":4,"70":9,"71":15,"72":3,"79":3,"85":6,"86":6,"98":5,"101":1,"107":3,"113":3,"114":3}}],["force",{"2":{"89":1}}],["forcing",{"2":{"59":1,"107":1}}],["forms",{"2":{"89":1,"90":2}}],["formal",{"2":{"76":1}}],["format",{"2":{"58":1,"81":1,"83":1,"84":1,"89":1,"101":1}}],["former",{"2":{"32":1}}],["for",{"0":{"6":1,"100":1},"1":{"101":1,"102":1},"2":{"0":2,"1":3,"4":1,"5":1,"6":1,"20":1,"22":4,"23":1,"37":1,"39":2,"40":2,"41":4,"42":6,"46":5,"50":1,"51":1,"54":1,"56":3,"58":3,"60":2,"62":2,"63":1,"64":3,"65":2,"67":1,"71":1,"72":1,"74":4,"75":3,"76":1,"78":4,"79":1,"84":1,"85":1,"86":2,"89":20,"90":16,"95":1,"100":1,"101":2,"103":1,"112":3,"113":2,"114":1,"115":2}}],["f",{"2":{"2":2,"16":3,"58":1,"89":1}}],["field",{"2":{"89":1}}],["fields",{"2":{"42":1,"89":1,"90":4}}],["figure=",{"2":{"102":1,"113":3,"114":1,"115":1}}],["figure",{"2":{"56":2,"100":1,"102":1,"108":1,"109":1,"110":1,"111":1}}],["fig",{"2":{"42":3,"56":8,"100":1,"102":1,"108":2,"109":2,"110":2,"111":3}}],["filterig",{"2":{"101":1}}],["filter",{"2":{"89":2}}],["fillarrays",{"2":{"86":3}}],["fill",{"2":{"86":1,"89":1,"90":1}}],["fillvalue=",{"2":{"90":1}}],["fillvalue",{"2":{"50":6,"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["filling",{"2":{"28":1,"29":1}}],["filename",{"2":{"50":2,"58":1,"89":1}}],["files",{"0":{"106":1},"2":{"7":1,"57":1,"61":1,"64":2,"65":6,"66":4,"89":5,"90":2,"93":1}}],["file",{"2":{"2":1,"7":1,"27":1,"40":1,"60":2,"83":3,"84":2,"86":1,"89":2,"92":4}}],["findaxis",{"2":{"90":1}}],["findall",{"2":{"22":1,"101":1}}],["find",{"2":{"36":1,"90":1,"103":1}}],["finalizer",{"2":{"90":1}}],["finalize",{"2":{"90":1}}],["finally",{"2":{"22":1,"89":1}}],["final",{"2":{"21":1,"22":1}}],["firstly",{"2":{"37":1}}],["first",{"2":{"8":4,"16":3,"18":1,"22":1,"42":1,"45":1,"56":1,"87":1,"89":4,"90":1,"92":1,"98":1,"107":1,"112":2,"113":1}}],["fitting",{"2":{"89":1}}],["fittable",{"2":{"89":2}}],["fitcube",{"2":{"42":2}}],["fitsym",{"2":{"89":4}}],["fits",{"2":{"24":1}}],["fit",{"2":{"1":1,"62":1,"74":1}}],["t=union",{"2":{"90":1}}],["typing",{"2":{"97":1}}],["typically",{"2":{"89":1}}],["type",{"2":{"33":1,"47":1,"50":2,"74":1,"76":1,"89":8,"90":3,"98":1,"99":1,"112":1}}],["types",{"0":{"73":1},"1":{"74":1,"75":1,"76":1,"77":1,"78":1},"2":{"24":2,"26":1,"27":1,"47":1,"69":1,"75":1,"89":2,"99":1}}],["tutorial",{"2":{"103":2,"104":1,"105":1}}],["tutorials",{"0":{"103":1},"1":{"104":1,"105":1,"106":1},"2":{"71":1,"103":3}}],["turn",{"2":{"89":1}}],["tuple",{"2":{"2":3,"4":1,"5":1,"6":1,"18":1,"20":1,"51":2,"52":1,"54":5,"55":2,"56":4,"89":5,"90":1}}],["tbl",{"2":{"42":2}}],["target",{"2":{"90":1}}],["tab",{"2":{"89":4}}],["tableau",{"2":{"114":1}}],["tableaggregator",{"2":{"89":1}}],["tables",{"2":{"105":1}}],["table",{"0":{"105":1},"2":{"42":2,"59":1,"60":2,"67":2,"78":2,"79":2,"85":2,"89":4,"90":1,"107":1}}],["tas",{"2":{"59":5,"107":5,"112":2,"113":5,"114":2,"115":1}}],["tair",{"2":{"50":2,"56":1,"89":1}}],["ta",{"2":{"46":3}}],["takes",{"2":{"89":4}}],["taken",{"2":{"40":2}}],["take",{"2":{"16":1,"89":1,"90":2,"93":1}}],["tip",{"2":{"99":1}}],["tidy",{"2":{"89":1}}],["ticks",{"2":{"74":1}}],["ticks=false",{"2":{"56":1}}],["tick",{"2":{"72":1,"77":1,"98":1}}],["tiff",{"0":{"106":1}}],["tif",{"2":{"61":2,"95":1}}],["title",{"2":{"56":1,"60":1,"67":1,"79":1,"85":1,"92":1}}],["ti",{"2":{"26":1}}],["time1",{"2":{"69":2}}],["timearray",{"0":{"46":1},"2":{"46":3}}],["time=1",{"2":{"98":1,"112":1}}],["time=>cyclicbins",{"2":{"51":2,"52":1,"54":2,"55":2,"56":3}}],["time=datetime",{"2":{"113":1,"114":1}}],["time=date",{"2":{"37":1}}],["time=at",{"2":{"37":1,"56":3}}],["time=between",{"2":{"37":1}}],["time",{"0":{"49":1,"78":1,"114":1},"2":{"1":1,"7":1,"8":4,"9":3,"10":3,"12":1,"13":1,"14":7,"16":14,"17":2,"18":4,"19":1,"20":5,"21":10,"22":8,"23":5,"26":2,"29":3,"30":1,"35":2,"37":8,"39":4,"40":7,"41":4,"42":3,"46":5,"50":4,"51":21,"52":3,"53":2,"54":9,"55":3,"56":7,"59":4,"60":4,"63":6,"64":4,"65":9,"66":5,"67":1,"68":4,"69":6,"70":6,"71":10,"74":2,"75":1,"78":4,"79":1,"85":1,"89":6,"98":4,"100":1,"101":4,"107":4,"112":1,"113":10,"114":4}}],["timestamp",{"2":{"46":1}}],["timestep",{"2":{"42":1}}],["timeseries",{"2":{"46":3}}],["times",{"2":{"0":1}}],["treat",{"2":{"89":1}}],["treatment",{"2":{"89":1,"90":1}}],["treated",{"2":{"59":1,"113":1,"114":1}}],["translate",{"2":{"109":1,"110":1}}],["transformed",{"2":{"60":1,"67":1,"79":1,"85":1}}],["transformations",{"2":{"109":1}}],["transformation",{"2":{"22":1}}],["transform",{"2":{"22":2}}],["track",{"2":{"89":1}}],["tries",{"2":{"58":1,"89":1}}],["true",{"2":{"12":1,"47":1,"62":1,"86":1,"89":3,"90":1}}],["tesselation",{"2":{"111":1}}],["testrange",{"2":{"90":1}}],["test1",{"2":{"47":1}}],["test2",{"2":{"47":2}}],["test",{"2":{"17":4,"18":1,"19":3,"20":4,"21":4,"47":3,"90":1,"107":1}}],["terminal",{"2":{"93":1}}],["text",{"2":{"92":1}}],["tensors",{"2":{"74":1}}],["tell",{"2":{"36":1}}],["temporary",{"2":{"90":1}}],["temporal",{"2":{"41":1,"48":1,"74":1}}],["tempo",{"2":{"51":6,"54":4,"55":1}}],["temp",{"2":{"9":2}}],["temperature=temperature",{"2":{"40":1}}],["temperature",{"2":{"9":2,"40":4,"50":2,"56":2,"59":3,"60":2,"63":6,"68":5,"69":6,"70":6,"71":10,"74":1,"75":1,"76":1,"98":4,"113":3,"114":3}}],["tempname",{"2":{"2":1,"4":1,"5":1,"6":1}}],["tspan",{"2":{"16":1}}],["t",{"2":{"16":4,"37":1,"39":2,"40":2,"42":3,"60":1,"63":4,"68":2,"69":3,"70":3,"71":5,"81":1,"89":1,"90":2,"100":1,"101":1,"113":1}}],["two",{"2":{"8":1,"9":1,"18":8,"19":4,"20":3,"21":2,"34":2,"35":1,"74":1,"90":1}}],["toghether",{"2":{"90":1}}],["together",{"2":{"46":1,"76":1}}],["touches",{"2":{"71":1}}],["tolerances",{"2":{"70":1}}],["tos",{"2":{"60":5,"63":6,"67":2,"68":4,"69":4,"70":3,"71":9,"72":2,"79":2,"80":2,"82":2,"85":1}}],["top",{"2":{"56":1,"112":1}}],["too",{"2":{"40":1,"74":1,"89":1}}],["todo",{"2":{"21":1,"101":1}}],["toy",{"2":{"21":1,"86":1}}],["to",{"0":{"9":1,"18":1,"19":1,"43":1,"85":1,"91":1,"92":1,"94":1},"1":{"44":1,"45":1,"92":1,"93":2},"2":{"0":4,"1":4,"3":1,"4":1,"6":2,"7":1,"8":1,"9":1,"10":8,"12":1,"15":1,"16":2,"17":1,"18":2,"19":1,"20":4,"21":3,"22":2,"23":6,"24":3,"25":2,"27":3,"28":1,"31":2,"32":2,"34":3,"35":1,"37":2,"39":2,"40":6,"41":1,"42":1,"45":2,"46":2,"47":1,"48":1,"49":3,"50":2,"51":1,"52":1,"53":1,"56":1,"57":1,"58":1,"59":3,"60":2,"62":1,"63":2,"64":2,"65":1,"66":2,"67":3,"71":1,"72":1,"73":1,"74":5,"75":3,"76":2,"77":2,"78":2,"79":1,"80":2,"81":2,"82":2,"83":2,"84":1,"85":2,"86":4,"87":3,"89":48,"90":19,"92":2,"93":3,"94":1,"99":2,"103":1,"105":3,"107":2,"112":3}}],["though",{"2":{"86":1}}],["those",{"2":{"11":1,"24":1,"26":1,"27":1,"45":1,"75":1,"87":1}}],["through",{"2":{"89":5,"90":5,"97":1}}],["thrown",{"2":{"84":1}}],["three",{"2":{"36":1,"75":1,"100":1}}],["threaded",{"2":{"60":1}}],["threads",{"2":{"60":2,"89":2}}],["thread",{"2":{"23":1,"60":3}}],["than",{"2":{"24":1,"36":1,"41":1,"42":1}}],["that",{"2":{"0":1,"9":2,"10":1,"13":1,"16":5,"20":1,"21":1,"22":2,"23":1,"24":1,"33":1,"35":1,"38":1,"40":2,"42":1,"46":1,"47":1,"49":1,"52":1,"55":1,"60":2,"62":1,"65":2,"72":1,"74":1,"75":2,"77":1,"78":1,"86":2,"89":13,"90":13,"103":1,"105":1,"112":2}}],["things",{"2":{"31":1}}],["think",{"2":{"1":1}}],["thinking",{"2":{"1":1}}],["this",{"2":{"0":1,"1":1,"4":1,"7":1,"10":1,"13":2,"16":4,"17":1,"19":2,"22":3,"23":1,"24":1,"28":1,"31":1,"34":1,"39":1,"40":2,"41":2,"42":2,"45":1,"46":1,"49":1,"51":1,"53":2,"57":1,"58":1,"59":1,"60":1,"62":1,"63":2,"66":1,"71":1,"73":1,"76":1,"81":1,"87":2,"88":2,"89":7,"90":10,"92":1,"93":2,"104":1,"105":1,"112":2,"113":1,"114":1}}],["they",{"2":{"46":4,"63":1}}],["their",{"0":{"39":1,"40":1},"2":{"38":1,"40":1,"47":1,"74":1,"89":3,"90":2}}],["then",{"2":{"21":2,"22":2,"33":1,"41":1,"46":1,"78":1,"86":1,"87":1,"93":2,"97":1}}],["thereby",{"2":{"89":1}}],["therefore",{"2":{"42":1,"99":1}}],["there",{"2":{"14":2,"21":1,"27":1,"34":1,"46":2,"63":1,"64":1,"89":1,"112":1}}],["theme",{"2":{"56":2}}],["them",{"2":{"7":1,"10":1,"36":1,"62":1,"78":1,"87":1,"89":1,"113":1}}],["these",{"2":{"0":1,"6":1,"34":1,"36":1,"47":1,"72":1,"74":1}}],["the",{"0":{"32":1,"34":1,"42":1,"50":1,"101":1,"104":1},"1":{"33":1},"2":{"0":5,"1":4,"2":3,"4":1,"5":4,"6":4,"8":6,"9":3,"10":1,"11":1,"13":3,"14":2,"15":1,"16":12,"17":3,"18":5,"19":2,"20":3,"21":10,"22":14,"23":7,"24":2,"27":1,"29":3,"31":1,"32":3,"33":5,"34":3,"35":2,"36":2,"37":9,"39":3,"40":10,"41":3,"42":10,"45":1,"46":7,"48":2,"49":5,"50":2,"51":4,"52":1,"53":2,"54":2,"55":2,"56":9,"58":6,"60":2,"62":3,"63":6,"65":1,"66":5,"67":1,"68":5,"69":3,"70":5,"71":6,"72":1,"73":1,"74":5,"75":4,"76":4,"78":4,"83":1,"84":3,"85":1,"86":10,"87":2,"89":122,"90":83,"91":1,"92":1,"93":6,"94":5,"95":1,"97":2,"98":6,"99":8,"100":1,"101":4,"103":6,"104":1,"105":5,"107":1,"112":4}}],["smooth",{"2":{"115":1}}],["small",{"2":{"31":1,"46":1}}],["switched",{"2":{"99":1}}],["syntax",{"2":{"99":1,"103":1,"112":1}}],["system",{"2":{"93":1}}],["symbols",{"2":{"58":1,"89":1}}],["symbol",{"2":{"10":1,"12":1,"13":1,"18":1,"20":1,"29":2,"46":5,"51":4,"52":2,"53":2,"54":5,"55":4,"56":6,"89":3,"90":1}}],["src",{"2":{"92":1}}],["sres",{"2":{"60":2,"67":2,"79":2,"85":2}}],["skeleton=a",{"2":{"86":1}}],["skeleton=true",{"2":{"86":2}}],["skeleton=false",{"2":{"84":1,"89":1}}],["skeleton",{"0":{"86":1},"2":{"86":8,"87":4}}],["skipped",{"2":{"89":1}}],["skip",{"2":{"58":4,"89":5}}],["skipmissing",{"2":{"23":1,"41":1}}],["ssp585",{"2":{"59":1,"107":2,"112":1}}],["snow3",{"2":{"42":1}}],["snippet",{"2":{"6":1}}],["slightly",{"2":{"103":1}}],["slicing",{"2":{"16":1}}],["slices",{"2":{"89":3}}],["slice",{"2":{"16":1,"107":4,"108":1}}],["slow",{"2":{"40":1,"89":1}}],["slurmmanager",{"2":{"23":1}}],["shinclude",{"2":{"93":1}}],["shdocs>",{"2":{"93":1}}],["shnpm",{"2":{"93":2}}],["shouldn",{"2":{"63":1}}],["should",{"2":{"37":1,"46":1,"50":1,"62":1,"63":1,"78":1,"89":3,"90":1,"92":1,"93":1,"94":1,"113":1}}],["showprog",{"2":{"89":1}}],["shown",{"2":{"63":1,"89":1}}],["shows",{"2":{"56":1}}],["showing",{"2":{"46":1}}],["show",{"2":{"23":1,"87":1,"111":1}}],["shading=false",{"2":{"109":1,"110":1,"111":1}}],["shall",{"2":{"89":5,"90":1}}],["shares",{"2":{"40":1}}],["share",{"0":{"39":1,"40":1},"2":{"38":1,"40":1,"75":1,"89":1}}],["shared",{"2":{"4":1,"5":1,"6":1,"20":1,"30":1,"35":1,"39":2,"40":3,"44":1,"45":1,"46":2,"59":1,"60":1,"61":1,"65":3,"66":1,"67":1,"79":1,"85":1,"86":1,"107":1}}],["shape",{"2":{"6":1}}],["screen",{"2":{"111":1}}],["scripts",{"2":{"93":1}}],["scene",{"2":{"111":3}}],["scenariomip",{"2":{"59":1,"107":2,"112":1}}],["scenarios",{"2":{"17":1,"107":1}}],["scope",{"2":{"89":1,"90":1}}],["scales",{"2":{"112":1,"113":1,"114":1}}],["scalar",{"2":{"59":1,"113":1,"114":1}}],["scatterlines",{"2":{"114":1}}],["scatter",{"2":{"112":3,"113":2,"115":1}}],["scattered",{"2":{"7":1}}],["such",{"2":{"63":1,"71":1,"89":1,"99":1}}],["surface",{"2":{"50":2,"56":2,"59":2,"60":2,"63":6,"68":5,"69":6,"70":6,"71":10,"109":1,"110":1,"113":2,"114":2}}],["subcubes",{"2":{"89":1}}],["subtype",{"2":{"74":1,"78":1,"90":1,"99":1}}],["subtables",{"2":{"42":1}}],["subsetextensions",{"2":{"90":1}}],["subsetcube",{"2":{"89":1}}],["subseting",{"2":{"72":1}}],["subsetting",{"0":{"37":1,"38":1,"39":1,"40":1},"1":{"39":1,"40":1},"2":{"59":1,"60":1,"90":1,"101":1}}],["subset",{"0":{"36":1},"1":{"37":1,"38":1,"39":1,"40":1},"2":{"37":5,"40":4,"67":1,"70":1,"89":1,"90":1,"107":1,"113":1}}],["subsets",{"2":{"15":1,"77":1}}],["subsequent",{"2":{"17":1}}],["supposed",{"2":{"89":1}}],["support",{"2":{"27":1,"46":1}}],["supertype",{"2":{"26":1,"27":1}}],["summarysize",{"2":{"47":2}}],["sum",{"2":{"18":1,"19":1,"21":1,"22":2,"41":1,"51":4,"54":2,"55":4,"56":2}}],["suggestions",{"2":{"6":1}}],["s",{"2":{"10":1,"16":3,"18":1,"19":1,"21":2,"33":1,"35":1,"37":1,"39":1,"40":2,"56":7,"58":1,"62":1,"67":1,"77":1,"86":1,"89":2,"90":1,"95":1,"101":1,"112":4,"113":2,"114":1}}],["style",{"0":{"105":1}}],["st",{"2":{"99":1}}],["stdzero",{"2":{"89":1}}],["stock3",{"2":{"46":4}}],["stock2",{"2":{"46":4}}],["stock1",{"2":{"46":4}}],["stocks",{"2":{"46":7}}],["storing",{"2":{"75":1}}],["storage",{"2":{"11":1,"59":1}}],["stored",{"2":{"74":3,"90":2}}],["stores",{"2":{"74":1,"89":1}}],["store",{"2":{"0":1,"59":4,"74":1,"75":1,"107":2,"112":1}}],["struct",{"2":{"89":1,"90":4}}],["structures",{"2":{"73":1}}],["structure",{"2":{"33":2,"46":1,"76":1}}],["strings",{"0":{"47":1}}],["string",{"2":{"8":1,"9":2,"10":1,"12":1,"13":1,"14":2,"16":5,"17":3,"18":4,"19":3,"20":1,"21":4,"22":6,"25":1,"27":3,"29":3,"32":1,"33":3,"34":1,"35":2,"37":5,"41":3,"42":3,"47":5,"50":2,"51":1,"52":1,"54":2,"55":1,"56":1,"59":2,"60":2,"61":1,"63":3,"64":1,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"84":1,"85":1,"86":1,"89":6,"90":4,"98":4,"101":1,"107":1,"113":1,"114":1}}],["stable",{"2":{"99":1}}],["statistical",{"2":{"115":1}}],["statistics",{"2":{"14":1,"23":1,"42":3,"48":1,"100":1}}],["stat",{"2":{"83":2}}],["status",{"2":{"63":2}}],["standard",{"2":{"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["standards",{"2":{"59":1,"60":1,"67":1,"79":1,"85":1,"107":1}}],["stack",{"2":{"47":1}}],["started",{"0":{"96":1},"1":{"97":1,"98":1,"99":1}}],["start=12",{"2":{"51":2,"52":1,"54":2,"55":2,"56":3}}],["start=december",{"2":{"51":3,"54":1}}],["start",{"2":{"10":1,"37":1,"81":1,"87":1}}],["still",{"2":{"8":1,"22":1,"75":1,"103":1}}],["step=3",{"2":{"51":2,"52":1,"54":2,"55":2,"56":3}}],["steps",{"2":{"10":1,"14":1,"56":1,"89":1,"93":1,"113":2,"114":1}}],["step",{"2":{"7":1,"14":1,"20":1,"41":2,"89":1,"90":2,"107":1,"112":1}}],["sphere",{"0":{"111":1},"2":{"111":3}}],["spheroid",{"2":{"61":1}}],["split",{"2":{"89":1}}],["splitted",{"2":{"2":1}}],["special",{"2":{"69":1,"89":1,"90":1}}],["specifiers",{"2":{"90":1}}],["specifier",{"2":{"89":1}}],["specifies",{"2":{"89":3}}],["specified",{"2":{"66":1,"89":8,"90":1}}],["specific",{"2":{"37":1,"78":1,"89":2}}],["specifying",{"2":{"65":1,"89":2,"90":1}}],["specify",{"0":{"20":1},"2":{"17":1,"29":1,"89":1}}],["specs",{"2":{"59":1,"107":1,"115":2}}],["spectral",{"2":{"56":1}}],["sparse",{"2":{"74":1}}],["spatio",{"2":{"41":1}}],["spatial",{"2":{"1":1,"14":1,"22":5,"23":1,"48":1,"74":1}}],["span",{"2":{"37":1,"100":1}}],["space",{"2":{"1":1,"16":1}}],["safe",{"2":{"60":2}}],["sampled",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"10":3,"12":3,"13":3,"14":3,"16":9,"17":3,"18":3,"19":2,"20":3,"21":9,"22":8,"25":2,"27":4,"29":9,"30":3,"32":9,"33":6,"34":2,"35":3,"37":14,"39":6,"40":10,"41":9,"42":5,"44":1,"45":5,"46":4,"47":4,"50":6,"51":3,"52":2,"54":3,"55":1,"56":7,"59":6,"60":6,"61":2,"63":9,"64":3,"65":10,"66":4,"67":3,"68":6,"69":4,"70":9,"71":15,"72":3,"79":3,"85":6,"86":6,"98":5,"101":1,"107":3,"113":3,"114":3}}],["same",{"2":{"0":1,"2":1,"5":1,"6":1,"9":1,"16":1,"20":1,"21":1,"22":2,"26":1,"27":1,"33":2,"34":2,"35":1,"40":1,"45":1,"46":2,"62":1,"68":1,"69":1,"70":1,"74":1,"75":3,"76":2,"89":1,"90":1,"93":1}}],["saves",{"2":{"84":1,"89":1}}],["save",{"0":{"86":1},"2":{"12":1,"27":1,"45":1,"47":1,"80":2,"81":1,"82":2,"83":1,"86":1,"89":2}}],["savecube",{"2":{"2":1,"64":4,"80":1,"82":1,"86":1,"89":2}}],["savedataset",{"2":{"4":1,"5":1,"6":1,"81":1,"83":1,"84":1,"85":1,"86":2,"89":1,"90":1}}],["saved",{"2":{"2":1,"11":1,"20":1,"83":1,"84":1}}],["saving",{"2":{"1":1,"4":1,"5":1,"6":1,"16":1}}],["serve",{"2":{"90":1}}],["series",{"0":{"49":1,"114":1},"2":{"23":1,"114":2}}],["sequence",{"2":{"74":1}}],["sebastien",{"2":{"60":2,"67":2,"79":2,"85":2}}],["seaborn",{"2":{"108":1,"109":1,"110":1,"111":1}}],["sea",{"2":{"60":3,"63":6,"67":1,"68":5,"69":6,"70":6,"71":10,"79":1,"85":1}}],["searching",{"2":{"89":1}}],["search",{"2":{"58":1,"89":1}}],["season",{"2":{"51":1,"54":2,"55":1}}],["seasons",{"0":{"51":1,"53":1,"56":1},"1":{"52":1,"53":1},"2":{"51":9,"54":1,"56":5,"78":1}}],["seasonal",{"0":{"49":1,"100":1,"102":1},"1":{"101":1,"102":1},"2":{"49":1,"55":1,"56":1,"100":1,"101":4}}],["separate",{"2":{"89":1,"90":1}}],["separated",{"2":{"75":1}}],["separately",{"2":{"5":1,"22":1,"23":1}}],["sep",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["selected",{"2":{"90":1,"100":1}}],["select",{"0":{"67":1,"68":1,"69":1,"70":1},"1":{"68":1,"69":1,"70":1,"71":1,"72":1},"2":{"40":1,"67":1}}],["selectors",{"2":{"71":1}}],["selector",{"2":{"40":1,"70":1}}],["selection",{"2":{"40":2}}],["selecting",{"2":{"37":1,"39":1,"40":1}}],["seed",{"2":{"17":1,"21":2}}],["see",{"2":{"16":1,"18":1,"58":1,"71":1,"78":1,"89":1,"99":1,"113":1}}],["second",{"2":{"8":3,"18":1,"19":1,"89":1}}],["section",{"2":{"7":1,"10":1,"24":1,"28":1,"31":1,"46":1,"57":1,"73":1,"88":1}}],["setting",{"2":{"84":1,"89":1,"90":1}}],["sets",{"2":{"6":1,"50":1}}],["set",{"0":{"4":1,"5":1,"6":1},"2":{"4":1,"5":1,"19":2,"22":1,"59":1,"84":1,"89":1,"90":2,"93":1,"112":1}}],["setchunks",{"2":{"1":1,"2":2,"3":1,"4":1,"5":1,"6":1,"89":1,"90":1}}],["several",{"0":{"16":1},"2":{"0":1,"16":1,"35":1,"38":1,"78":1}}],["significant",{"2":{"81":1}}],["sin",{"2":{"100":1}}],["sink",{"2":{"90":1}}],["since",{"2":{"63":1,"94":1}}],["single",{"0":{"100":1},"1":{"101":1,"102":1},"2":{"0":1,"7":1,"8":1,"60":1,"76":1,"80":1,"82":1,"89":6,"90":1}}],["similar",{"2":{"112":1}}],["simulate",{"2":{"46":1}}],["simplicity",{"2":{"100":1}}],["simply",{"2":{"23":1,"47":1,"87":1,"93":1,"94":1}}],["simpler",{"2":{"112":1}}],["simple",{"2":{"16":1,"31":1,"98":1}}],["situations",{"2":{"1":1,"64":1}}],["size=",{"2":{"109":1,"110":1,"111":1,"113":3,"114":1,"115":1}}],["sizes",{"2":{"2":1,"89":2,"90":2}}],["size",{"2":{"0":1,"1":1,"4":1,"5":1,"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":2,"25":1,"27":1,"29":2,"32":1,"33":3,"34":1,"35":1,"37":5,"41":3,"42":3,"50":2,"54":1,"56":1,"59":1,"60":1,"63":3,"64":1,"68":2,"69":3,"70":3,"71":5,"83":4,"86":1,"87":1,"89":3,"90":4,"98":3,"100":1,"101":2,"102":1,"108":1,"113":1,"114":1}}],["sophisticated",{"2":{"112":1}}],["sosstsst",{"2":{"60":1,"63":3,"68":2,"69":3,"70":3,"71":5}}],["software",{"2":{"60":1,"67":1,"79":1}}],["sort",{"2":{"22":1}}],["so",{"2":{"2":1,"23":1,"36":1,"40":1,"89":1,"90":1,"112":1}}],["source",{"2":{"0":2,"58":1,"60":1,"67":1,"79":1,"84":1,"85":1,"89":25,"90":24}}],["sometimes",{"2":{"78":1,"86":1,"105":1}}],["some",{"0":{"40":1},"2":{"0":1,"11":1,"38":1,"40":1,"41":1,"46":2,"56":1,"89":1,"100":1,"109":1,"113":1}}],["a4",{"2":{"64":3,"65":1,"66":1}}],["advance",{"2":{"63":1}}],["addargs",{"2":{"89":3,"90":1}}],["adds",{"2":{"74":2,"77":1}}],["addprocs",{"2":{"23":2}}],["addition",{"2":{"22":1,"24":1,"74":1}}],["additional",{"2":{"4":3,"5":3,"9":1,"16":1,"21":1,"40":10,"45":4,"46":4,"59":2,"85":3,"89":4,"90":3,"107":2,"113":1}}],["added",{"2":{"15":1,"85":1,"89":1,"90":1}}],["add",{"2":{"6":1,"10":1,"12":1,"41":1,"60":1,"92":2,"94":3,"95":4,"97":2,"109":1,"113":1}}],["again",{"2":{"84":1,"87":1,"113":1}}],["agreement",{"2":{"56":1}}],["aggregation",{"2":{"23":1}}],["aggregate",{"2":{"22":1}}],["authority",{"2":{"61":5}}],["auto",{"2":{"18":1,"20":1,"89":1}}],["aug",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["api",{"0":{"88":1,"89":1,"90":1},"1":{"89":1,"90":1}}],["apr",{"2":{"51":4,"52":2,"53":1,"54":4,"55":4,"56":6}}],["appropriate",{"2":{"92":1}}],["approximated",{"2":{"90":1}}],["approx",{"2":{"89":1,"90":1}}],["approach",{"2":{"9":1,"51":1,"112":1}}],["append=true",{"2":{"85":2}}],["append=false",{"2":{"84":1,"89":1}}],["append",{"0":{"85":1}}],["apply",{"0":{"41":1},"2":{"10":2,"13":1,"15":1,"21":1,"23":1,"56":1,"101":1}}],["application",{"2":{"21":1}}],["applications",{"2":{"0":1}}],["applies",{"2":{"13":1}}],["applied",{"2":{"0":1,"3":1,"4":1,"22":1,"89":2,"90":1}}],["air",{"2":{"50":2,"56":2,"59":3,"113":3,"114":3}}],["a3",{"2":{"30":4,"64":3,"65":1,"66":1}}],["a2",{"2":{"29":1,"30":3,"60":2,"64":3,"65":2,"67":2,"79":2,"85":2,"98":1}}],["a1",{"2":{"29":1,"64":3,"65":2}}],["able",{"2":{"45":1}}],["abstractstring",{"2":{"89":1}}],["abstractdict",{"2":{"89":1,"90":3}}],["abstractdimarray",{"2":{"26":1,"27":1,"74":1}}],["abs",{"2":{"21":1}}],["about",{"2":{"1":2,"36":1,"70":1,"98":1,"104":1}}],["above",{"2":{"0":1,"5":1,"16":1,"86":1,"97":1}}],["atol",{"2":{"70":1}}],["atmosphere",{"2":{"60":1,"67":1,"79":1,"85":1}}],["atmos",{"2":{"59":1,"107":1}}],["attributes",{"2":{"56":1,"89":1,"90":1,"112":1,"113":1}}],["at",{"2":{"21":1,"22":4,"27":1,"40":1,"46":3,"56":1,"58":1,"60":3,"63":3,"67":1,"68":2,"69":6,"70":7,"71":5,"75":1,"76":2,"79":1,"84":2,"85":1,"89":3,"90":2,"91":1,"92":2,"93":2,"98":1,"103":2}}],["after",{"2":{"14":1,"16":1,"61":1,"89":3}}],["asaxisarray",{"2":{"89":1}}],["assemble",{"2":{"98":1}}],["assessment",{"2":{"60":2,"67":2,"79":2,"85":2}}],["associated",{"2":{"89":1}}],["assign",{"0":{"43":1},"1":{"44":1,"45":1}}],["aspect=dataaspect",{"2":{"56":1,"108":1}}],["asked",{"0":{"31":1},"1":{"32":1,"33":1,"34":1,"35":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"43":1,"44":1,"45":1,"46":1,"47":1}}],["as",{"2":{"5":1,"8":1,"9":1,"10":1,"12":1,"16":6,"17":1,"18":1,"19":1,"21":1,"22":2,"23":2,"26":1,"27":2,"29":1,"33":2,"34":1,"35":1,"40":1,"42":1,"46":3,"48":1,"51":2,"56":1,"58":1,"59":1,"60":1,"61":1,"62":1,"64":1,"65":2,"66":2,"68":1,"71":1,"72":1,"74":1,"77":1,"78":1,"86":1,"87":1,"89":12,"90":3,"98":1,"99":1,"101":1,"105":1,"107":1}}],["axs",{"2":{"56":9}}],["ax",{"2":{"42":1,"100":3,"102":3,"108":1,"109":3,"110":3,"111":5}}],["axlist",{"2":{"10":2,"17":2,"19":1,"21":4,"22":2,"23":2,"29":2,"30":1,"35":3,"90":5,"98":3}}],["axessmall",{"2":{"90":2}}],["axes",{"0":{"32":1,"34":1},"1":{"33":1},"2":{"4":4,"5":4,"6":1,"20":1,"29":1,"30":1,"32":2,"33":1,"34":2,"37":2,"39":5,"40":13,"44":1,"45":5,"46":8,"59":3,"60":1,"61":1,"65":3,"66":1,"67":2,"74":2,"79":1,"85":4,"86":1,"89":15,"90":11,"98":1,"101":2,"107":3}}],["axislegend",{"2":{"102":1}}],["axis=false",{"2":{"111":1}}],["axis=",{"2":{"100":1}}],["axisdescriptor",{"2":{"90":1}}],["axisdesc",{"2":{"89":3}}],["axis",{"0":{"4":1},"2":{"4":1,"9":2,"16":3,"34":1,"37":1,"39":1,"40":7,"46":1,"56":1,"61":2,"72":1,"77":1,"86":1,"89":16,"90":14,"98":1,"102":1,"107":1,"108":1,"112":1,"113":1}}],["albeit",{"2":{"112":1}}],["always",{"2":{"89":2,"90":1,"91":1,"99":1}}],["already",{"2":{"63":1,"65":1,"84":1,"89":1,"90":1}}],["al",{"2":{"60":1,"67":1,"76":1,"79":1,"85":1}}],["alternatives",{"2":{"89":1}}],["alternatively",{"2":{"0":1,"2":1,"89":2,"97":1}}],["altered",{"2":{"59":1,"60":1,"63":3,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["although",{"2":{"46":1,"47":1,"71":1}}],["algebraic",{"2":{"112":1}}],["algebraofgraphics",{"0":{"112":1},"1":{"113":1,"114":1,"115":1},"2":{"95":1,"112":2,"115":1}}],["algebra",{"0":{"41":1},"2":{"41":1,"112":1}}],["along",{"0":{"8":1,"65":1,"66":1},"2":{"8":1,"16":1,"64":2,"65":2,"66":2,"89":6,"90":2,"103":1,"112":1}}],["allaxes",{"2":{"90":1}}],["allinaxes",{"2":{"90":1}}],["allmissing",{"2":{"89":1}}],["allocate",{"2":{"86":1}}],["allocation",{"2":{"22":1}}],["allow",{"2":{"90":1}}],["allowed",{"2":{"47":1}}],["allowing",{"2":{"26":1,"27":1,"75":1}}],["allows",{"2":{"23":1,"112":1}}],["all",{"0":{"6":1,"39":1,"40":1},"2":{"4":1,"6":2,"10":1,"12":1,"13":1,"14":2,"22":1,"23":4,"38":1,"40":2,"46":3,"56":2,"58":2,"61":1,"71":1,"74":1,"76":2,"84":3,"86":1,"88":1,"89":7,"90":7,"93":1}}],["also",{"2":{"2":1,"3":1,"14":1,"21":1,"23":1,"29":1,"32":1,"40":1,"42":1,"65":1,"74":2,"75":1,"81":1,"86":2,"89":1,"97":1,"115":1}}],["annual",{"2":{"89":1}}],["analysis",{"0":{"115":1},"2":{"115":1}}],["analyzing",{"2":{"1":1}}],["analog",{"2":{"75":1}}],["anchor",{"2":{"21":1}}],["another",{"2":{"16":1,"40":1,"66":1}}],["anynymous",{"2":{"89":1}}],["anyocean",{"2":{"89":1}}],["anymissing",{"2":{"89":1}}],["anymore",{"2":{"21":1}}],["any",{"2":{"8":1,"9":1,"10":1,"11":1,"14":2,"16":5,"18":3,"20":1,"21":2,"22":4,"25":1,"27":3,"29":1,"32":1,"33":3,"34":1,"35":1,"37":6,"41":3,"42":3,"47":4,"50":2,"51":3,"52":2,"54":4,"55":3,"56":3,"58":1,"59":2,"60":3,"61":1,"63":3,"64":1,"67":1,"68":2,"69":3,"70":3,"71":5,"79":1,"85":1,"86":1,"89":4,"90":9,"98":1,"101":1,"107":1,"113":1,"114":1}}],["an",{"0":{"8":1},"2":{"9":1,"10":4,"12":1,"13":1,"15":1,"23":2,"33":1,"34":1,"39":1,"40":1,"42":1,"47":1,"62":1,"66":1,"67":3,"70":1,"74":1,"75":1,"77":1,"78":1,"79":1,"80":1,"81":1,"82":1,"84":1,"85":1,"89":19,"90":8}}],["and",{"0":{"17":1,"28":1,"34":1,"48":1,"57":1,"67":1,"71":1,"79":1},"1":{"18":1,"19":1,"20":1,"29":1,"30":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":1,"55":1,"56":1,"58":1,"59":1,"60":1,"61":1,"62":1,"63":1,"64":1,"65":1,"66":1,"68":1,"69":1,"70":1,"71":1,"72":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1},"2":{"0":1,"2":1,"5":1,"6":1,"7":1,"8":1,"12":1,"16":4,"17":2,"18":2,"20":2,"21":4,"22":2,"24":1,"28":1,"29":1,"32":1,"35":1,"37":1,"40":6,"41":1,"42":6,"46":5,"48":1,"49":1,"50":1,"51":2,"56":1,"57":2,"58":1,"59":1,"60":1,"63":1,"64":1,"65":1,"67":1,"71":1,"74":5,"75":3,"76":2,"79":1,"81":2,"83":1,"84":1,"85":1,"86":3,"87":1,"89":19,"90":6,"91":1,"93":4,"97":1,"98":2,"100":1,"107":1,"109":1,"112":4,"114":1}}],["available",{"2":{"58":1,"71":2,"86":1,"88":1,"89":2,"97":1}}],["avariable",{"2":{"0":1}}],["avoid",{"2":{"51":1,"60":1}}],["avoids",{"2":{"22":1}}],["avoided",{"2":{"0":1}}],["averaging",{"2":{"14":1}}],["averages",{"0":{"49":1},"2":{"48":1}}],["average",{"2":{"14":1,"49":2}}],["arg",{"2":{"89":1}}],["argument",{"2":{"23":1,"86":1,"89":4,"90":2}}],["arguments",{"2":{"21":1,"56":1,"58":1,"89":12,"90":3}}],["artype",{"2":{"89":2}}],["archgdaldatasets",{"2":{"61":1}}],["archgdal",{"2":{"61":2,"95":1}}],["arr2",{"2":{"27":1}}],["arr",{"2":{"22":7,"27":2}}],["arrayinfo",{"2":{"90":1}}],["arrays",{"2":{"6":1,"7":1,"8":2,"9":1,"11":1,"28":1,"30":2,"59":2,"60":2,"73":1,"74":4,"75":3,"76":3,"89":2,"90":1}}],["array",{"0":{"22":1,"25":1},"2":{"0":1,"1":1,"8":2,"9":2,"10":3,"12":2,"13":2,"15":1,"18":1,"20":1,"22":8,"25":2,"34":1,"51":1,"56":1,"67":1,"74":4,"75":1,"76":1,"77":2,"86":5,"87":5,"89":10,"90":4,"98":3}}],["arbitrary",{"2":{"16":1}}],["arithmetics",{"0":{"12":1},"2":{"10":1}}],["areas",{"2":{"89":1}}],["area",{"2":{"59":2,"89":1,"113":2,"114":2}}],["areacella",{"2":{"59":2,"107":1,"113":1,"114":1}}],["are",{"2":{"0":1,"11":1,"18":1,"19":1,"24":3,"34":1,"36":1,"40":1,"46":3,"51":2,"56":2,"58":2,"63":2,"64":1,"66":1,"67":1,"71":1,"72":1,"74":3,"75":2,"76":3,"78":1,"86":1,"89":13,"90":6,"91":1,"93":1,"103":2,"105":1,"112":2}}],["according",{"2":{"89":1}}],["accessible",{"2":{"51":1}}],["access",{"2":{"1":2,"13":1,"29":1,"74":1,"77":1}}],["accessed",{"2":{"0":2,"59":1,"60":2}}],["activate",{"2":{"42":1,"93":2,"100":1,"108":1,"111":1,"112":1}}],["actually",{"2":{"90":1}}],["actual",{"2":{"13":1,"60":1,"86":1,"90":1,"98":1}}],["achieves",{"2":{"33":1}}],["achieved",{"2":{"0":1}}],["across",{"2":{"0":1,"7":1,"16":1,"74":3}}],["a",{"0":{"9":1,"11":1,"22":1,"29":1,"30":1,"32":1,"36":1,"37":1,"38":1,"39":1,"40":1,"43":1,"46":2,"47":1,"65":1,"66":1,"68":1,"72":1,"84":1,"85":1,"100":1,"106":1},"1":{"33":1,"37":1,"38":1,"39":2,"40":2,"44":1,"45":1,"101":1,"102":1},"2":{"0":4,"2":7,"3":1,"4":1,"7":1,"8":1,"9":2,"10":3,"11":1,"12":4,"13":2,"14":2,"15":1,"16":5,"17":2,"18":1,"19":2,"20":1,"22":75,"23":11,"25":2,"26":5,"27":8,"29":1,"31":1,"32":2,"33":2,"34":1,"36":4,"37":3,"38":1,"40":2,"42":3,"44":2,"45":2,"46":4,"49":1,"54":1,"56":2,"58":1,"59":6,"60":4,"61":1,"64":4,"65":3,"66":1,"70":2,"71":4,"72":1,"74":12,"75":4,"76":8,"77":1,"78":4,"80":3,"81":3,"82":3,"83":1,"84":4,"86":5,"89":65,"90":31,"92":2,"93":2,"98":4,"99":1,"104":1,"105":1,"112":3,"114":1}}],["iall",{"2":{"90":1}}],["iwindow",{"2":{"90":1}}],["icolon",{"2":{"90":1}}],["icefire",{"2":{"108":1,"109":1,"110":1,"111":1}}],["ice",{"2":{"60":1,"67":1,"79":1,"85":1}}],["ipcc",{"2":{"60":3,"67":3,"79":3,"85":3}}],["ipsl",{"2":{"60":6,"67":6,"79":6,"85":6}}],["idx",{"2":{"101":3}}],["identical",{"2":{"89":1}}],["id",{"2":{"59":2,"60":2,"67":2,"79":2,"85":2,"107":2}}],["irregular",{"2":{"20":1,"40":6,"42":2,"46":4,"50":2,"51":1,"54":3,"55":1,"56":1,"59":4,"60":2,"63":3,"64":1,"65":3,"66":2,"67":1,"68":2,"69":2,"70":6,"71":5,"79":1,"85":1,"90":1,"107":2,"113":2,"114":2}}],["illustrate",{"2":{"17":1}}],["immutable",{"2":{"11":1}}],["improving",{"2":{"99":1}}],["improvement",{"2":{"81":1}}],["improve",{"2":{"6":1}}],["implementing",{"2":{"89":1}}],["importance",{"2":{"90":1}}],["important",{"2":{"1":1}}],["import",{"2":{"65":1,"66":1}}],["impossible",{"2":{"11":1}}],["i",{"0":{"35":1,"36":1,"41":1,"42":1,"43":1,"46":1},"1":{"37":1,"38":1,"39":1,"40":1,"44":1,"45":1},"2":{"8":1,"22":3,"26":1,"27":1,"37":1,"56":2,"58":1,"60":2,"64":4,"65":2,"84":1,"89":8,"90":4,"93":2,"98":1,"101":3}}],["ispar",{"2":{"89":1,"90":1}}],["ismissing",{"2":{"86":1}}],["issue",{"2":{"81":1}}],["issues",{"2":{"50":1}}],["isequal",{"2":{"22":1}}],["is",{"2":{"1":2,"2":1,"6":1,"7":1,"9":1,"13":1,"14":2,"15":1,"16":4,"21":2,"22":2,"23":3,"24":1,"27":1,"31":1,"33":2,"35":1,"36":1,"40":2,"41":1,"42":4,"46":2,"47":2,"49":2,"50":2,"51":2,"55":1,"58":1,"60":2,"63":2,"66":1,"68":1,"71":2,"72":1,"74":4,"75":1,"76":2,"77":1,"78":1,"86":4,"87":1,"89":12,"90":10,"92":1,"94":1,"97":1,"99":1,"103":1,"105":1,"112":1}}],["if",{"2":{"0":1,"18":1,"19":1,"24":1,"40":3,"78":2,"81":1,"84":1,"86":2,"89":12,"90":6,"93":1,"94":1,"103":1}}],["incubes",{"2":{"90":1}}],["incs",{"2":{"90":1}}],["include",{"2":{"89":2,"90":1}}],["included",{"2":{"71":1}}],["inarbc",{"2":{"90":1}}],["inar",{"2":{"90":2}}],["inplace",{"2":{"89":3,"90":1}}],["inputcube",{"2":{"90":2}}],["inputs",{"2":{"18":1}}],["input",{"2":{"16":1,"17":1,"18":1,"20":1,"23":2,"42":1,"89":13,"90":8}}],["innerchunks",{"2":{"90":1}}],["inner",{"2":{"89":9,"90":3}}],["insize",{"2":{"90":1}}],["inside",{"2":{"89":3}}],["installed",{"2":{"99":1}}],["installation",{"0":{"97":1}}],["install",{"0":{"94":1},"2":{"93":1,"95":1,"97":1}}],["instantaneous",{"2":{"50":2}}],["instead",{"2":{"8":1,"9":1,"13":1,"32":1,"37":1,"71":1,"74":1}}],["initialization",{"2":{"59":1,"107":1}}],["initially",{"2":{"22":1}}],["inds",{"2":{"90":1}}],["indeed",{"2":{"87":1}}],["indexing",{"2":{"69":2,"70":2,"87":1,"99":1}}],["index",{"2":{"59":2,"90":2,"107":2}}],["independently",{"2":{"46":1}}],["indices",{"2":{"90":1,"101":1}}],["indicate",{"2":{"89":1}}],["indicating",{"2":{"9":1,"22":1,"89":1}}],["indims=indims",{"2":{"22":1,"23":1}}],["indims",{"0":{"18":1,"19":1,"21":1},"2":{"16":8,"18":4,"20":7,"21":3,"89":7}}],["individually",{"2":{"13":2}}],["individual",{"2":{"0":1,"59":1,"60":1}}],["information",{"2":{"58":1,"63":1,"84":1,"90":2}}],["info",{"2":{"16":2,"27":1,"32":1,"48":1,"51":1,"60":11,"78":1,"83":4,"86":1,"99":1,"112":1}}],["introducing",{"2":{"76":1}}],["int",{"2":{"33":1,"47":1,"101":3}}],["interoperability",{"0":{"95":1}}],["internal",{"0":{"90":1},"2":{"90":9}}],["internally",{"2":{"75":1}}],["interface",{"2":{"89":2,"105":1}}],["interested",{"2":{"103":1}}],["interest",{"2":{"63":1}}],["interval",{"2":{"60":1,"63":3,"68":2,"69":3,"70":4,"71":6}}],["intervalsets",{"2":{"71":1}}],["intervals",{"0":{"71":1},"2":{"37":1}}],["interactive",{"2":{"0":1}}],["integer",{"2":{"29":1,"69":1,"70":1,"74":1}}],["int64",{"2":{"4":4,"5":4,"6":2,"8":1,"9":1,"16":8,"17":1,"18":1,"19":1,"21":7,"25":2,"27":2,"29":3,"32":9,"33":7,"34":4,"37":15,"39":4,"40":7,"42":3,"44":1,"45":5,"47":5,"50":4,"51":6,"52":6,"54":5,"56":18,"64":2,"65":7,"66":2,"85":3,"86":6,"90":1,"98":2}}],["into",{"0":{"62":1,"106":1},"1":{"63":1},"2":{"0":1,"1":1,"2":1,"7":1,"8":1,"16":1,"22":1,"24":2,"27":1,"40":4,"47":1,"50":1,"57":1,"62":1,"76":2,"84":1,"87":1,"89":6,"90":3,"93":1,"112":1,"113":1}}],["in",{"0":{"20":1,"43":1},"1":{"44":1,"45":1},"2":{"0":5,"1":1,"2":1,"4":2,"5":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":2,"14":4,"16":5,"17":1,"18":2,"19":2,"21":5,"22":8,"23":3,"24":2,"25":1,"26":1,"27":2,"29":2,"32":1,"33":3,"34":2,"37":5,"38":1,"40":1,"41":3,"42":5,"46":4,"47":2,"49":2,"50":3,"51":2,"53":3,"54":1,"56":4,"59":2,"60":4,"62":1,"63":9,"64":2,"65":1,"66":1,"68":2,"69":3,"70":4,"71":7,"72":1,"73":1,"74":5,"75":1,"76":2,"78":3,"86":2,"87":1,"89":15,"90":9,"93":2,"94":2,"97":1,"98":4,"101":2,"103":3,"105":4,"107":1,"112":2,"114":1}}],["iter",{"2":{"89":1}}],["iterate",{"2":{"105":1}}],["iteration",{"0":{"105":1}}],["iterator",{"2":{"42":1}}],["iterators",{"2":{"22":1}}],["iterable",{"2":{"42":2,"89":2}}],["itself",{"2":{"89":1,"90":1}}],["its",{"2":{"0":1,"58":1}}],["it",{"2":{"0":2,"1":3,"12":1,"16":1,"18":1,"20":1,"23":2,"32":1,"34":1,"35":1,"40":2,"42":2,"46":2,"47":1,"52":1,"54":1,"56":1,"60":1,"65":1,"67":1,"74":2,"75":1,"77":1,"78":1,"83":1,"84":1,"86":2,"87":1,"89":10,"90":5,"93":1,"97":1,"112":2}}],["lscene",{"2":{"111":1}}],["lmdz",{"2":{"60":1,"67":1,"79":1,"85":1}}],["link",{"2":{"92":1}}],["linewidth=0",{"2":{"109":1,"110":1}}],["linewidth=2",{"2":{"102":2}}],["linewidth=1",{"2":{"100":1,"102":1}}],["linestyle=",{"2":{"102":2}}],["lines",{"2":{"100":1,"102":3,"113":3}}],["line",{"2":{"42":1}}],["limits=",{"2":{"112":1,"113":1}}],["lim",{"2":{"60":1,"67":1,"79":1,"85":1}}],["library",{"2":{"112":1}}],["libraries",{"2":{"37":1,"74":1}}],["libray",{"2":{"36":1}}],["little",{"2":{"23":1,"114":1}}],["list",{"2":{"22":1,"46":5,"64":2,"89":7,"90":6}}],["like",{"2":{"0":1,"42":1,"46":1,"64":1,"89":2,"90":1,"92":1,"112":1}}],["learn",{"2":{"105":1}}],["learning",{"2":{"74":1,"103":1}}],["leap",{"2":{"100":1}}],["least",{"2":{"40":1,"46":1,"89":1}}],["length",{"2":{"51":2,"52":1,"54":3,"65":1,"89":1,"90":3}}],["length=20",{"2":{"35":1,"98":1}}],["length=365",{"2":{"100":1}}],["length=3",{"2":{"17":1}}],["length=4",{"2":{"17":1}}],["length=15",{"2":{"10":1,"22":1,"23":1,"29":1,"35":1,"98":1}}],["length=10",{"2":{"10":1,"22":1,"23":1,"29":1,"35":1,"98":1}}],["level",{"2":{"21":1,"46":1,"81":1,"83":1,"92":1,"93":1,"112":1}}],["left",{"2":{"14":2}}],["let",{"2":{"10":1,"16":2,"18":1,"19":1,"33":1,"35":1,"37":1,"39":1,"40":1,"56":1,"58":1,"62":1,"67":1,"101":1,"112":3,"113":2,"114":1}}],["loopinds",{"2":{"90":2}}],["looping",{"2":{"89":1,"90":1}}],["loopcachesize",{"2":{"90":1}}],["loopchunksize",{"2":{"89":1}}],["loopaxes",{"2":{"90":1}}],["loopvars",{"2":{"89":1,"90":1}}],["loops",{"2":{"89":1}}],["loop",{"2":{"89":1,"90":2}}],["looped",{"2":{"89":3,"90":3}}],["look",{"2":{"84":1,"89":1,"90":1,"92":1,"93":1}}],["looking",{"2":{"78":1}}],["lookups",{"2":{"51":15,"52":10,"54":11,"55":5,"56":38,"66":1,"72":3}}],["lookup",{"2":{"51":1,"53":1,"107":3}}],["looks",{"2":{"42":1,"46":1}}],["located",{"2":{"103":1}}],["locate",{"2":{"93":1}}],["location",{"2":{"90":3}}],["locations",{"2":{"75":1,"76":1}}],["localhost",{"2":{"93":1}}],["locally",{"0":{"93":1},"2":{"93":1}}],["local",{"2":{"23":1,"59":1}}],["lock",{"2":{"60":3}}],["locks",{"2":{"60":1}}],["lowclip",{"2":{"56":4}}],["low",{"2":{"46":4}}],["lost",{"2":{"24":1}}],["lo",{"2":{"16":4}}],["loadorgenerate",{"2":{"90":1}}],["loading",{"2":{"61":1,"63":1,"87":1}}],["load",{"0":{"62":1},"1":{"63":1},"2":{"16":1,"37":1,"40":2,"50":1,"62":1,"63":1,"74":1,"114":1}}],["loaded",{"2":{"8":1,"9":1,"10":1,"12":1,"13":1,"14":2,"16":5,"17":1,"18":1,"19":1,"21":3,"22":2,"25":1,"27":1,"29":2,"32":1,"33":3,"34":1,"35":1,"37":5,"40":2,"41":3,"42":3,"47":2,"50":2,"54":1,"59":1,"60":1,"63":8,"64":1,"68":2,"69":3,"70":3,"71":5,"86":1,"98":2,"101":1,"113":1,"114":1}}],["lon=50",{"2":{"113":2}}],["lon=1",{"2":{"37":1,"39":1}}],["long",{"2":{"50":2,"56":1,"59":1,"60":1,"63":4,"68":2,"69":3,"70":3,"71":5,"113":1,"114":1}}],["longitudes=longitudes",{"2":{"40":1}}],["longitudes",{"2":{"40":12}}],["longitude",{"2":{"21":1,"37":1,"61":1,"78":6,"98":2}}],["lonlat",{"2":{"39":1}}],["lon",{"0":{"78":1},"2":{"10":2,"12":1,"13":1,"14":2,"16":10,"17":2,"18":1,"19":1,"20":1,"21":5,"22":12,"23":1,"26":2,"29":3,"30":1,"35":2,"37":7,"39":3,"41":4,"42":3,"59":2,"60":2,"63":3,"64":5,"65":3,"66":1,"67":1,"68":2,"69":3,"70":6,"71":10,"72":2,"78":8,"79":1,"85":1,"98":2,"107":2,"109":3,"112":2,"113":4,"114":3,"115":1}}],["lazy",{"2":{"89":1}}],["lazily",{"2":{"9":1,"13":1,"16":2,"35":1,"50":1,"59":1,"60":1,"63":1,"64":1,"68":2,"69":3,"70":3,"71":5,"113":1}}],["layername",{"2":{"89":2}}],["layername=",{"2":{"86":2,"90":1}}],["layer",{"2":{"65":3,"66":1,"86":1,"89":1,"90":1}}],["layout",{"2":{"56":2,"113":3}}],["labelled",{"2":{"89":1}}],["labels",{"2":{"56":1,"72":1,"76":1,"77":1}}],["label=false",{"2":{"56":1}}],["label=",{"2":{"56":1,"102":3}}],["label=cb",{"2":{"56":1}}],["label",{"2":{"56":3,"59":1,"78":1,"107":1}}],["last",{"2":{"16":1,"23":1}}],["la",{"2":{"16":4}}],["latest",{"2":{"94":1,"99":1}}],["later",{"2":{"18":1}}],["lat=50",{"2":{"115":1}}],["lat=5",{"2":{"37":1,"39":1}}],["latitudes=latitudes",{"2":{"40":1}}],["latitudes",{"2":{"40":11}}],["latitude",{"2":{"21":1,"37":1,"61":1,"78":6,"98":2}}],["lat",{"0":{"78":1},"2":{"10":2,"12":1,"13":1,"14":2,"16":7,"17":2,"18":1,"19":1,"20":1,"21":5,"22":12,"23":1,"26":2,"29":3,"30":1,"35":2,"37":7,"39":3,"41":4,"42":3,"59":2,"60":2,"63":3,"64":5,"65":3,"66":1,"67":1,"68":2,"69":3,"70":5,"71":5,"72":2,"78":8,"79":1,"85":1,"89":1,"98":2,"107":3,"109":1,"110":1,"112":2,"113":5,"114":2,"115":1}}],["larger",{"2":{"24":1}}],["large",{"2":{"0":2,"24":1,"50":1,"74":1}}]],"serializationVersion":2}';export{e as default}; diff --git a/previews/PR484/assets/chunks/VPLocalSearchBox.BdNxKZCr.js b/previews/PR484/assets/chunks/VPLocalSearchBox.DKkGbUCE.js similarity index 99% rename from previews/PR484/assets/chunks/VPLocalSearchBox.BdNxKZCr.js rename to previews/PR484/assets/chunks/VPLocalSearchBox.DKkGbUCE.js index 01221d7c..e4a9254a 100644 --- a/previews/PR484/assets/chunks/VPLocalSearchBox.BdNxKZCr.js +++ b/previews/PR484/assets/chunks/VPLocalSearchBox.DKkGbUCE.js @@ -1,4 +1,4 @@ -var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Ae=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Ct,p as ie,h as me,aj as tt,ak as Rt,al as At,q as $e,am as Mt,d as Lt,D as xe,an as st,ao as Dt,ap as zt,s as Pt,aq as jt,v as Me,P as he,O as _e,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as _,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as nt,e as Se,C as it,F as rt,a as fe,t as pe,aw as Qt,ax as at,ay as Yt,a9 as Zt,af as Xt,az as es,_ as ts}from"./framework.Bl-lyKae.js";import{u as ss,d as ns}from"./theme.UIEISKWu.js";const is={root:()=>Ct(()=>import("./@localSearchIndexroot.CjXaw2qO.js"),[])};/*! +var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Ae=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Ct,p as ie,h as me,aj as tt,ak as Rt,al as At,q as $e,am as Mt,d as Lt,D as xe,an as st,ao as Dt,ap as zt,s as Pt,aq as jt,v as Me,P as he,O as _e,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as _,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as nt,e as Se,C as it,F as rt,a as fe,t as pe,aw as Qt,ax as at,ay as Yt,a9 as Zt,af as Xt,az as es,_ as ts}from"./framework.Bl-lyKae.js";import{u as ss,d as ns}from"./theme.JyDuiASx.js";const is={root:()=>Ct(()=>import("./@localSearchIndexroot.D9GWZ9z_.js"),[])};/*! * tabbable 6.2.0 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE */var mt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=mt.join(","),gt=typeof Element>"u",ae=gt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,Fe=!gt&&Element.prototype.getRootNode?function(a){var e;return a==null||(e=a.getRootNode)===null||e===void 0?void 0:e.call(a)}:function(a){return a==null?void 0:a.ownerDocument},Oe=function a(e,t){var s;t===void 0&&(t=!0);var n=e==null||(s=e.getAttribute)===null||s===void 0?void 0:s.call(e,"inert"),r=n===""||n==="true",i=r||t&&e&&a(e.parentNode);return i},rs=function(e){var t,s=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return s===""||s==="true"},bt=function(e,t,s){if(Oe(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&ae.call(e,Ne)&&n.unshift(e),n=n.filter(s),n},yt=function a(e,t,s){for(var n=[],r=Array.from(e);r.length;){var i=r.shift();if(!Oe(i,!1))if(i.tagName==="SLOT"){var o=i.assignedElements(),l=o.length?o:i.children,c=a(l,!0,s);s.flatten?n.push.apply(n,c):n.push({scopeParent:i,candidates:c})}else{var h=ae.call(i,Ne);h&&s.filter(i)&&(t||!e.includes(i))&&n.push(i);var m=i.shadowRoot||typeof s.getShadowRoot=="function"&&s.getShadowRoot(i),f=!Oe(m,!1)&&(!s.shadowRootFilter||s.shadowRootFilter(i));if(m&&f){var b=a(m===!0?i.children:m.children,!0,s);s.flatten?n.push.apply(n,b):n.push({scopeParent:i,candidates:b})}else r.unshift.apply(r,i.children)}}return n},wt=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},re=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||rs(e))&&!wt(e)?0:e.tabIndex},as=function(e,t){var s=re(e);return s<0&&t&&!wt(e)?0:s},os=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},xt=function(e){return e.tagName==="INPUT"},ls=function(e){return xt(e)&&e.type==="hidden"},cs=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(s){return s.tagName==="SUMMARY"});return t},us=function(e,t){for(var s=0;ssummary:first-of-type"),i=r?e.parentElement:e;if(ae.call(i,"details:not([open]) *"))return!0;if(!s||s==="full"||s==="legacy-full"){if(typeof n=="function"){for(var o=e;e;){var l=e.parentElement,c=Fe(e);if(l&&!l.shadowRoot&&n(l)===!0)return ot(e);e.assignedSlot?e=e.assignedSlot:!l&&c!==e.ownerDocument?e=c.host:e=l}e=o}if(ps(e))return!e.getClientRects().length;if(s!=="legacy-full")return!0}else if(s==="non-zero-area")return ot(e);return!1},ms=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var s=0;s=0)},bs=function a(e){var t=[],s=[];return e.forEach(function(n,r){var i=!!n.scopeParent,o=i?n.scopeParent:n,l=as(o,i),c=i?a(n.candidates):o;l===0?i?t.push.apply(t,c):t.push(o):s.push({documentOrder:r,tabIndex:l,item:n,isScope:i,content:c})}),s.sort(os).reduce(function(n,r){return r.isScope?n.push.apply(n,r.content):n.push(r.content),n},[]).concat(t)},ys=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Be.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:gs}):s=bt(e,t.includeContainer,Be.bind(null,t)),bs(s)},ws=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Ce.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):s=bt(e,t.includeContainer,Ce.bind(null,t)),s},oe=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,Ne)===!1?!1:Be(t,e)},xs=mt.concat("iframe").join(","),Le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,xs)===!1?!1:Ce(t,e)};/*! diff --git a/previews/PR484/assets/chunks/theme.UIEISKWu.js b/previews/PR484/assets/chunks/theme.JyDuiASx.js similarity index 99% rename from previews/PR484/assets/chunks/theme.UIEISKWu.js rename to previews/PR484/assets/chunks/theme.JyDuiASx.js index 265fc6a9..93c5b3f9 100644 --- a/previews/PR484/assets/chunks/theme.UIEISKWu.js +++ b/previews/PR484/assets/chunks/theme.JyDuiASx.js @@ -1,2 +1,2 @@ -const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.BdNxKZCr.js","assets/chunks/framework.Bl-lyKae.js"])))=>i.map(i=>d[i]); -import{d as b,o,c,r as d,n as M,a as G,t as w,b as y,w as m,e as h,T as Se,_ as g,u as ze,i as _t,f as bt,g as Le,h as P,j as p,k as i,l as X,m as ge,p as I,q as R,s as de,v as j,x as Ve,y as Ce,z as gt,A as kt,B as Z,F as T,C as Q,D as Ze,E as pe,G as k,H as U,I as Ye,J as fe,K as z,L as ee,M as yt,N as Xe,O as ke,P as Ie,Q as xe,R as me,S as $t,U as At,V as Pt,W as qe,X as Ne,Y as St,Z as Lt,$ as Vt,a0 as Ct,a1 as et,a2 as It,a3 as Nt,a4 as wt,a5 as _e}from"./framework.Bl-lyKae.js";const Mt=b({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(n){return(e,t)=>(o(),c("span",{class:M(["VPBadge",e.type])},[d(e.$slots,"default",{},()=>[G(w(e.text),1)])],2))}}),Tt={key:0,class:"VPBackdrop"},Et=b({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(n){return(e,t)=>(o(),y(Se,{name:"fade"},{default:m(()=>[e.show?(o(),c("div",Tt)):h("",!0)]),_:1}))}}),Bt=g(Et,[["__scopeId","data-v-b06cdb19"]]),L=ze;function Qt(n,e){let t,a=!1;return()=>{t&&clearTimeout(t),a?t=setTimeout(n,e):(n(),(a=!0)&&setTimeout(()=>a=!1,e))}}function ye(n){return/^\//.test(n)?n:`/${n}`}function we(n){const{pathname:e,search:t,hash:a,protocol:s}=new URL(n,"http://a.com");if(_t(n)||n.startsWith("#")||!s.startsWith("http")||!bt(e))return n;const{site:r}=L(),l=e.endsWith("/")||e.endsWith(".html")?n:n.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,r.value.cleanUrls?"":".html")}${t}${a}`);return Le(l)}function ne({correspondingLink:n=!1}={}){const{site:e,localeIndex:t,page:a,theme:s,hash:r}=L(),l=P(()=>{var u,_;return{label:(u=e.value.locales[t.value])==null?void 0:u.label,link:((_=e.value.locales[t.value])==null?void 0:_.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:P(()=>Object.entries(e.value.locales).flatMap(([u,_])=>l.value.label===_.label?[]:{text:_.label,link:Ft(_.link||(u==="root"?"/":`/${u}/`),s.value.i18nRouting!==!1&&n,a.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+r.value})),currentLang:l}}function Ft(n,e,t,a){return e?n.replace(/\/$/,"")+ye(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,a?".html":"")):n}const Ht={class:"NotFound"},Wt={class:"code"},Ot={class:"title"},Dt={class:"quote"},Ut={class:"action"},Gt=["href","aria-label"],Rt=b({__name:"NotFound",setup(n){const{theme:e}=L(),{currentLang:t}=ne();return(a,s)=>{var r,l,f,u,_;return o(),c("div",Ht,[p("p",Wt,w(((r=i(e).notFound)==null?void 0:r.code)??"404"),1),p("h1",Ot,w(((l=i(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),s[0]||(s[0]=p("div",{class:"divider"},null,-1)),p("blockquote",Dt,w(((f=i(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",Ut,[p("a",{class:"link",href:i(Le)(i(t).link),"aria-label":((u=i(e).notFound)==null?void 0:u.linkLabel)??"go to home"},w(((_=i(e).notFound)==null?void 0:_.linkText)??"Take me home"),9,Gt)])])}}}),jt=g(Rt,[["__scopeId","data-v-951cab6c"]]);function tt(n,e){if(Array.isArray(n))return le(n);if(n==null)return[];e=ye(e);const t=Object.keys(n).sort((s,r)=>r.split("/").length-s.split("/").length).find(s=>e.startsWith(ye(s))),a=t?n[t]:[];return Array.isArray(a)?le(a):le(a.items,a.base)}function Jt(n){const e=[];let t=0;for(const a in n){const s=n[a];if(s.items){t=e.push(s);continue}e[t]||e.push({items:[]}),e[t].items.push(s)}return e}function Kt(n){const e=[];function t(a){for(const s of a)s.text&&s.link&&e.push({text:s.text,link:s.link,docFooterText:s.docFooterText}),s.items&&t(s.items)}return t(n),e}function $e(n,e){return Array.isArray(e)?e.some(t=>$e(n,t)):X(n,e.link)?!0:e.items?$e(n,e.items):!1}function le(n,e){return[...n].map(t=>{const a={...t},s=a.base||e;return s&&a.link&&(a.link=s+a.link),a.items&&(a.items=le(a.items,s)),a})}function K(){const{frontmatter:n,page:e,theme:t}=L(),a=ge("(min-width: 960px)"),s=I(!1),r=P(()=>{const E=t.value.sidebar,V=e.value.relativePath;return E?tt(E,V):[]}),l=I(r.value);R(r,(E,V)=>{JSON.stringify(E)!==JSON.stringify(V)&&(l.value=r.value)});const f=P(()=>n.value.sidebar!==!1&&l.value.length>0&&n.value.layout!=="home"),u=P(()=>_?n.value.aside==null?t.value.aside==="left":n.value.aside==="left":!1),_=P(()=>n.value.layout==="home"?!1:n.value.aside!=null?!!n.value.aside:t.value.aside!==!1),$=P(()=>f.value&&a.value),v=P(()=>f.value?Jt(l.value):[]);function A(){s.value=!0}function S(){s.value=!1}function C(){s.value?S():A()}return{isOpen:s,sidebar:l,sidebarGroups:v,hasSidebar:f,hasAside:_,leftAside:u,isSidebarEnabled:$,open:A,close:S,toggle:C}}function zt(n,e){let t;de(()=>{t=n.value?document.activeElement:void 0}),j(()=>{window.addEventListener("keyup",a)}),Ve(()=>{window.removeEventListener("keyup",a)});function a(s){s.key==="Escape"&&n.value&&(e(),t==null||t.focus())}}function Zt(n){const{page:e,hash:t}=L(),a=I(!1),s=P(()=>n.value.collapsed!=null),r=P(()=>!!n.value.link),l=I(!1),f=()=>{l.value=X(e.value.relativePath,n.value.link)};R([e,n,t],f),j(f);const u=P(()=>l.value?!0:n.value.items?$e(e.value.relativePath,n.value.items):!1),_=P(()=>!!(n.value.items&&n.value.items.length));de(()=>{a.value=!!(s.value&&n.value.collapsed)}),Ce(()=>{(l.value||u.value)&&(a.value=!1)});function $(){s.value&&(a.value=!a.value)}return{collapsed:a,collapsible:s,isLink:r,isActiveLink:l,hasActiveLink:u,hasChildren:_,toggle:$}}function Yt(){const{hasSidebar:n}=K(),e=ge("(min-width: 960px)"),t=ge("(min-width: 1280px)");return{isAsideEnabled:P(()=>!t.value&&!e.value?!1:n.value?t.value:e.value)}}const Ae=[];function nt(n){return typeof n.outline=="object"&&!Array.isArray(n.outline)&&n.outline.label||n.outlineTitle||"On this page"}function Me(n){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const a=Number(t.tagName[1]);return{element:t,title:Xt(t),link:"#"+t.id,level:a}});return xt(e,n)}function Xt(n){let e="";for(const t of n.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function xt(n,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[a,s]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return tn(n,a,s)}function qt(n,e){const{isAsideEnabled:t}=Yt(),a=Qt(r,100);let s=null;j(()=>{requestAnimationFrame(r),window.addEventListener("scroll",a)}),gt(()=>{l(location.hash)}),Ve(()=>{window.removeEventListener("scroll",a)});function r(){if(!t.value)return;const f=window.scrollY,u=window.innerHeight,_=document.body.offsetHeight,$=Math.abs(f+u-_)<1,v=Ae.map(({element:S,link:C})=>({link:C,top:en(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,C)=>S.top-C.top);if(!v.length){l(null);return}if(f<1){l(null);return}if($){l(v[v.length-1].link);return}let A=null;for(const{link:S,top:C}of v){if(C>f+kt()+4)break;A=S}l(A)}function l(f){s&&s.classList.remove("active"),f==null?s=null:s=n.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const u=s;u?(u.classList.add("active"),e.value.style.top=u.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function en(n){let e=0;for(;n!==document.body;){if(n===null)return NaN;e+=n.offsetTop,n=n.offsetParent}return e}function tn(n,e,t){Ae.length=0;const a=[],s=[];return n.forEach(r=>{const l={...r,children:[]};let f=s[s.length-1];for(;f&&f.level>=l.level;)s.pop(),f=s[s.length-1];if(l.element.classList.contains("ignore-header")||f&&"shouldIgnore"in f){s.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const s=Z("VPDocOutlineItem",!0);return o(),c("ul",{class:M(["VPDocOutlineItem",t.root?"root":"nested"])},[(o(!0),c(T,null,Q(t.headers,({children:r,link:l,title:f})=>(o(),c("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:f},w(f),9,nn),r!=null&&r.length?(o(),y(s,{key:0,headers:r},null,8,["headers"])):h("",!0)]))),256))],2)}}}),st=g(sn,[["__scopeId","data-v-3f927ebe"]]),an={class:"content"},on={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},rn=b({__name:"VPDocAsideOutline",setup(n){const{frontmatter:e,theme:t}=L(),a=Ze([]);pe(()=>{a.value=Me(e.value.outline??t.value.outline)});const s=I(),r=I();return qt(s,r),(l,f)=>(o(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:M(["VPDocAsideOutline",{"has-outline":a.value.length>0}]),ref_key:"container",ref:s},[p("div",an,[p("div",{class:"outline-marker",ref_key:"marker",ref:r},null,512),p("div",on,w(i(nt)(i(t))),1),k(st,{headers:a.value,root:!0},null,8,["headers"])])],2))}}),ln=g(rn,[["__scopeId","data-v-b38bf2ff"]]),cn={class:"VPDocAsideCarbonAds"},un=b({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(n){const e=()=>null;return(t,a)=>(o(),c("div",cn,[k(i(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),dn={class:"VPDocAside"},pn=b({__name:"VPDocAside",setup(n){const{theme:e}=L();return(t,a)=>(o(),c("div",dn,[d(t.$slots,"aside-top",{},void 0,!0),d(t.$slots,"aside-outline-before",{},void 0,!0),k(ln),d(t.$slots,"aside-outline-after",{},void 0,!0),a[0]||(a[0]=p("div",{class:"spacer"},null,-1)),d(t.$slots,"aside-ads-before",{},void 0,!0),i(e).carbonAds?(o(),y(un,{key:0,"carbon-ads":i(e).carbonAds},null,8,["carbon-ads"])):h("",!0),d(t.$slots,"aside-ads-after",{},void 0,!0),d(t.$slots,"aside-bottom",{},void 0,!0)]))}}),fn=g(pn,[["__scopeId","data-v-6d7b3c46"]]);function mn(){const{theme:n,page:e}=L();return P(()=>{const{text:t="Edit this page",pattern:a=""}=n.value.editLink||{};let s;return typeof a=="function"?s=a(e.value):s=a.replace(/:path/g,e.value.filePath),{url:s,text:t}})}function vn(){const{page:n,theme:e,frontmatter:t}=L();return P(()=>{var _,$,v,A,S,C,E,V;const a=tt(e.value.sidebar,n.value.relativePath),s=Kt(a),r=hn(s,B=>B.link.replace(/[?#].*$/,"")),l=r.findIndex(B=>X(n.value.relativePath,B.link)),f=((_=e.value.docFooter)==null?void 0:_.prev)===!1&&!t.value.prev||t.value.prev===!1,u=(($=e.value.docFooter)==null?void 0:$.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((v=r[l-1])==null?void 0:v.docFooterText)??((A=r[l-1])==null?void 0:A.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=r[l-1])==null?void 0:S.link)},next:u?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((C=r[l+1])==null?void 0:C.docFooterText)??((E=r[l+1])==null?void 0:E.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((V=r[l+1])==null?void 0:V.link)}}})}function hn(n,e){const t=new Set;return n.filter(a=>{const s=e(a);return t.has(s)?!1:t.add(s)})}const D=b({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(n){const e=n,t=P(()=>e.tag??(e.href?"a":"span")),a=P(()=>e.href&&Ye.test(e.href)||e.target==="_blank");return(s,r)=>(o(),y(U(t.value),{class:M(["VPLink",{link:s.href,"vp-external-link-icon":a.value,"no-icon":s.noIcon}]),href:s.href?i(we)(s.href):void 0,target:s.target??(a.value?"_blank":void 0),rel:s.rel??(a.value?"noreferrer":void 0)},{default:m(()=>[d(s.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),_n={class:"VPLastUpdated"},bn=["datetime"],gn=b({__name:"VPDocFooterLastUpdated",setup(n){const{theme:e,page:t,lang:a}=L(),s=P(()=>new Date(t.value.lastUpdated)),r=P(()=>s.value.toISOString()),l=I("");return j(()=>{de(()=>{var f,u,_;l.value=new Intl.DateTimeFormat((u=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&u.forceLocale?a.value:void 0,((_=e.value.lastUpdated)==null?void 0:_.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(s.value)})}),(f,u)=>{var _;return o(),c("p",_n,[G(w(((_=i(e).lastUpdated)==null?void 0:_.text)||i(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:r.value},w(l.value),9,bn)])}}}),kn=g(gn,[["__scopeId","data-v-475f71b8"]]),yn={key:0,class:"VPDocFooter"},$n={key:0,class:"edit-info"},An={key:0,class:"edit-link"},Pn={key:1,class:"last-updated"},Sn={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Ln={class:"pager"},Vn=["innerHTML"],Cn=["innerHTML"],In={class:"pager"},Nn=["innerHTML"],wn=["innerHTML"],Mn=b({__name:"VPDocFooter",setup(n){const{theme:e,page:t,frontmatter:a}=L(),s=mn(),r=vn(),l=P(()=>e.value.editLink&&a.value.editLink!==!1),f=P(()=>t.value.lastUpdated),u=P(()=>l.value||f.value||r.value.prev||r.value.next);return(_,$)=>{var v,A,S,C;return u.value?(o(),c("footer",yn,[d(_.$slots,"doc-footer-before",{},void 0,!0),l.value||f.value?(o(),c("div",$n,[l.value?(o(),c("div",An,[k(D,{class:"edit-link-button",href:i(s).url,"no-icon":!0},{default:m(()=>[$[0]||($[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),G(" "+w(i(s).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(o(),c("div",Pn,[k(kn)])):h("",!0)])):h("",!0),(v=i(r).prev)!=null&&v.link||(A=i(r).next)!=null&&A.link?(o(),c("nav",Sn,[$[1]||($[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Ln,[(S=i(r).prev)!=null&&S.link?(o(),y(D,{key:0,class:"pager-link prev",href:i(r).prev.link},{default:m(()=>{var E;return[p("span",{class:"desc",innerHTML:((E=i(e).docFooter)==null?void 0:E.prev)||"Previous page"},null,8,Vn),p("span",{class:"title",innerHTML:i(r).prev.text},null,8,Cn)]}),_:1},8,["href"])):h("",!0)]),p("div",In,[(C=i(r).next)!=null&&C.link?(o(),y(D,{key:0,class:"pager-link next",href:i(r).next.link},{default:m(()=>{var E;return[p("span",{class:"desc",innerHTML:((E=i(e).docFooter)==null?void 0:E.next)||"Next page"},null,8,Nn),p("span",{class:"title",innerHTML:i(r).next.text},null,8,wn)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),Tn=g(Mn,[["__scopeId","data-v-4f9813fa"]]),En={class:"container"},Bn={class:"aside-container"},Qn={class:"aside-content"},Fn={class:"content"},Hn={class:"content-container"},Wn={class:"main"},On=b({__name:"VPDoc",setup(n){const{theme:e}=L(),t=fe(),{hasSidebar:a,hasAside:s,leftAside:r}=K(),l=P(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,u)=>{const _=Z("Content");return o(),c("div",{class:M(["VPDoc",{"has-sidebar":i(a),"has-aside":i(s)}])},[d(f.$slots,"doc-top",{},void 0,!0),p("div",En,[i(s)?(o(),c("div",{key:0,class:M(["aside",{"left-aside":i(r)}])},[u[0]||(u[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",Bn,[p("div",Qn,[k(fn,null,{"aside-top":m(()=>[d(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":m(()=>[d(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":m(()=>[d(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),p("div",Fn,[p("div",Hn,[d(f.$slots,"doc-before",{},void 0,!0),p("main",Wn,[k(_,{class:M(["vp-doc",[l.value,i(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),k(Tn,null,{"doc-footer-before":m(()=>[d(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),d(f.$slots,"doc-after",{},void 0,!0)])])]),d(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),Dn=g(On,[["__scopeId","data-v-83890dd9"]]),Un=b({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(n){const e=n,t=P(()=>e.href&&Ye.test(e.href)),a=P(()=>e.tag||(e.href?"a":"button"));return(s,r)=>(o(),y(U(a.value),{class:M(["VPButton",[s.size,s.theme]]),href:s.href?i(we)(s.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:m(()=>[G(w(s.text),1)]),_:1},8,["class","href","target","rel"]))}}),Gn=g(Un,[["__scopeId","data-v-906d7fb4"]]),Rn=["src","alt"],jn=b({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(n){return(e,t)=>{const a=Z("VPImage",!0);return e.image?(o(),c(T,{key:0},[typeof e.image=="string"||"src"in e.image?(o(),c("img",z({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:i(Le)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,Rn)):(o(),c(T,{key:1},[k(a,z({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),k(a,z({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),ce=g(jn,[["__scopeId","data-v-35a7d0b8"]]),Jn={class:"container"},Kn={class:"main"},zn={key:0,class:"name"},Zn=["innerHTML"],Yn=["innerHTML"],Xn=["innerHTML"],xn={key:0,class:"actions"},qn={key:0,class:"image"},es={class:"image-container"},ts=b({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(n){const e=ee("hero-image-slot-exists");return(t,a)=>(o(),c("div",{class:M(["VPHero",{"has-image":t.image||i(e)}])},[p("div",Jn,[p("div",Kn,[d(t.$slots,"home-hero-info-before",{},void 0,!0),d(t.$slots,"home-hero-info",{},()=>[t.name?(o(),c("h1",zn,[p("span",{innerHTML:t.name,class:"clip"},null,8,Zn)])):h("",!0),t.text?(o(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,Yn)):h("",!0),t.tagline?(o(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Xn)):h("",!0)],!0),d(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(o(),c("div",xn,[(o(!0),c(T,null,Q(t.actions,s=>(o(),c("div",{key:s.link,class:"action"},[k(Gn,{tag:"a",size:"medium",theme:s.theme,text:s.text,href:s.link,target:s.target,rel:s.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),d(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||i(e)?(o(),c("div",qn,[p("div",es,[a[0]||(a[0]=p("div",{class:"image-bg"},null,-1)),d(t.$slots,"home-hero-image",{},()=>[t.image?(o(),y(ce,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),ns=g(ts,[["__scopeId","data-v-955009fc"]]),ss=b({__name:"VPHomeHero",setup(n){const{frontmatter:e}=L();return(t,a)=>i(e).hero?(o(),y(ns,{key:0,class:"VPHomeHero",name:i(e).hero.name,text:i(e).hero.text,tagline:i(e).hero.tagline,image:i(e).hero.image,actions:i(e).hero.actions},{"home-hero-info-before":m(()=>[d(t.$slots,"home-hero-info-before")]),"home-hero-info":m(()=>[d(t.$slots,"home-hero-info")]),"home-hero-info-after":m(()=>[d(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":m(()=>[d(t.$slots,"home-hero-actions-after")]),"home-hero-image":m(()=>[d(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),as={class:"box"},os={key:0,class:"icon"},rs=["innerHTML"],is=["innerHTML"],ls=["innerHTML"],cs={key:4,class:"link-text"},us={class:"link-text-value"},ds=b({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(n){return(e,t)=>(o(),y(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:m(()=>[p("article",as,[typeof e.icon=="object"&&e.icon.wrap?(o(),c("div",os,[k(ce,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(o(),y(ce,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(o(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,rs)):h("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,is),e.details?(o(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,ls)):h("",!0),e.linkText?(o(),c("div",cs,[p("p",us,[G(w(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),ps=g(ds,[["__scopeId","data-v-f5e9645b"]]),fs={key:0,class:"VPFeatures"},ms={class:"container"},vs={class:"items"},hs=b({__name:"VPFeatures",props:{features:{}},setup(n){const e=n,t=P(()=>{const a=e.features.length;if(a){if(a===2)return"grid-2";if(a===3)return"grid-3";if(a%3===0)return"grid-6";if(a>3)return"grid-4"}else return});return(a,s)=>a.features?(o(),c("div",fs,[p("div",ms,[p("div",vs,[(o(!0),c(T,null,Q(a.features,r=>(o(),c("div",{key:r.title,class:M(["item",[t.value]])},[k(ps,{icon:r.icon,title:r.title,details:r.details,link:r.link,"link-text":r.linkText,rel:r.rel,target:r.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),_s=g(hs,[["__scopeId","data-v-d0a190d7"]]),bs=b({__name:"VPHomeFeatures",setup(n){const{frontmatter:e}=L();return(t,a)=>i(e).features?(o(),y(_s,{key:0,class:"VPHomeFeatures",features:i(e).features},null,8,["features"])):h("",!0)}}),gs=b({__name:"VPHomeContent",setup(n){const{width:e}=yt({initialWidth:0,includeScrollbar:!1});return(t,a)=>(o(),c("div",{class:"vp-doc container",style:Xe(i(e)?{"--vp-offset":`calc(50% - ${i(e)/2}px)`}:{})},[d(t.$slots,"default",{},void 0,!0)],4))}}),ks=g(gs,[["__scopeId","data-v-7a48a447"]]),ys={class:"VPHome"},$s=b({__name:"VPHome",setup(n){const{frontmatter:e}=L();return(t,a)=>{const s=Z("Content");return o(),c("div",ys,[d(t.$slots,"home-hero-before",{},void 0,!0),k(ss,null,{"home-hero-info-before":m(()=>[d(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),d(t.$slots,"home-hero-after",{},void 0,!0),d(t.$slots,"home-features-before",{},void 0,!0),k(bs),d(t.$slots,"home-features-after",{},void 0,!0),i(e).markdownStyles!==!1?(o(),y(ks,{key:0},{default:m(()=>[k(s)]),_:1})):(o(),y(s,{key:1}))])}}}),As=g($s,[["__scopeId","data-v-cbb6ec48"]]),Ps={},Ss={class:"VPPage"};function Ls(n,e){const t=Z("Content");return o(),c("div",Ss,[d(n.$slots,"page-top"),k(t),d(n.$slots,"page-bottom")])}const Vs=g(Ps,[["render",Ls]]),Cs=b({__name:"VPContent",setup(n){const{page:e,frontmatter:t}=L(),{hasSidebar:a}=K();return(s,r)=>(o(),c("div",{class:M(["VPContent",{"has-sidebar":i(a),"is-home":i(t).layout==="home"}]),id:"VPContent"},[i(e).isNotFound?d(s.$slots,"not-found",{key:0},()=>[k(jt)],!0):i(t).layout==="page"?(o(),y(Vs,{key:1},{"page-top":m(()=>[d(s.$slots,"page-top",{},void 0,!0)]),"page-bottom":m(()=>[d(s.$slots,"page-bottom",{},void 0,!0)]),_:3})):i(t).layout==="home"?(o(),y(As,{key:2},{"home-hero-before":m(()=>[d(s.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":m(()=>[d(s.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(s.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(s.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(s.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(s.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":m(()=>[d(s.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":m(()=>[d(s.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":m(()=>[d(s.$slots,"home-features-after",{},void 0,!0)]),_:3})):i(t).layout&&i(t).layout!=="doc"?(o(),y(U(i(t).layout),{key:3})):(o(),y(Dn,{key:4},{"doc-top":m(()=>[d(s.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":m(()=>[d(s.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":m(()=>[d(s.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":m(()=>[d(s.$slots,"doc-before",{},void 0,!0)]),"doc-after":m(()=>[d(s.$slots,"doc-after",{},void 0,!0)]),"aside-top":m(()=>[d(s.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":m(()=>[d(s.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(s.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(s.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(s.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":m(()=>[d(s.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),Is=g(Cs,[["__scopeId","data-v-91765379"]]),Ns={class:"container"},ws=["innerHTML"],Ms=["innerHTML"],Ts=b({__name:"VPFooter",setup(n){const{theme:e,frontmatter:t}=L(),{hasSidebar:a}=K();return(s,r)=>i(e).footer&&i(t).footer!==!1?(o(),c("footer",{key:0,class:M(["VPFooter",{"has-sidebar":i(a)}])},[p("div",Ns,[i(e).footer.message?(o(),c("p",{key:0,class:"message",innerHTML:i(e).footer.message},null,8,ws)):h("",!0),i(e).footer.copyright?(o(),c("p",{key:1,class:"copyright",innerHTML:i(e).footer.copyright},null,8,Ms)):h("",!0)])],2)):h("",!0)}}),Es=g(Ts,[["__scopeId","data-v-c970a860"]]);function Bs(){const{theme:n,frontmatter:e}=L(),t=Ze([]),a=P(()=>t.value.length>0);return pe(()=>{t.value=Me(e.value.outline??n.value.outline)}),{headers:t,hasLocalNav:a}}const Qs={class:"menu-text"},Fs={class:"header"},Hs={class:"outline"},Ws=b({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(n){const e=n,{theme:t}=L(),a=I(!1),s=I(0),r=I(),l=I();function f(v){var A;(A=r.value)!=null&&A.contains(v.target)||(a.value=!1)}R(a,v=>{if(v){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),ke("Escape",()=>{a.value=!1}),pe(()=>{a.value=!1});function u(){a.value=!a.value,s.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function _(v){v.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Ie(()=>{a.value=!1}))}function $(){a.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(v,A)=>(o(),c("div",{class:"VPLocalNavOutlineDropdown",style:Xe({"--vp-vh":s.value+"px"}),ref_key:"main",ref:r},[v.headers.length>0?(o(),c("button",{key:0,onClick:u,class:M({open:a.value})},[p("span",Qs,w(i(nt)(i(t))),1),A[0]||(A[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(o(),c("button",{key:1,onClick:$},w(i(t).returnToTopLabel||"Return to top"),1)),k(Se,{name:"flyout"},{default:m(()=>[a.value?(o(),c("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:_},[p("div",Fs,[p("a",{class:"top-link",href:"#",onClick:$},w(i(t).returnToTopLabel||"Return to top"),1)]),p("div",Hs,[k(st,{headers:v.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Os=g(Ws,[["__scopeId","data-v-bc9dc845"]]),Ds={class:"container"},Us=["aria-expanded"],Gs={class:"menu-text"},Rs=b({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(n){const{theme:e,frontmatter:t}=L(),{hasSidebar:a}=K(),{headers:s}=Bs(),{y:r}=xe(),l=I(0);j(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),pe(()=>{s.value=Me(t.value.outline??e.value.outline)});const f=P(()=>s.value.length===0),u=P(()=>f.value&&!a.value),_=P(()=>({VPLocalNav:!0,"has-sidebar":a.value,empty:f.value,fixed:u.value}));return($,v)=>i(t).layout!=="home"&&(!u.value||i(r)>=l.value)?(o(),c("div",{key:0,class:M(_.value)},[p("div",Ds,[i(a)?(o(),c("button",{key:0,class:"menu","aria-expanded":$.open,"aria-controls":"VPSidebarNav",onClick:v[0]||(v[0]=A=>$.$emit("open-menu"))},[v[1]||(v[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",Gs,w(i(e).sidebarMenuLabel||"Menu"),1)],8,Us)):h("",!0),k(Os,{headers:i(s),navHeight:l.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),js=g(Rs,[["__scopeId","data-v-070ab83d"]]);function Js(){const n=I(!1);function e(){n.value=!0,window.addEventListener("resize",s)}function t(){n.value=!1,window.removeEventListener("resize",s)}function a(){n.value?t():e()}function s(){window.outerWidth>=768&&t()}const r=fe();return R(()=>r.path,t),{isScreenOpen:n,openScreen:e,closeScreen:t,toggleScreen:a}}const Ks={},zs={class:"VPSwitch",type:"button",role:"switch"},Zs={class:"check"},Ys={key:0,class:"icon"};function Xs(n,e){return o(),c("button",zs,[p("span",Zs,[n.$slots.default?(o(),c("span",Ys,[d(n.$slots,"default",{},void 0,!0)])):h("",!0)])])}const xs=g(Ks,[["render",Xs],["__scopeId","data-v-4a1c76db"]]),qs=b({__name:"VPSwitchAppearance",setup(n){const{isDark:e,theme:t}=L(),a=ee("toggle-appearance",()=>{e.value=!e.value}),s=I("");return Ce(()=>{s.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(r,l)=>(o(),y(xs,{title:s.value,class:"VPSwitchAppearance","aria-checked":i(e),onClick:i(a)},{default:m(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),Te=g(qs,[["__scopeId","data-v-e40a8bb6"]]),ea={key:0,class:"VPNavBarAppearance"},ta=b({__name:"VPNavBarAppearance",setup(n){const{site:e}=L();return(t,a)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",ea,[k(Te)])):h("",!0)}}),na=g(ta,[["__scopeId","data-v-af096f4a"]]),Ee=I();let at=!1,be=0;function sa(n){const e=I(!1);if(me){!at&&aa(),be++;const t=R(Ee,a=>{var s,r,l;a===n.el.value||(s=n.el.value)!=null&&s.contains(a)?(e.value=!0,(r=n.onFocus)==null||r.call(n)):(e.value=!1,(l=n.onBlur)==null||l.call(n))});Ve(()=>{t(),be--,be||oa()})}return $t(e)}function aa(){document.addEventListener("focusin",ot),at=!0,Ee.value=document.activeElement}function oa(){document.removeEventListener("focusin",ot)}function ot(){Ee.value=document.activeElement}const ra={class:"VPMenuLink"},ia=["innerHTML"],la=b({__name:"VPMenuLink",props:{item:{}},setup(n){const{page:e}=L();return(t,a)=>(o(),c("div",ra,[k(D,{class:M({active:i(X)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,ia)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ve=g(la,[["__scopeId","data-v-acbfed09"]]),ca={class:"VPMenuGroup"},ua={key:0,class:"title"},da=b({__name:"VPMenuGroup",props:{text:{},items:{}},setup(n){return(e,t)=>(o(),c("div",ca,[e.text?(o(),c("p",ua,w(e.text),1)):h("",!0),(o(!0),c(T,null,Q(e.items,a=>(o(),c(T,null,["link"in a?(o(),y(ve,{key:0,item:a},null,8,["item"])):h("",!0)],64))),256))]))}}),pa=g(da,[["__scopeId","data-v-48c802d0"]]),fa={class:"VPMenu"},ma={key:0,class:"items"},va=b({__name:"VPMenu",props:{items:{}},setup(n){return(e,t)=>(o(),c("div",fa,[e.items?(o(),c("div",ma,[(o(!0),c(T,null,Q(e.items,a=>(o(),c(T,{key:JSON.stringify(a)},["link"in a?(o(),y(ve,{key:0,item:a},null,8,["item"])):"component"in a?(o(),y(U(a.component),z({key:1,ref_for:!0},a.props),null,16)):(o(),y(pa,{key:2,text:a.text,items:a.items},null,8,["text","items"]))],64))),128))])):h("",!0),d(e.$slots,"default",{},void 0,!0)]))}}),ha=g(va,[["__scopeId","data-v-7dd3104a"]]),_a=["aria-expanded","aria-label"],ba={key:0,class:"text"},ga=["innerHTML"],ka={key:1,class:"vpi-more-horizontal icon"},ya={class:"menu"},$a=b({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(n){const e=I(!1),t=I();sa({el:t,onBlur:a});function a(){e.value=!1}return(s,r)=>(o(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:r[1]||(r[1]=l=>e.value=!0),onMouseleave:r[2]||(r[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":s.label,onClick:r[0]||(r[0]=l=>e.value=!e.value)},[s.button||s.icon?(o(),c("span",ba,[s.icon?(o(),c("span",{key:0,class:M([s.icon,"option-icon"])},null,2)):h("",!0),s.button?(o(),c("span",{key:1,innerHTML:s.button},null,8,ga)):h("",!0),r[3]||(r[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(o(),c("span",ka))],8,_a),p("div",ya,[k(ha,{items:s.items},{default:m(()=>[d(s.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),Be=g($a,[["__scopeId","data-v-04f5c5e9"]]),Aa=["href","aria-label","innerHTML"],Pa=b({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(n){const e=n,t=I();j(async()=>{var r;await Ie();const s=(r=t.value)==null?void 0:r.children[0];s instanceof HTMLElement&&s.className.startsWith("vpi-social-")&&(getComputedStyle(s).maskImage||getComputedStyle(s).webkitMaskImage)==="none"&&s.style.setProperty("--icon",`url('https://api.iconify.design/simple-icons/${e.icon}.svg')`)});const a=P(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,r)=>(o(),c("a",{ref_key:"el",ref:t,class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:a.value},null,8,Aa))}}),Sa=g(Pa,[["__scopeId","data-v-d26d30cb"]]),La={class:"VPSocialLinks"},Va=b({__name:"VPSocialLinks",props:{links:{}},setup(n){return(e,t)=>(o(),c("div",La,[(o(!0),c(T,null,Q(e.links,({link:a,icon:s,ariaLabel:r})=>(o(),y(Sa,{key:a,icon:s,link:a,ariaLabel:r},null,8,["icon","link","ariaLabel"]))),128))]))}}),he=g(Va,[["__scopeId","data-v-ee7a9424"]]),Ca={key:0,class:"group translations"},Ia={class:"trans-title"},Na={key:1,class:"group"},wa={class:"item appearance"},Ma={class:"label"},Ta={class:"appearance-action"},Ea={key:2,class:"group"},Ba={class:"item social-links"},Qa=b({__name:"VPNavBarExtra",setup(n){const{site:e,theme:t}=L(),{localeLinks:a,currentLang:s}=ne({correspondingLink:!0}),r=P(()=>a.value.length&&s.value.label||e.value.appearance||t.value.socialLinks);return(l,f)=>r.value?(o(),y(Be,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:m(()=>[i(a).length&&i(s).label?(o(),c("div",Ca,[p("p",Ia,w(i(s).label),1),(o(!0),c(T,null,Q(i(a),u=>(o(),y(ve,{key:u.link,item:u},null,8,["item"]))),128))])):h("",!0),i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",Na,[p("div",wa,[p("p",Ma,w(i(t).darkModeSwitchLabel||"Appearance"),1),p("div",Ta,[k(Te)])])])):h("",!0),i(t).socialLinks?(o(),c("div",Ea,[p("div",Ba,[k(he,{class:"social-links-list",links:i(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Fa=g(Qa,[["__scopeId","data-v-925effce"]]),Ha=["aria-expanded"],Wa=b({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(n){return(e,t)=>(o(),c("button",{type:"button",class:M(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=a=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,Ha))}}),Oa=g(Wa,[["__scopeId","data-v-5dea55bf"]]),Da=["innerHTML"],Ua=b({__name:"VPNavBarMenuLink",props:{item:{}},setup(n){const{page:e}=L();return(t,a)=>(o(),y(D,{class:M({VPNavBarMenuLink:!0,active:i(X)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Da)]),_:1},8,["class","href","target","rel","no-icon"]))}}),Ga=g(Ua,[["__scopeId","data-v-956ec74c"]]),rt=b({__name:"VPNavBarMenuGroup",props:{item:{}},setup(n){const e=n,{page:t}=L(),a=r=>"component"in r?!1:"link"in r?X(t.value.relativePath,r.link,!!e.item.activeMatch):r.items.some(a),s=P(()=>a(e.item));return(r,l)=>(o(),y(Be,{class:M({VPNavBarMenuGroup:!0,active:i(X)(i(t).relativePath,r.item.activeMatch,!!r.item.activeMatch)||s.value}),button:r.item.text,items:r.item.items},null,8,["class","button","items"]))}}),Ra={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},ja=b({__name:"VPNavBarMenu",setup(n){const{theme:e}=L();return(t,a)=>i(e).nav?(o(),c("nav",Ra,[a[0]||(a[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(o(!0),c(T,null,Q(i(e).nav,s=>(o(),c(T,{key:JSON.stringify(s)},["link"in s?(o(),y(Ga,{key:0,item:s},null,8,["item"])):"component"in s?(o(),y(U(s.component),z({key:1,ref_for:!0},s.props),null,16)):(o(),y(rt,{key:2,item:s},null,8,["item"]))],64))),128))])):h("",!0)}}),Ja=g(ja,[["__scopeId","data-v-e6d46098"]]);function Ka(n){const{localeIndex:e,theme:t}=L();function a(s){var C,E,V;const r=s.split("."),l=(C=t.value.search)==null?void 0:C.options,f=l&&typeof l=="object",u=f&&((V=(E=l.locales)==null?void 0:E[e.value])==null?void 0:V.translations)||null,_=f&&l.translations||null;let $=u,v=_,A=n;const S=r.pop();for(const B of r){let W=null;const H=A==null?void 0:A[B];H&&(W=A=H);const x=v==null?void 0:v[B];x&&(W=v=x);const F=$==null?void 0:$[B];F&&(W=$=F),H||(A=W),x||(v=W),F||($=W)}return($==null?void 0:$[S])??(v==null?void 0:v[S])??(A==null?void 0:A[S])??""}return a}const za=["aria-label"],Za={class:"DocSearch-Button-Container"},Ya={class:"DocSearch-Button-Placeholder"},Oe=b({__name:"VPNavBarSearchButton",setup(n){const t=Ka({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(a,s)=>(o(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":i(t)("button.buttonAriaLabel")},[p("span",Za,[s[0]||(s[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",Ya,w(i(t)("button.buttonText")),1)]),s[1]||(s[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,za))}}),Xa={class:"VPNavBarSearch"},xa={id:"local-search"},qa={key:1,id:"docsearch"},eo=b({__name:"VPNavBarSearch",setup(n){const e=At(()=>Pt(()=>import("./VPLocalSearchBox.BdNxKZCr.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:a}=L(),s=I(!1),r=I(!1);j(()=>{});function l(){s.value||(s.value=!0,setTimeout(f,16))}function f(){const v=new Event("keydown");v.key="k",v.metaKey=!0,window.dispatchEvent(v),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function u(v){const A=v.target,S=A.tagName;return A.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const _=I(!1);ke("k",v=>{(v.ctrlKey||v.metaKey)&&(v.preventDefault(),_.value=!0)}),ke("/",v=>{u(v)||(v.preventDefault(),_.value=!0)});const $="local";return(v,A)=>{var S;return o(),c("div",Xa,[i($)==="local"?(o(),c(T,{key:0},[_.value?(o(),y(i(e),{key:0,onClose:A[0]||(A[0]=C=>_.value=!1)})):h("",!0),p("div",xa,[k(Oe,{onClick:A[1]||(A[1]=C=>_.value=!0)})])],64)):i($)==="algolia"?(o(),c(T,{key:1},[s.value?(o(),y(i(t),{key:0,algolia:((S=i(a).search)==null?void 0:S.options)??i(a).algolia,onVnodeBeforeMount:A[2]||(A[2]=C=>r.value=!0)},null,8,["algolia"])):h("",!0),r.value?h("",!0):(o(),c("div",qa,[k(Oe,{onClick:l})]))],64)):h("",!0)])}}}),to=b({__name:"VPNavBarSocialLinks",setup(n){const{theme:e}=L();return(t,a)=>i(e).socialLinks?(o(),y(he,{key:0,class:"VPNavBarSocialLinks",links:i(e).socialLinks},null,8,["links"])):h("",!0)}}),no=g(to,[["__scopeId","data-v-164c457f"]]),so=["href","rel","target"],ao=["innerHTML"],oo={key:2},ro=b({__name:"VPNavBarTitle",setup(n){const{site:e,theme:t}=L(),{hasSidebar:a}=K(),{currentLang:s}=ne(),r=P(()=>{var u;return typeof t.value.logoLink=="string"?t.value.logoLink:(u=t.value.logoLink)==null?void 0:u.link}),l=P(()=>{var u;return typeof t.value.logoLink=="string"||(u=t.value.logoLink)==null?void 0:u.rel}),f=P(()=>{var u;return typeof t.value.logoLink=="string"||(u=t.value.logoLink)==null?void 0:u.target});return(u,_)=>(o(),c("div",{class:M(["VPNavBarTitle",{"has-sidebar":i(a)}])},[p("a",{class:"title",href:r.value??i(we)(i(s).link),rel:l.value,target:f.value},[d(u.$slots,"nav-bar-title-before",{},void 0,!0),i(t).logo?(o(),y(ce,{key:0,class:"logo",image:i(t).logo},null,8,["image"])):h("",!0),i(t).siteTitle?(o(),c("span",{key:1,innerHTML:i(t).siteTitle},null,8,ao)):i(t).siteTitle===void 0?(o(),c("span",oo,w(i(e).title),1)):h("",!0),d(u.$slots,"nav-bar-title-after",{},void 0,!0)],8,so)],2))}}),io=g(ro,[["__scopeId","data-v-0f4f798b"]]),lo={class:"items"},co={class:"title"},uo=b({__name:"VPNavBarTranslations",setup(n){const{theme:e}=L(),{localeLinks:t,currentLang:a}=ne({correspondingLink:!0});return(s,r)=>i(t).length&&i(a).label?(o(),y(Be,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:i(e).langMenuLabel||"Change language"},{default:m(()=>[p("div",lo,[p("p",co,w(i(a).label),1),(o(!0),c(T,null,Q(i(t),l=>(o(),y(ve,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),po=g(uo,[["__scopeId","data-v-c80d9ad0"]]),fo={class:"wrapper"},mo={class:"container"},vo={class:"title"},ho={class:"content"},_o={class:"content-body"},bo=b({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(n){const e=n,{y:t}=xe(),{hasSidebar:a}=K(),{frontmatter:s}=L(),r=I({});return Ce(()=>{r.value={"has-sidebar":a.value,home:s.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,f)=>(o(),c("div",{class:M(["VPNavBar",r.value])},[p("div",fo,[p("div",mo,[p("div",vo,[k(io,null,{"nav-bar-title-before":m(()=>[d(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",ho,[p("div",_o,[d(l.$slots,"nav-bar-content-before",{},void 0,!0),k(eo,{class:"search"}),k(Ja,{class:"menu"}),k(po,{class:"translations"}),k(na,{class:"appearance"}),k(no,{class:"social-links"}),k(Fa,{class:"extra"}),d(l.$slots,"nav-bar-content-after",{},void 0,!0),k(Oa,{class:"hamburger",active:l.isScreenOpen,onClick:f[0]||(f[0]=u=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),f[1]||(f[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),go=g(bo,[["__scopeId","data-v-822684d1"]]),ko={key:0,class:"VPNavScreenAppearance"},yo={class:"text"},$o=b({__name:"VPNavScreenAppearance",setup(n){const{site:e,theme:t}=L();return(a,s)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",ko,[p("p",yo,w(i(t).darkModeSwitchLabel||"Appearance"),1),k(Te)])):h("",!0)}}),Ao=g($o,[["__scopeId","data-v-ffb44008"]]),Po=["innerHTML"],So=b({__name:"VPNavScreenMenuLink",props:{item:{}},setup(n){const e=ee("close-screen");return(t,a)=>(o(),y(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Po)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Lo=g(So,[["__scopeId","data-v-735512b8"]]),Vo=["innerHTML"],Co=b({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(n){const e=ee("close-screen");return(t,a)=>(o(),y(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Vo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),it=g(Co,[["__scopeId","data-v-372ae7c0"]]),Io={class:"VPNavScreenMenuGroupSection"},No={key:0,class:"title"},wo=b({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(n){return(e,t)=>(o(),c("div",Io,[e.text?(o(),c("p",No,w(e.text),1)):h("",!0),(o(!0),c(T,null,Q(e.items,a=>(o(),y(it,{key:a.text,item:a},null,8,["item"]))),128))]))}}),Mo=g(wo,[["__scopeId","data-v-4b8941ac"]]),To=["aria-controls","aria-expanded"],Eo=["innerHTML"],Bo=["id"],Qo={key:0,class:"item"},Fo={key:1,class:"item"},Ho={key:2,class:"group"},Wo=b({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(n){const e=n,t=I(!1),a=P(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function s(){t.value=!t.value}return(r,l)=>(o(),c("div",{class:M(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":a.value,"aria-expanded":t.value,onClick:s},[p("span",{class:"button-text",innerHTML:r.text},null,8,Eo),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,To),p("div",{id:a.value,class:"items"},[(o(!0),c(T,null,Q(r.items,f=>(o(),c(T,{key:JSON.stringify(f)},["link"in f?(o(),c("div",Qo,[k(it,{item:f},null,8,["item"])])):"component"in f?(o(),c("div",Fo,[(o(),y(U(f.component),z({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(o(),c("div",Ho,[k(Mo,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Bo)],2))}}),lt=g(Wo,[["__scopeId","data-v-875057a5"]]),Oo={key:0,class:"VPNavScreenMenu"},Do=b({__name:"VPNavScreenMenu",setup(n){const{theme:e}=L();return(t,a)=>i(e).nav?(o(),c("nav",Oo,[(o(!0),c(T,null,Q(i(e).nav,s=>(o(),c(T,{key:JSON.stringify(s)},["link"in s?(o(),y(Lo,{key:0,item:s},null,8,["item"])):"component"in s?(o(),y(U(s.component),z({key:1,ref_for:!0},s.props,{"screen-menu":""}),null,16)):(o(),y(lt,{key:2,text:s.text||"",items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Uo=b({__name:"VPNavScreenSocialLinks",setup(n){const{theme:e}=L();return(t,a)=>i(e).socialLinks?(o(),y(he,{key:0,class:"VPNavScreenSocialLinks",links:i(e).socialLinks},null,8,["links"])):h("",!0)}}),Go={class:"list"},Ro=b({__name:"VPNavScreenTranslations",setup(n){const{localeLinks:e,currentLang:t}=ne({correspondingLink:!0}),a=I(!1);function s(){a.value=!a.value}return(r,l)=>i(e).length&&i(t).label?(o(),c("div",{key:0,class:M(["VPNavScreenTranslations",{open:a.value}])},[p("button",{class:"title",onClick:s},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),G(" "+w(i(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",Go,[(o(!0),c(T,null,Q(i(e),f=>(o(),c("li",{key:f.link,class:"item"},[k(D,{class:"link",href:f.link},{default:m(()=>[G(w(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),jo=g(Ro,[["__scopeId","data-v-362991c2"]]),Jo={class:"container"},Ko=b({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(n){const e=I(null),t=qe(me?document.body:null);return(a,s)=>(o(),y(Se,{name:"fade",onEnter:s[0]||(s[0]=r=>t.value=!0),onAfterLeave:s[1]||(s[1]=r=>t.value=!1)},{default:m(()=>[a.open?(o(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",Jo,[d(a.$slots,"nav-screen-content-before",{},void 0,!0),k(Do,{class:"menu"}),k(jo,{class:"translations"}),k(Ao,{class:"appearance"}),k(Uo,{class:"social-links"}),d(a.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),zo=g(Ko,[["__scopeId","data-v-833aabba"]]),Zo={key:0,class:"VPNav"},Yo=b({__name:"VPNav",setup(n){const{isScreenOpen:e,closeScreen:t,toggleScreen:a}=Js(),{frontmatter:s}=L(),r=P(()=>s.value.navbar!==!1);return Ne("close-screen",t),de(()=>{me&&document.documentElement.classList.toggle("hide-nav",!r.value)}),(l,f)=>r.value?(o(),c("header",Zo,[k(go,{"is-screen-open":i(e),onToggleScreen:i(a)},{"nav-bar-title-before":m(()=>[d(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":m(()=>[d(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":m(()=>[d(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),k(zo,{open:i(e)},{"nav-screen-content-before":m(()=>[d(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":m(()=>[d(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Xo=g(Yo,[["__scopeId","data-v-f1e365da"]]),xo=["role","tabindex"],qo={key:1,class:"items"},er=b({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(n){const e=n,{collapsed:t,collapsible:a,isLink:s,isActiveLink:r,hasActiveLink:l,hasChildren:f,toggle:u}=Zt(P(()=>e.item)),_=P(()=>f.value?"section":"div"),$=P(()=>s.value?"a":"div"),v=P(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),A=P(()=>s.value?void 0:"button"),S=P(()=>[[`level-${e.depth}`],{collapsible:a.value},{collapsed:t.value},{"is-link":s.value},{"is-active":r.value},{"has-active":l.value}]);function C(V){"key"in V&&V.key!=="Enter"||!e.item.link&&u()}function E(){e.item.link&&u()}return(V,B)=>{const W=Z("VPSidebarItem",!0);return o(),y(U(_.value),{class:M(["VPSidebarItem",S.value])},{default:m(()=>[V.item.text?(o(),c("div",z({key:0,class:"item",role:A.value},St(V.item.items?{click:C,keydown:C}:{},!0),{tabindex:V.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),V.item.link?(o(),y(D,{key:0,tag:$.value,class:"link",href:V.item.link,rel:V.item.rel,target:V.item.target},{default:m(()=>[(o(),y(U(v.value),{class:"text",innerHTML:V.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(o(),y(U(v.value),{key:1,class:"text",innerHTML:V.item.text},null,8,["innerHTML"])),V.item.collapsed!=null&&V.item.items&&V.item.items.length?(o(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:E,onKeydown:Lt(E,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):h("",!0)],16,xo)):h("",!0),V.item.items&&V.item.items.length?(o(),c("div",qo,[V.depth<5?(o(!0),c(T,{key:0},Q(V.item.items,H=>(o(),y(W,{key:H.text,item:H,depth:V.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),tr=g(er,[["__scopeId","data-v-196b2e5f"]]),nr=b({__name:"VPSidebarGroup",props:{items:{}},setup(n){const e=I(!0);let t=null;return j(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Vt(()=>{t!=null&&(clearTimeout(t),t=null)}),(a,s)=>(o(!0),c(T,null,Q(a.items,r=>(o(),c("div",{key:r.text,class:M(["group",{"no-transition":e.value}])},[k(tr,{item:r,depth:0},null,8,["item"])],2))),128))}}),sr=g(nr,[["__scopeId","data-v-9e426adc"]]),ar={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},or=b({__name:"VPSidebar",props:{open:{type:Boolean}},setup(n){const{sidebarGroups:e,hasSidebar:t}=K(),a=n,s=I(null),r=qe(me?document.body:null);R([a,s],()=>{var f;a.open?(r.value=!0,(f=s.value)==null||f.focus()):r.value=!1},{immediate:!0,flush:"post"});const l=I(0);return R(e,()=>{l.value+=1},{deep:!0}),(f,u)=>i(t)?(o(),c("aside",{key:0,class:M(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:s,onClick:u[0]||(u[0]=Ct(()=>{},["stop"]))},[u[2]||(u[2]=p("div",{class:"curtain"},null,-1)),p("nav",ar,[u[1]||(u[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),d(f.$slots,"sidebar-nav-before",{},void 0,!0),(o(),y(sr,{items:i(e),key:l.value},null,8,["items"])),d(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),rr=g(or,[["__scopeId","data-v-18756405"]]),ir=b({__name:"VPSkipLink",setup(n){const e=fe(),t=I();R(()=>e.path,()=>t.value.focus());function a({target:s}){const r=document.getElementById(decodeURIComponent(s.hash).slice(1));if(r){const l=()=>{r.removeAttribute("tabindex"),r.removeEventListener("blur",l)};r.setAttribute("tabindex","-1"),r.addEventListener("blur",l),r.focus(),window.scrollTo(0,0)}}return(s,r)=>(o(),c(T,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:a}," Skip to content ")],64))}}),lr=g(ir,[["__scopeId","data-v-c3508ec8"]]),cr=b({__name:"Layout",setup(n){const{isOpen:e,open:t,close:a}=K(),s=fe();R(()=>s.path,a),zt(e,a);const{frontmatter:r}=L(),l=et(),f=P(()=>!!l["home-hero-image"]);return Ne("hero-image-slot-exists",f),(u,_)=>{const $=Z("Content");return i(r).layout!==!1?(o(),c("div",{key:0,class:M(["Layout",i(r).pageClass])},[d(u.$slots,"layout-top",{},void 0,!0),k(lr),k(Bt,{class:"backdrop",show:i(e),onClick:i(a)},null,8,["show","onClick"]),k(Xo,null,{"nav-bar-title-before":m(()=>[d(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":m(()=>[d(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":m(()=>[d(u.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":m(()=>[d(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":m(()=>[d(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),k(js,{open:i(e),onOpenMenu:i(t)},null,8,["open","onOpenMenu"]),k(rr,{open:i(e)},{"sidebar-nav-before":m(()=>[d(u.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":m(()=>[d(u.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),k(Is,null,{"page-top":m(()=>[d(u.$slots,"page-top",{},void 0,!0)]),"page-bottom":m(()=>[d(u.$slots,"page-bottom",{},void 0,!0)]),"not-found":m(()=>[d(u.$slots,"not-found",{},void 0,!0)]),"home-hero-before":m(()=>[d(u.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":m(()=>[d(u.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(u.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(u.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(u.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(u.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":m(()=>[d(u.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":m(()=>[d(u.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":m(()=>[d(u.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":m(()=>[d(u.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":m(()=>[d(u.$slots,"doc-before",{},void 0,!0)]),"doc-after":m(()=>[d(u.$slots,"doc-after",{},void 0,!0)]),"doc-top":m(()=>[d(u.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":m(()=>[d(u.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":m(()=>[d(u.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":m(()=>[d(u.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":m(()=>[d(u.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(u.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(u.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(u.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),k(Es),d(u.$slots,"layout-bottom",{},void 0,!0)],2)):(o(),y($,{key:1}))}}}),ur=g(cr,[["__scopeId","data-v-a9a9e638"]]),dr={},pr={class:"VPTeamPage"};function fr(n,e){return o(),c("div",pr,[d(n.$slots,"default")])}const Pi=g(dr,[["render",fr],["__scopeId","data-v-c2f8e101"]]),mr={},vr={class:"VPTeamPageTitle"},hr={key:0,class:"title"},_r={key:1,class:"lead"};function br(n,e){return o(),c("div",vr,[n.$slots.title?(o(),c("h1",hr,[d(n.$slots,"title",{},void 0,!0)])):h("",!0),n.$slots.lead?(o(),c("p",_r,[d(n.$slots,"lead",{},void 0,!0)])):h("",!0)])}const Si=g(mr,[["render",br],["__scopeId","data-v-e277e15c"]]),gr={},kr={class:"VPTeamPageSection"},yr={class:"title"},$r={key:0,class:"title-text"},Ar={key:0,class:"lead"},Pr={key:1,class:"members"};function Sr(n,e){return o(),c("section",kr,[p("div",yr,[e[0]||(e[0]=p("div",{class:"title-line"},null,-1)),n.$slots.title?(o(),c("h2",$r,[d(n.$slots,"title",{},void 0,!0)])):h("",!0)]),n.$slots.lead?(o(),c("p",Ar,[d(n.$slots,"lead",{},void 0,!0)])):h("",!0),n.$slots.members?(o(),c("div",Pr,[d(n.$slots,"members",{},void 0,!0)])):h("",!0)])}const Li=g(gr,[["render",Sr],["__scopeId","data-v-d43bc49d"]]),Lr={class:"profile"},Vr={class:"avatar"},Cr=["src","alt"],Ir={class:"data"},Nr={class:"name"},wr={key:0,class:"affiliation"},Mr={key:0,class:"title"},Tr={key:1,class:"at"},Er=["innerHTML"],Br={key:2,class:"links"},Qr={key:0,class:"sp"},Fr=b({__name:"VPTeamMembersItem",props:{size:{default:"medium"},member:{}},setup(n){return(e,t)=>(o(),c("article",{class:M(["VPTeamMembersItem",[e.size]])},[p("div",Lr,[p("figure",Vr,[p("img",{class:"avatar-img",src:e.member.avatar,alt:e.member.name},null,8,Cr)]),p("div",Ir,[p("h1",Nr,w(e.member.name),1),e.member.title||e.member.org?(o(),c("p",wr,[e.member.title?(o(),c("span",Mr,w(e.member.title),1)):h("",!0),e.member.title&&e.member.org?(o(),c("span",Tr," @ ")):h("",!0),e.member.org?(o(),y(D,{key:2,class:M(["org",{link:e.member.orgLink}]),href:e.member.orgLink,"no-icon":""},{default:m(()=>[G(w(e.member.org),1)]),_:1},8,["class","href"])):h("",!0)])):h("",!0),e.member.desc?(o(),c("p",{key:1,class:"desc",innerHTML:e.member.desc},null,8,Er)):h("",!0),e.member.links?(o(),c("div",Br,[k(he,{links:e.member.links},null,8,["links"])])):h("",!0)])]),e.member.sponsor?(o(),c("div",Qr,[k(D,{class:"sp-link",href:e.member.sponsor,"no-icon":""},{default:m(()=>[t[0]||(t[0]=p("span",{class:"vpi-heart sp-icon"},null,-1)),G(" "+w(e.member.actionText||"Sponsor"),1)]),_:1},8,["href"])])):h("",!0)],2))}}),Hr=g(Fr,[["__scopeId","data-v-f9987cb6"]]),Wr={class:"container"},Or=b({__name:"VPTeamMembers",props:{size:{default:"medium"},members:{}},setup(n){const e=n,t=P(()=>[e.size,`count-${e.members.length}`]);return(a,s)=>(o(),c("div",{class:M(["VPTeamMembers",t.value])},[p("div",Wr,[(o(!0),c(T,null,Q(a.members,r=>(o(),c("div",{key:r.name,class:"item"},[k(Hr,{size:a.size,member:r},null,8,["size","member"])]))),128))])],2))}}),Vi=g(Or,[["__scopeId","data-v-fba19bad"]]),De={Layout:ur,enhanceApp:({app:n})=>{n.component("Badge",Mt)}},Dr={},Ur={style:{"text-align":"center"}};function Gr(n,e){const t=Z("font");return o(),c(T,null,[e[1]||(e[1]=p("br",null,null,-1)),p("h1",Ur,[p("strong",null,[k(t,{color:"orange"},{default:m(()=>e[0]||(e[0]=[G(" Package Ecosystem")])),_:1})])]),e[2]||(e[2]=It('

Read n-d array like-data

DiskArrays.jl

Get your chunks!

Named Dimensions

DimensionalData.jl

Select & Index!

Out of memory data

Zarr.jl

Chunkerd, compressed !

Rasterized spatial data

Rasters.jl

Read and manipulate !

Array-oriented data

NetCDF.jl

Scientific binary data.

Raster and vector data

ArchGDAL.jl

GDAL in Julia.

An interface for

GeoInterface.jl

geospatial data in Julia.

A higher level interface

GRIBDatasets.jl

for reading GRIB files.

Array-oriented data

NCDatasets.jl

Scientific binary data.

',9))],64)}const Rr=g(Dr,[["render",Gr]]),jr=b({__name:"VersionPicker",props:{screenMenu:{type:Boolean}},setup(n){const e=I([]),t=I("Versions"),a=I(!1);ze();const s=()=>typeof window<"u"&&(window.location.hostname==="localhost"||window.location.hostname==="127.0.0.1"),r=()=>{if(typeof window>"u")return"";const{origin:u,pathname:_}=window.location;if(u.includes("github.io")){const $=_.split("/").filter(Boolean),v=$.length>0?`/${$[0]}`:"";return`${u}${v}`}else return u},l=()=>new Promise(u=>{if(s()){u(!1);return}const _=setInterval(()=>{window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION&&(clearInterval(_),u(!0))},100);setTimeout(()=>{clearInterval(_),u(!1)},5e3)});return j(async()=>{if(!(typeof window>"u")){try{if(s()){const u=["dev"];e.value=u.map(_=>({text:_,link:"/"})),t.value="dev"}else{const u=await l(),_=P(()=>r());if(u&&window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION)e.value=window.DOC_VERSIONS.map($=>({text:$,link:`${_.value}/${$}/`})),t.value=window.DOCUMENTER_CURRENT_VERSION;else{const $=["dev"];e.value=$.map(v=>({text:v,link:`${_.value}/${v}/`})),t.value="dev"}}}catch(u){console.warn("Error loading versions:",u);const _=["dev"],$=P(()=>r());e.value=_.map(v=>({text:v,link:`${$.value}/${v}/`})),t.value="dev"}a.value=!0}}),(u,_)=>a.value?(o(),c(T,{key:0},[!u.screenMenu&&e.value.length>0?(o(),y(rt,{key:0,item:{text:t.value,items:e.value},class:"VPVersionPicker"},null,8,["item"])):u.screenMenu&&e.value.length>0?(o(),y(lt,{key:1,text:t.value,items:e.value,class:"VPVersionPicker"},null,8,["text","items"])):h("",!0)],64)):h("",!0)}}),Jr=g(jr,[["__scopeId","data-v-44adf51f"]]);function Kr(n){return Math.abs(n=Math.round(n))>=1e21?n.toLocaleString("en").replace(/,/g,""):n.toString(10)}function ue(n,e){if((t=(n=e?n.toExponential(e-1):n.toExponential()).indexOf("e"))<0)return null;var t,a=n.slice(0,t);return[a.length>1?a[0]+a.slice(2):a,+n.slice(t+1)]}function zr(n){return n=ue(Math.abs(n)),n?n[1]:NaN}function Zr(n,e){return function(t,a){for(var s=t.length,r=[],l=0,f=n[0],u=0;s>0&&f>0&&(u+f+1>a&&(f=Math.max(1,a-u)),r.push(t.substring(s-=f,s+f)),!((u+=f+1)>a));)f=n[l=(l+1)%n.length];return r.reverse().join(e)}}function Yr(n){return function(e){return e.replace(/[0-9]/g,function(t){return n[+t]})}}var Xr=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function Pe(n){if(!(e=Xr.exec(n)))throw new Error("invalid format: "+n);var e;return new Qe({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}Pe.prototype=Qe.prototype;function Qe(n){this.fill=n.fill===void 0?" ":n.fill+"",this.align=n.align===void 0?">":n.align+"",this.sign=n.sign===void 0?"-":n.sign+"",this.symbol=n.symbol===void 0?"":n.symbol+"",this.zero=!!n.zero,this.width=n.width===void 0?void 0:+n.width,this.comma=!!n.comma,this.precision=n.precision===void 0?void 0:+n.precision,this.trim=!!n.trim,this.type=n.type===void 0?"":n.type+""}Qe.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(this.width===void 0?"":Math.max(1,this.width|0))+(this.comma?",":"")+(this.precision===void 0?"":"."+Math.max(0,this.precision|0))+(this.trim?"~":"")+this.type};function xr(n){e:for(var e=n.length,t=1,a=-1,s;t0&&(a=0);break}return a>0?n.slice(0,a)+n.slice(s+1):n}var ct;function qr(n,e){var t=ue(n,e);if(!t)return n+"";var a=t[0],s=t[1],r=s-(ct=Math.max(-8,Math.min(8,Math.floor(s/3)))*3)+1,l=a.length;return r===l?a:r>l?a+new Array(r-l+1).join("0"):r>0?a.slice(0,r)+"."+a.slice(r):"0."+new Array(1-r).join("0")+ue(n,Math.max(0,e+r-1))[0]}function Ue(n,e){var t=ue(n,e);if(!t)return n+"";var a=t[0],s=t[1];return s<0?"0."+new Array(-s).join("0")+a:a.length>s+1?a.slice(0,s+1)+"."+a.slice(s+1):a+new Array(s-a.length+2).join("0")}const Ge={"%":(n,e)=>(n*100).toFixed(e),b:n=>Math.round(n).toString(2),c:n=>n+"",d:Kr,e:(n,e)=>n.toExponential(e),f:(n,e)=>n.toFixed(e),g:(n,e)=>n.toPrecision(e),o:n=>Math.round(n).toString(8),p:(n,e)=>Ue(n*100,e),r:Ue,s:qr,X:n=>Math.round(n).toString(16).toUpperCase(),x:n=>Math.round(n).toString(16)};function Re(n){return n}var je=Array.prototype.map,Je=["y","z","a","f","p","n","µ","m","","k","M","G","T","P","E","Z","Y"];function ei(n){var e=n.grouping===void 0||n.thousands===void 0?Re:Zr(je.call(n.grouping,Number),n.thousands+""),t=n.currency===void 0?"":n.currency[0]+"",a=n.currency===void 0?"":n.currency[1]+"",s=n.decimal===void 0?".":n.decimal+"",r=n.numerals===void 0?Re:Yr(je.call(n.numerals,String)),l=n.percent===void 0?"%":n.percent+"",f=n.minus===void 0?"−":n.minus+"",u=n.nan===void 0?"NaN":n.nan+"";function _(v){v=Pe(v);var A=v.fill,S=v.align,C=v.sign,E=v.symbol,V=v.zero,B=v.width,W=v.comma,H=v.precision,x=v.trim,F=v.type;F==="n"?(W=!0,F="g"):Ge[F]||(H===void 0&&(H=12),x=!0,F="g"),(V||A==="0"&&S==="=")&&(V=!0,A="0",S="=");var mt=E==="$"?t:E==="#"&&/[boxX]/.test(F)?"0"+F.toLowerCase():"",vt=E==="$"?a:/[%p]/.test(F)?l:"",Fe=Ge[F],ht=/[defgprs%]/.test(F);H=H===void 0?6:/[gprs]/.test(F)?Math.max(1,Math.min(21,H)):Math.max(0,Math.min(20,H));function He(N){var Y=mt,O=vt,q,We,se;if(F==="c")O=Fe(N)+O,N="";else{N=+N;var ae=N<0||1/N<0;if(N=isNaN(N)?u:Fe(Math.abs(N),H),x&&(N=xr(N)),ae&&+N==0&&C!=="+"&&(ae=!1),Y=(ae?C==="("?C:f:C==="-"||C==="("?"":C)+Y,O=(F==="s"?Je[8+ct/3]:"")+O+(ae&&C==="("?")":""),ht){for(q=-1,We=N.length;++qse||se>57){O=(se===46?s+N.slice(q+1):N.slice(q))+O,N=N.slice(0,q);break}}}W&&!V&&(N=e(N,1/0));var oe=Y.length+N.length+O.length,J=oe>1)+Y+N+O+J.slice(oe);break;default:N=J+Y+N+O;break}return r(N)}return He.toString=function(){return v+""},He}function $(v,A){var S=_((v=Pe(v),v.type="f",v)),C=Math.max(-8,Math.min(8,Math.floor(zr(A)/3)))*3,E=Math.pow(10,-C),V=Je[8+C/3];return function(B){return S(E*B)+V}}return{format:_,formatPrefix:$}}var re,ut;ti({thousands:",",grouping:[3],currency:["$",""]});function ti(n){return re=ei(n),re.format,ut=re.formatPrefix,re}const ie=JSON.parse("104"),ni=["title"],si={xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",width:"20",height:"20",fill:"currentColor",style:{"vertical-align":"middle","margin-right":"0.25rem","margin-left":"0.5rem"}},ai=["title"],oi={__name:"StarUs",setup(n){const e=ie?ut(".1s",1e3)(ie):"";return(t,a)=>(o(),c(T,null,[p("a",{target:"_blank","data-decoration":"★",title:i(ie).toLocaleString("en-US").concat(" GitHub stars"),href:"https://github.com/JuliaDataCubes/YAXArrays.jl"},[(o(),c("svg",si,a[0]||(a[0]=[p("path",{d:"M12 .297C5.375.297 0 5.673 0 12.3c0 5.292 3.438 9.8 8.207 11.387.6.11.793-.26.793-.577 0-.285-.01-1.04-.015-2.04-3.338.727-4.042-1.61-4.042-1.61-.546-1.387-1.333-1.756-1.333-1.756-1.089-.745.083-.729.083-.729 1.205.084 1.838 1.236 1.838 1.236 1.07 1.835 2.807 1.305 3.493.997.107-.774.42-1.305.762-1.605-2.665-.3-5.467-1.333-5.467-5.931 0-1.31.47-2.382 1.236-3.222-.123-.303-.535-1.52.117-3.166 0 0 1.01-.323 3.31 1.23.96-.267 1.98-.4 3-.405 1.02.005 2.04.138 3 .405 2.3-1.553 3.31-1.23 3.31-1.23.653 1.646.24 2.863.117 3.166.765.84 1.236 1.912 1.236 3.222 0 4.61-2.807 5.625-5.477 5.921.43.372.823 1.102.823 2.222 0 1.606-.015 2.902-.015 3.293 0 .32.192.693.8.577C20.565 22.1 24 17.588 24 12.297 24 5.673 18.627.297 12 .297z"},null,-1)]))),p("span",null,w(i(e)),1)],8,ni),p("a",{class:"mobile",target:"_blank",title:i(ie).toLocaleString("en-US").concat(" GitHub stars"),href:"https://juliadatacubes.github.io/YAXArrays.jl/stable/"},a[1]||(a[1]=[p("svg",{xmlns:"http://www.w3.org/2000/svg",width:"21",height:"21",viewBox:"0 0 21 21",fill:"none"},[p("path",{d:"M19.625 5.60534C18.7083 4.03477 17.4649 2.79135 15.8945 1.87479C14.3238 0.958185 12.6091 0.5 10.7492 0.5C8.88947 0.5 7.17422 0.958325 5.60388 1.87479C4.0333 2.7913 2.78997 4.03477 1.87332 5.60534C0.956814 7.17587 0.498535 8.89089 0.498535 10.7504C0.498535 12.984 1.15021 14.9926 2.4539 16.7766C3.75744 18.5607 5.44142 19.7952 7.50571 20.4803C7.746 20.5249 7.92388 20.4936 8.03954 20.387C8.15524 20.2804 8.21302 20.1467 8.21302 19.9868C8.21302 19.9601 8.21073 19.7199 8.20629 19.266C8.20171 18.8122 8.19956 18.4162 8.19956 18.0783L7.89256 18.1315C7.69682 18.1673 7.44989 18.1825 7.15178 18.1782C6.8538 18.174 6.54446 18.1428 6.22419 18.0847C5.90377 18.0272 5.60575 17.8937 5.32988 17.6846C5.05416 17.4755 4.85842 17.2018 4.74272 16.8639L4.60925 16.5568C4.52029 16.3523 4.38023 16.1251 4.18888 15.8761C3.99754 15.6269 3.80405 15.458 3.60831 15.369L3.51486 15.3021C3.45259 15.2577 3.39481 15.204 3.34138 15.1418C3.28799 15.0796 3.24802 15.0173 3.22132 14.955C3.19458 14.8926 3.21674 14.8414 3.28804 14.8012C3.35933 14.761 3.48817 14.7416 3.67512 14.7416L3.94196 14.7814C4.11993 14.8171 4.34007 14.9236 4.60266 15.1017C4.86511 15.2796 5.08085 15.5109 5.24994 15.7956C5.4547 16.1605 5.7014 16.4385 5.99072 16.6299C6.27982 16.8212 6.5713 16.9167 6.86488 16.9167C7.15846 16.9167 7.41203 16.8945 7.62567 16.8502C7.83908 16.8057 8.0393 16.7388 8.22625 16.6499C8.30633 16.0535 8.52437 15.5953 8.88017 15.275C8.37304 15.2217 7.9171 15.1414 7.51212 15.0347C7.10736 14.9278 6.6891 14.7544 6.25761 14.5139C5.82589 14.2738 5.46774 13.9756 5.18309 13.6198C4.89839 13.2639 4.66474 12.7966 4.48247 12.2183C4.3001 11.6399 4.20889 10.9726 4.20889 10.2163C4.20889 9.13941 4.56044 8.22304 5.26341 7.46665C4.93411 6.65705 4.96519 5.74947 5.35676 4.744C5.61482 4.66382 5.9975 4.72399 6.50463 4.92412C7.01186 5.12434 7.38323 5.29587 7.61912 5.43808C7.85502 5.58024 8.04402 5.70071 8.18642 5.79842C9.01411 5.56715 9.86825 5.45149 10.7491 5.45149C11.6299 5.45149 12.4843 5.56715 13.312 5.79842L13.8192 5.47823C14.166 5.26459 14.5756 5.06881 15.0469 4.89083C15.5185 4.71295 15.8791 4.66396 16.1284 4.74414C16.5286 5.74966 16.5643 6.65719 16.2349 7.46679C16.9378 8.22318 17.2895 9.13978 17.2895 10.2164C17.2895 10.9727 17.198 11.6421 17.0159 12.225C16.8336 12.808 16.5979 13.2749 16.3088 13.6265C16.0194 13.9781 15.659 14.274 15.2275 14.5141C14.7959 14.7544 14.3775 14.9278 13.9728 15.0347C13.5678 15.1415 13.1119 15.2219 12.6047 15.2752C13.0673 15.6755 13.2986 16.3073 13.2986 17.1704V19.9864C13.2986 20.1464 13.3542 20.2799 13.4656 20.3867C13.5768 20.4932 13.7524 20.5246 13.9927 20.4799C16.0573 19.7949 17.7413 18.5603 19.0448 16.7762C20.3481 14.9922 21 12.9837 21 10.75C20.9996 8.89075 20.541 7.17587 19.625 5.60534Z",fill:"currentColor"})],-1)]),8,ai)],64))}},ri=g(oi,[["__scopeId","data-v-a679c84d"]]),ii=n=>{if(typeof document>"u")return{stabilizeScrollPosition:s=>async(...r)=>s(...r)};const e=document.documentElement;return{stabilizeScrollPosition:a=>async(...s)=>{const r=a(...s),l=n.value;if(!l)return r;const f=l.offsetTop-e.scrollTop;return await Ie(),e.scrollTop=l.offsetTop-f,r}}},dt="vitepress:tabSharedState",te=typeof localStorage<"u"?localStorage:null,pt="vitepress:tabsSharedState",li=()=>{const n=te==null?void 0:te.getItem(pt);if(n)try{return JSON.parse(n)}catch{}return{}},ci=n=>{te&&te.setItem(pt,JSON.stringify(n))},ui=n=>{const e=Nt({});R(()=>e.content,(t,a)=>{t&&a&&ci(t)},{deep:!0}),n.provide(dt,e)},di=(n,e)=>{const t=ee(dt);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");j(()=>{t.content||(t.content=li())});const a=I(),s=P({get(){var u;const l=e.value,f=n.value;if(l){const _=(u=t.content)==null?void 0:u[l];if(_&&f.includes(_))return _}else{const _=a.value;if(_)return _}return f[0]},set(l){const f=e.value;f?t.content&&(t.content[f]=l):a.value=l}});return{selected:s,select:l=>{s.value=l}}};let Ke=0;const pi=()=>(Ke++,""+Ke);function fi(){const n=et();return P(()=>{var a;const t=(a=n.default)==null?void 0:a.call(n);return t?t.filter(s=>typeof s.type=="object"&&"__name"in s.type&&s.type.__name==="PluginTabsTab"&&s.props).map(s=>{var r;return(r=s.props)==null?void 0:r.label}):[]})}const ft="vitepress:tabSingleState",mi=n=>{Ne(ft,n)},vi=()=>{const n=ee(ft);if(!n)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return n},hi={class:"plugin-tabs"},_i=["id","aria-selected","aria-controls","tabindex","onClick"],bi=b({__name:"PluginTabs",props:{sharedStateKey:{}},setup(n){const e=n,t=fi(),{selected:a,select:s}=di(t,wt(e,"sharedStateKey")),r=I(),{stabilizeScrollPosition:l}=ii(r),f=l(s),u=I([]),_=v=>{var C;const A=t.value.indexOf(a.value);let S;v.key==="ArrowLeft"?S=A>=1?A-1:t.value.length-1:v.key==="ArrowRight"&&(S=A(o(),c("div",hi,[p("div",{ref_key:"tablist",ref:r,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:_},[(o(!0),c(T,null,Q(i(t),S=>(o(),c("button",{id:`tab-${S}-${i($)}`,ref_for:!0,ref_key:"buttonRefs",ref:u,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===i(a),"aria-controls":`panel-${S}-${i($)}`,tabindex:S===i(a)?0:-1,onClick:()=>i(f)(S)},w(S),9,_i))),128))],544),d(v.$slots,"default")]))}}),gi=["id","aria-labelledby"],ki=b({__name:"PluginTabsTab",props:{label:{}},setup(n){const{uid:e,selected:t}=vi();return(a,s)=>i(t)===a.label?(o(),c("div",{key:0,id:`panel-${a.label}-${i(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${a.label}-${i(e)}`},[d(a.$slots,"default",{},void 0,!0)],8,gi)):h("",!0)}}),yi=g(ki,[["__scopeId","data-v-9b0d03d2"]]),$i=n=>{ui(n),n.component("PluginTabs",bi),n.component("PluginTabsTab",yi)},Ci={extends:De,Layout(){return _e(De.Layout,null,{"aside-ads-before":()=>_e(Rr),"nav-bar-content-after":()=>_e(ri)})},enhanceApp({app:n,router:e,siteData:t}){$i(n),n.component("VersionPicker",Jr)}};export{Ci as R,Si as V,Vi as a,Li as b,Pi as c,Ka as d,L as u}; +const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.DKkGbUCE.js","assets/chunks/framework.Bl-lyKae.js"])))=>i.map(i=>d[i]); +import{d as b,o,c,r as d,n as M,a as G,t as w,b as y,w as m,e as h,T as Se,_ as g,u as ze,i as _t,f as bt,g as Le,h as P,j as p,k as i,l as X,m as ge,p as I,q as R,s as de,v as j,x as Ve,y as Ce,z as gt,A as kt,B as Z,F as T,C as Q,D as Ze,E as pe,G as k,H as U,I as Ye,J as fe,K as z,L as ee,M as yt,N as Xe,O as ke,P as Ie,Q as xe,R as me,S as $t,U as At,V as Pt,W as qe,X as Ne,Y as St,Z as Lt,$ as Vt,a0 as Ct,a1 as et,a2 as It,a3 as Nt,a4 as wt,a5 as _e}from"./framework.Bl-lyKae.js";const Mt=b({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(n){return(e,t)=>(o(),c("span",{class:M(["VPBadge",e.type])},[d(e.$slots,"default",{},()=>[G(w(e.text),1)])],2))}}),Tt={key:0,class:"VPBackdrop"},Et=b({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(n){return(e,t)=>(o(),y(Se,{name:"fade"},{default:m(()=>[e.show?(o(),c("div",Tt)):h("",!0)]),_:1}))}}),Bt=g(Et,[["__scopeId","data-v-b06cdb19"]]),L=ze;function Qt(n,e){let t,a=!1;return()=>{t&&clearTimeout(t),a?t=setTimeout(n,e):(n(),(a=!0)&&setTimeout(()=>a=!1,e))}}function ye(n){return/^\//.test(n)?n:`/${n}`}function we(n){const{pathname:e,search:t,hash:a,protocol:s}=new URL(n,"http://a.com");if(_t(n)||n.startsWith("#")||!s.startsWith("http")||!bt(e))return n;const{site:r}=L(),l=e.endsWith("/")||e.endsWith(".html")?n:n.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,r.value.cleanUrls?"":".html")}${t}${a}`);return Le(l)}function ne({correspondingLink:n=!1}={}){const{site:e,localeIndex:t,page:a,theme:s,hash:r}=L(),l=P(()=>{var u,_;return{label:(u=e.value.locales[t.value])==null?void 0:u.label,link:((_=e.value.locales[t.value])==null?void 0:_.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:P(()=>Object.entries(e.value.locales).flatMap(([u,_])=>l.value.label===_.label?[]:{text:_.label,link:Ft(_.link||(u==="root"?"/":`/${u}/`),s.value.i18nRouting!==!1&&n,a.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+r.value})),currentLang:l}}function Ft(n,e,t,a){return e?n.replace(/\/$/,"")+ye(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,a?".html":"")):n}const Ht={class:"NotFound"},Wt={class:"code"},Ot={class:"title"},Dt={class:"quote"},Ut={class:"action"},Gt=["href","aria-label"],Rt=b({__name:"NotFound",setup(n){const{theme:e}=L(),{currentLang:t}=ne();return(a,s)=>{var r,l,f,u,_;return o(),c("div",Ht,[p("p",Wt,w(((r=i(e).notFound)==null?void 0:r.code)??"404"),1),p("h1",Ot,w(((l=i(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),s[0]||(s[0]=p("div",{class:"divider"},null,-1)),p("blockquote",Dt,w(((f=i(e).notFound)==null?void 0:f.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",Ut,[p("a",{class:"link",href:i(Le)(i(t).link),"aria-label":((u=i(e).notFound)==null?void 0:u.linkLabel)??"go to home"},w(((_=i(e).notFound)==null?void 0:_.linkText)??"Take me home"),9,Gt)])])}}}),jt=g(Rt,[["__scopeId","data-v-951cab6c"]]);function tt(n,e){if(Array.isArray(n))return le(n);if(n==null)return[];e=ye(e);const t=Object.keys(n).sort((s,r)=>r.split("/").length-s.split("/").length).find(s=>e.startsWith(ye(s))),a=t?n[t]:[];return Array.isArray(a)?le(a):le(a.items,a.base)}function Jt(n){const e=[];let t=0;for(const a in n){const s=n[a];if(s.items){t=e.push(s);continue}e[t]||e.push({items:[]}),e[t].items.push(s)}return e}function Kt(n){const e=[];function t(a){for(const s of a)s.text&&s.link&&e.push({text:s.text,link:s.link,docFooterText:s.docFooterText}),s.items&&t(s.items)}return t(n),e}function $e(n,e){return Array.isArray(e)?e.some(t=>$e(n,t)):X(n,e.link)?!0:e.items?$e(n,e.items):!1}function le(n,e){return[...n].map(t=>{const a={...t},s=a.base||e;return s&&a.link&&(a.link=s+a.link),a.items&&(a.items=le(a.items,s)),a})}function K(){const{frontmatter:n,page:e,theme:t}=L(),a=ge("(min-width: 960px)"),s=I(!1),r=P(()=>{const E=t.value.sidebar,V=e.value.relativePath;return E?tt(E,V):[]}),l=I(r.value);R(r,(E,V)=>{JSON.stringify(E)!==JSON.stringify(V)&&(l.value=r.value)});const f=P(()=>n.value.sidebar!==!1&&l.value.length>0&&n.value.layout!=="home"),u=P(()=>_?n.value.aside==null?t.value.aside==="left":n.value.aside==="left":!1),_=P(()=>n.value.layout==="home"?!1:n.value.aside!=null?!!n.value.aside:t.value.aside!==!1),$=P(()=>f.value&&a.value),v=P(()=>f.value?Jt(l.value):[]);function A(){s.value=!0}function S(){s.value=!1}function C(){s.value?S():A()}return{isOpen:s,sidebar:l,sidebarGroups:v,hasSidebar:f,hasAside:_,leftAside:u,isSidebarEnabled:$,open:A,close:S,toggle:C}}function zt(n,e){let t;de(()=>{t=n.value?document.activeElement:void 0}),j(()=>{window.addEventListener("keyup",a)}),Ve(()=>{window.removeEventListener("keyup",a)});function a(s){s.key==="Escape"&&n.value&&(e(),t==null||t.focus())}}function Zt(n){const{page:e,hash:t}=L(),a=I(!1),s=P(()=>n.value.collapsed!=null),r=P(()=>!!n.value.link),l=I(!1),f=()=>{l.value=X(e.value.relativePath,n.value.link)};R([e,n,t],f),j(f);const u=P(()=>l.value?!0:n.value.items?$e(e.value.relativePath,n.value.items):!1),_=P(()=>!!(n.value.items&&n.value.items.length));de(()=>{a.value=!!(s.value&&n.value.collapsed)}),Ce(()=>{(l.value||u.value)&&(a.value=!1)});function $(){s.value&&(a.value=!a.value)}return{collapsed:a,collapsible:s,isLink:r,isActiveLink:l,hasActiveLink:u,hasChildren:_,toggle:$}}function Yt(){const{hasSidebar:n}=K(),e=ge("(min-width: 960px)"),t=ge("(min-width: 1280px)");return{isAsideEnabled:P(()=>!t.value&&!e.value?!1:n.value?t.value:e.value)}}const Ae=[];function nt(n){return typeof n.outline=="object"&&!Array.isArray(n.outline)&&n.outline.label||n.outlineTitle||"On this page"}function Me(n){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const a=Number(t.tagName[1]);return{element:t,title:Xt(t),link:"#"+t.id,level:a}});return xt(e,n)}function Xt(n){let e="";for(const t of n.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function xt(n,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[a,s]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return tn(n,a,s)}function qt(n,e){const{isAsideEnabled:t}=Yt(),a=Qt(r,100);let s=null;j(()=>{requestAnimationFrame(r),window.addEventListener("scroll",a)}),gt(()=>{l(location.hash)}),Ve(()=>{window.removeEventListener("scroll",a)});function r(){if(!t.value)return;const f=window.scrollY,u=window.innerHeight,_=document.body.offsetHeight,$=Math.abs(f+u-_)<1,v=Ae.map(({element:S,link:C})=>({link:C,top:en(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,C)=>S.top-C.top);if(!v.length){l(null);return}if(f<1){l(null);return}if($){l(v[v.length-1].link);return}let A=null;for(const{link:S,top:C}of v){if(C>f+kt()+4)break;A=S}l(A)}function l(f){s&&s.classList.remove("active"),f==null?s=null:s=n.value.querySelector(`a[href="${decodeURIComponent(f)}"]`);const u=s;u?(u.classList.add("active"),e.value.style.top=u.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function en(n){let e=0;for(;n!==document.body;){if(n===null)return NaN;e+=n.offsetTop,n=n.offsetParent}return e}function tn(n,e,t){Ae.length=0;const a=[],s=[];return n.forEach(r=>{const l={...r,children:[]};let f=s[s.length-1];for(;f&&f.level>=l.level;)s.pop(),f=s[s.length-1];if(l.element.classList.contains("ignore-header")||f&&"shouldIgnore"in f){s.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const s=Z("VPDocOutlineItem",!0);return o(),c("ul",{class:M(["VPDocOutlineItem",t.root?"root":"nested"])},[(o(!0),c(T,null,Q(t.headers,({children:r,link:l,title:f})=>(o(),c("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:f},w(f),9,nn),r!=null&&r.length?(o(),y(s,{key:0,headers:r},null,8,["headers"])):h("",!0)]))),256))],2)}}}),st=g(sn,[["__scopeId","data-v-3f927ebe"]]),an={class:"content"},on={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},rn=b({__name:"VPDocAsideOutline",setup(n){const{frontmatter:e,theme:t}=L(),a=Ze([]);pe(()=>{a.value=Me(e.value.outline??t.value.outline)});const s=I(),r=I();return qt(s,r),(l,f)=>(o(),c("nav",{"aria-labelledby":"doc-outline-aria-label",class:M(["VPDocAsideOutline",{"has-outline":a.value.length>0}]),ref_key:"container",ref:s},[p("div",an,[p("div",{class:"outline-marker",ref_key:"marker",ref:r},null,512),p("div",on,w(i(nt)(i(t))),1),k(st,{headers:a.value,root:!0},null,8,["headers"])])],2))}}),ln=g(rn,[["__scopeId","data-v-b38bf2ff"]]),cn={class:"VPDocAsideCarbonAds"},un=b({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(n){const e=()=>null;return(t,a)=>(o(),c("div",cn,[k(i(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),dn={class:"VPDocAside"},pn=b({__name:"VPDocAside",setup(n){const{theme:e}=L();return(t,a)=>(o(),c("div",dn,[d(t.$slots,"aside-top",{},void 0,!0),d(t.$slots,"aside-outline-before",{},void 0,!0),k(ln),d(t.$slots,"aside-outline-after",{},void 0,!0),a[0]||(a[0]=p("div",{class:"spacer"},null,-1)),d(t.$slots,"aside-ads-before",{},void 0,!0),i(e).carbonAds?(o(),y(un,{key:0,"carbon-ads":i(e).carbonAds},null,8,["carbon-ads"])):h("",!0),d(t.$slots,"aside-ads-after",{},void 0,!0),d(t.$slots,"aside-bottom",{},void 0,!0)]))}}),fn=g(pn,[["__scopeId","data-v-6d7b3c46"]]);function mn(){const{theme:n,page:e}=L();return P(()=>{const{text:t="Edit this page",pattern:a=""}=n.value.editLink||{};let s;return typeof a=="function"?s=a(e.value):s=a.replace(/:path/g,e.value.filePath),{url:s,text:t}})}function vn(){const{page:n,theme:e,frontmatter:t}=L();return P(()=>{var _,$,v,A,S,C,E,V;const a=tt(e.value.sidebar,n.value.relativePath),s=Kt(a),r=hn(s,B=>B.link.replace(/[?#].*$/,"")),l=r.findIndex(B=>X(n.value.relativePath,B.link)),f=((_=e.value.docFooter)==null?void 0:_.prev)===!1&&!t.value.prev||t.value.prev===!1,u=(($=e.value.docFooter)==null?void 0:$.next)===!1&&!t.value.next||t.value.next===!1;return{prev:f?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((v=r[l-1])==null?void 0:v.docFooterText)??((A=r[l-1])==null?void 0:A.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=r[l-1])==null?void 0:S.link)},next:u?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((C=r[l+1])==null?void 0:C.docFooterText)??((E=r[l+1])==null?void 0:E.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((V=r[l+1])==null?void 0:V.link)}}})}function hn(n,e){const t=new Set;return n.filter(a=>{const s=e(a);return t.has(s)?!1:t.add(s)})}const D=b({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(n){const e=n,t=P(()=>e.tag??(e.href?"a":"span")),a=P(()=>e.href&&Ye.test(e.href)||e.target==="_blank");return(s,r)=>(o(),y(U(t.value),{class:M(["VPLink",{link:s.href,"vp-external-link-icon":a.value,"no-icon":s.noIcon}]),href:s.href?i(we)(s.href):void 0,target:s.target??(a.value?"_blank":void 0),rel:s.rel??(a.value?"noreferrer":void 0)},{default:m(()=>[d(s.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),_n={class:"VPLastUpdated"},bn=["datetime"],gn=b({__name:"VPDocFooterLastUpdated",setup(n){const{theme:e,page:t,lang:a}=L(),s=P(()=>new Date(t.value.lastUpdated)),r=P(()=>s.value.toISOString()),l=I("");return j(()=>{de(()=>{var f,u,_;l.value=new Intl.DateTimeFormat((u=(f=e.value.lastUpdated)==null?void 0:f.formatOptions)!=null&&u.forceLocale?a.value:void 0,((_=e.value.lastUpdated)==null?void 0:_.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(s.value)})}),(f,u)=>{var _;return o(),c("p",_n,[G(w(((_=i(e).lastUpdated)==null?void 0:_.text)||i(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:r.value},w(l.value),9,bn)])}}}),kn=g(gn,[["__scopeId","data-v-475f71b8"]]),yn={key:0,class:"VPDocFooter"},$n={key:0,class:"edit-info"},An={key:0,class:"edit-link"},Pn={key:1,class:"last-updated"},Sn={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Ln={class:"pager"},Vn=["innerHTML"],Cn=["innerHTML"],In={class:"pager"},Nn=["innerHTML"],wn=["innerHTML"],Mn=b({__name:"VPDocFooter",setup(n){const{theme:e,page:t,frontmatter:a}=L(),s=mn(),r=vn(),l=P(()=>e.value.editLink&&a.value.editLink!==!1),f=P(()=>t.value.lastUpdated),u=P(()=>l.value||f.value||r.value.prev||r.value.next);return(_,$)=>{var v,A,S,C;return u.value?(o(),c("footer",yn,[d(_.$slots,"doc-footer-before",{},void 0,!0),l.value||f.value?(o(),c("div",$n,[l.value?(o(),c("div",An,[k(D,{class:"edit-link-button",href:i(s).url,"no-icon":!0},{default:m(()=>[$[0]||($[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),G(" "+w(i(s).text),1)]),_:1},8,["href"])])):h("",!0),f.value?(o(),c("div",Pn,[k(kn)])):h("",!0)])):h("",!0),(v=i(r).prev)!=null&&v.link||(A=i(r).next)!=null&&A.link?(o(),c("nav",Sn,[$[1]||($[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Ln,[(S=i(r).prev)!=null&&S.link?(o(),y(D,{key:0,class:"pager-link prev",href:i(r).prev.link},{default:m(()=>{var E;return[p("span",{class:"desc",innerHTML:((E=i(e).docFooter)==null?void 0:E.prev)||"Previous page"},null,8,Vn),p("span",{class:"title",innerHTML:i(r).prev.text},null,8,Cn)]}),_:1},8,["href"])):h("",!0)]),p("div",In,[(C=i(r).next)!=null&&C.link?(o(),y(D,{key:0,class:"pager-link next",href:i(r).next.link},{default:m(()=>{var E;return[p("span",{class:"desc",innerHTML:((E=i(e).docFooter)==null?void 0:E.next)||"Next page"},null,8,Nn),p("span",{class:"title",innerHTML:i(r).next.text},null,8,wn)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),Tn=g(Mn,[["__scopeId","data-v-4f9813fa"]]),En={class:"container"},Bn={class:"aside-container"},Qn={class:"aside-content"},Fn={class:"content"},Hn={class:"content-container"},Wn={class:"main"},On=b({__name:"VPDoc",setup(n){const{theme:e}=L(),t=fe(),{hasSidebar:a,hasAside:s,leftAside:r}=K(),l=P(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(f,u)=>{const _=Z("Content");return o(),c("div",{class:M(["VPDoc",{"has-sidebar":i(a),"has-aside":i(s)}])},[d(f.$slots,"doc-top",{},void 0,!0),p("div",En,[i(s)?(o(),c("div",{key:0,class:M(["aside",{"left-aside":i(r)}])},[u[0]||(u[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",Bn,[p("div",Qn,[k(fn,null,{"aside-top":m(()=>[d(f.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":m(()=>[d(f.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":m(()=>[d(f.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(f.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(f.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(f.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),p("div",Fn,[p("div",Hn,[d(f.$slots,"doc-before",{},void 0,!0),p("main",Wn,[k(_,{class:M(["vp-doc",[l.value,i(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),k(Tn,null,{"doc-footer-before":m(()=>[d(f.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),d(f.$slots,"doc-after",{},void 0,!0)])])]),d(f.$slots,"doc-bottom",{},void 0,!0)],2)}}}),Dn=g(On,[["__scopeId","data-v-83890dd9"]]),Un=b({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(n){const e=n,t=P(()=>e.href&&Ye.test(e.href)),a=P(()=>e.tag||(e.href?"a":"button"));return(s,r)=>(o(),y(U(a.value),{class:M(["VPButton",[s.size,s.theme]]),href:s.href?i(we)(s.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:m(()=>[G(w(s.text),1)]),_:1},8,["class","href","target","rel"]))}}),Gn=g(Un,[["__scopeId","data-v-906d7fb4"]]),Rn=["src","alt"],jn=b({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(n){return(e,t)=>{const a=Z("VPImage",!0);return e.image?(o(),c(T,{key:0},[typeof e.image=="string"||"src"in e.image?(o(),c("img",z({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:i(Le)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,Rn)):(o(),c(T,{key:1},[k(a,z({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),k(a,z({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),ce=g(jn,[["__scopeId","data-v-35a7d0b8"]]),Jn={class:"container"},Kn={class:"main"},zn={key:0,class:"name"},Zn=["innerHTML"],Yn=["innerHTML"],Xn=["innerHTML"],xn={key:0,class:"actions"},qn={key:0,class:"image"},es={class:"image-container"},ts=b({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(n){const e=ee("hero-image-slot-exists");return(t,a)=>(o(),c("div",{class:M(["VPHero",{"has-image":t.image||i(e)}])},[p("div",Jn,[p("div",Kn,[d(t.$slots,"home-hero-info-before",{},void 0,!0),d(t.$slots,"home-hero-info",{},()=>[t.name?(o(),c("h1",zn,[p("span",{innerHTML:t.name,class:"clip"},null,8,Zn)])):h("",!0),t.text?(o(),c("p",{key:1,innerHTML:t.text,class:"text"},null,8,Yn)):h("",!0),t.tagline?(o(),c("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,Xn)):h("",!0)],!0),d(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(o(),c("div",xn,[(o(!0),c(T,null,Q(t.actions,s=>(o(),c("div",{key:s.link,class:"action"},[k(Gn,{tag:"a",size:"medium",theme:s.theme,text:s.text,href:s.link,target:s.target,rel:s.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),d(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||i(e)?(o(),c("div",qn,[p("div",es,[a[0]||(a[0]=p("div",{class:"image-bg"},null,-1)),d(t.$slots,"home-hero-image",{},()=>[t.image?(o(),y(ce,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),ns=g(ts,[["__scopeId","data-v-955009fc"]]),ss=b({__name:"VPHomeHero",setup(n){const{frontmatter:e}=L();return(t,a)=>i(e).hero?(o(),y(ns,{key:0,class:"VPHomeHero",name:i(e).hero.name,text:i(e).hero.text,tagline:i(e).hero.tagline,image:i(e).hero.image,actions:i(e).hero.actions},{"home-hero-info-before":m(()=>[d(t.$slots,"home-hero-info-before")]),"home-hero-info":m(()=>[d(t.$slots,"home-hero-info")]),"home-hero-info-after":m(()=>[d(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":m(()=>[d(t.$slots,"home-hero-actions-after")]),"home-hero-image":m(()=>[d(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),as={class:"box"},os={key:0,class:"icon"},rs=["innerHTML"],is=["innerHTML"],ls=["innerHTML"],cs={key:4,class:"link-text"},us={class:"link-text-value"},ds=b({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(n){return(e,t)=>(o(),y(D,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:m(()=>[p("article",as,[typeof e.icon=="object"&&e.icon.wrap?(o(),c("div",os,[k(ce,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(o(),y(ce,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(o(),c("div",{key:2,class:"icon",innerHTML:e.icon},null,8,rs)):h("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,is),e.details?(o(),c("p",{key:3,class:"details",innerHTML:e.details},null,8,ls)):h("",!0),e.linkText?(o(),c("div",cs,[p("p",us,[G(w(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),ps=g(ds,[["__scopeId","data-v-f5e9645b"]]),fs={key:0,class:"VPFeatures"},ms={class:"container"},vs={class:"items"},hs=b({__name:"VPFeatures",props:{features:{}},setup(n){const e=n,t=P(()=>{const a=e.features.length;if(a){if(a===2)return"grid-2";if(a===3)return"grid-3";if(a%3===0)return"grid-6";if(a>3)return"grid-4"}else return});return(a,s)=>a.features?(o(),c("div",fs,[p("div",ms,[p("div",vs,[(o(!0),c(T,null,Q(a.features,r=>(o(),c("div",{key:r.title,class:M(["item",[t.value]])},[k(ps,{icon:r.icon,title:r.title,details:r.details,link:r.link,"link-text":r.linkText,rel:r.rel,target:r.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),_s=g(hs,[["__scopeId","data-v-d0a190d7"]]),bs=b({__name:"VPHomeFeatures",setup(n){const{frontmatter:e}=L();return(t,a)=>i(e).features?(o(),y(_s,{key:0,class:"VPHomeFeatures",features:i(e).features},null,8,["features"])):h("",!0)}}),gs=b({__name:"VPHomeContent",setup(n){const{width:e}=yt({initialWidth:0,includeScrollbar:!1});return(t,a)=>(o(),c("div",{class:"vp-doc container",style:Xe(i(e)?{"--vp-offset":`calc(50% - ${i(e)/2}px)`}:{})},[d(t.$slots,"default",{},void 0,!0)],4))}}),ks=g(gs,[["__scopeId","data-v-7a48a447"]]),ys={class:"VPHome"},$s=b({__name:"VPHome",setup(n){const{frontmatter:e}=L();return(t,a)=>{const s=Z("Content");return o(),c("div",ys,[d(t.$slots,"home-hero-before",{},void 0,!0),k(ss,null,{"home-hero-info-before":m(()=>[d(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),d(t.$slots,"home-hero-after",{},void 0,!0),d(t.$slots,"home-features-before",{},void 0,!0),k(bs),d(t.$slots,"home-features-after",{},void 0,!0),i(e).markdownStyles!==!1?(o(),y(ks,{key:0},{default:m(()=>[k(s)]),_:1})):(o(),y(s,{key:1}))])}}}),As=g($s,[["__scopeId","data-v-cbb6ec48"]]),Ps={},Ss={class:"VPPage"};function Ls(n,e){const t=Z("Content");return o(),c("div",Ss,[d(n.$slots,"page-top"),k(t),d(n.$slots,"page-bottom")])}const Vs=g(Ps,[["render",Ls]]),Cs=b({__name:"VPContent",setup(n){const{page:e,frontmatter:t}=L(),{hasSidebar:a}=K();return(s,r)=>(o(),c("div",{class:M(["VPContent",{"has-sidebar":i(a),"is-home":i(t).layout==="home"}]),id:"VPContent"},[i(e).isNotFound?d(s.$slots,"not-found",{key:0},()=>[k(jt)],!0):i(t).layout==="page"?(o(),y(Vs,{key:1},{"page-top":m(()=>[d(s.$slots,"page-top",{},void 0,!0)]),"page-bottom":m(()=>[d(s.$slots,"page-bottom",{},void 0,!0)]),_:3})):i(t).layout==="home"?(o(),y(As,{key:2},{"home-hero-before":m(()=>[d(s.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":m(()=>[d(s.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(s.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(s.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(s.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(s.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":m(()=>[d(s.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":m(()=>[d(s.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":m(()=>[d(s.$slots,"home-features-after",{},void 0,!0)]),_:3})):i(t).layout&&i(t).layout!=="doc"?(o(),y(U(i(t).layout),{key:3})):(o(),y(Dn,{key:4},{"doc-top":m(()=>[d(s.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":m(()=>[d(s.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":m(()=>[d(s.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":m(()=>[d(s.$slots,"doc-before",{},void 0,!0)]),"doc-after":m(()=>[d(s.$slots,"doc-after",{},void 0,!0)]),"aside-top":m(()=>[d(s.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":m(()=>[d(s.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(s.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(s.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(s.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":m(()=>[d(s.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),Is=g(Cs,[["__scopeId","data-v-91765379"]]),Ns={class:"container"},ws=["innerHTML"],Ms=["innerHTML"],Ts=b({__name:"VPFooter",setup(n){const{theme:e,frontmatter:t}=L(),{hasSidebar:a}=K();return(s,r)=>i(e).footer&&i(t).footer!==!1?(o(),c("footer",{key:0,class:M(["VPFooter",{"has-sidebar":i(a)}])},[p("div",Ns,[i(e).footer.message?(o(),c("p",{key:0,class:"message",innerHTML:i(e).footer.message},null,8,ws)):h("",!0),i(e).footer.copyright?(o(),c("p",{key:1,class:"copyright",innerHTML:i(e).footer.copyright},null,8,Ms)):h("",!0)])],2)):h("",!0)}}),Es=g(Ts,[["__scopeId","data-v-c970a860"]]);function Bs(){const{theme:n,frontmatter:e}=L(),t=Ze([]),a=P(()=>t.value.length>0);return pe(()=>{t.value=Me(e.value.outline??n.value.outline)}),{headers:t,hasLocalNav:a}}const Qs={class:"menu-text"},Fs={class:"header"},Hs={class:"outline"},Ws=b({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(n){const e=n,{theme:t}=L(),a=I(!1),s=I(0),r=I(),l=I();function f(v){var A;(A=r.value)!=null&&A.contains(v.target)||(a.value=!1)}R(a,v=>{if(v){document.addEventListener("click",f);return}document.removeEventListener("click",f)}),ke("Escape",()=>{a.value=!1}),pe(()=>{a.value=!1});function u(){a.value=!a.value,s.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function _(v){v.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Ie(()=>{a.value=!1}))}function $(){a.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(v,A)=>(o(),c("div",{class:"VPLocalNavOutlineDropdown",style:Xe({"--vp-vh":s.value+"px"}),ref_key:"main",ref:r},[v.headers.length>0?(o(),c("button",{key:0,onClick:u,class:M({open:a.value})},[p("span",Qs,w(i(nt)(i(t))),1),A[0]||(A[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(o(),c("button",{key:1,onClick:$},w(i(t).returnToTopLabel||"Return to top"),1)),k(Se,{name:"flyout"},{default:m(()=>[a.value?(o(),c("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:_},[p("div",Fs,[p("a",{class:"top-link",href:"#",onClick:$},w(i(t).returnToTopLabel||"Return to top"),1)]),p("div",Hs,[k(st,{headers:v.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),Os=g(Ws,[["__scopeId","data-v-bc9dc845"]]),Ds={class:"container"},Us=["aria-expanded"],Gs={class:"menu-text"},Rs=b({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(n){const{theme:e,frontmatter:t}=L(),{hasSidebar:a}=K(),{headers:s}=Bs(),{y:r}=xe(),l=I(0);j(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),pe(()=>{s.value=Me(t.value.outline??e.value.outline)});const f=P(()=>s.value.length===0),u=P(()=>f.value&&!a.value),_=P(()=>({VPLocalNav:!0,"has-sidebar":a.value,empty:f.value,fixed:u.value}));return($,v)=>i(t).layout!=="home"&&(!u.value||i(r)>=l.value)?(o(),c("div",{key:0,class:M(_.value)},[p("div",Ds,[i(a)?(o(),c("button",{key:0,class:"menu","aria-expanded":$.open,"aria-controls":"VPSidebarNav",onClick:v[0]||(v[0]=A=>$.$emit("open-menu"))},[v[1]||(v[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",Gs,w(i(e).sidebarMenuLabel||"Menu"),1)],8,Us)):h("",!0),k(Os,{headers:i(s),navHeight:l.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),js=g(Rs,[["__scopeId","data-v-070ab83d"]]);function Js(){const n=I(!1);function e(){n.value=!0,window.addEventListener("resize",s)}function t(){n.value=!1,window.removeEventListener("resize",s)}function a(){n.value?t():e()}function s(){window.outerWidth>=768&&t()}const r=fe();return R(()=>r.path,t),{isScreenOpen:n,openScreen:e,closeScreen:t,toggleScreen:a}}const Ks={},zs={class:"VPSwitch",type:"button",role:"switch"},Zs={class:"check"},Ys={key:0,class:"icon"};function Xs(n,e){return o(),c("button",zs,[p("span",Zs,[n.$slots.default?(o(),c("span",Ys,[d(n.$slots,"default",{},void 0,!0)])):h("",!0)])])}const xs=g(Ks,[["render",Xs],["__scopeId","data-v-4a1c76db"]]),qs=b({__name:"VPSwitchAppearance",setup(n){const{isDark:e,theme:t}=L(),a=ee("toggle-appearance",()=>{e.value=!e.value}),s=I("");return Ce(()=>{s.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(r,l)=>(o(),y(xs,{title:s.value,class:"VPSwitchAppearance","aria-checked":i(e),onClick:i(a)},{default:m(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),Te=g(qs,[["__scopeId","data-v-e40a8bb6"]]),ea={key:0,class:"VPNavBarAppearance"},ta=b({__name:"VPNavBarAppearance",setup(n){const{site:e}=L();return(t,a)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",ea,[k(Te)])):h("",!0)}}),na=g(ta,[["__scopeId","data-v-af096f4a"]]),Ee=I();let at=!1,be=0;function sa(n){const e=I(!1);if(me){!at&&aa(),be++;const t=R(Ee,a=>{var s,r,l;a===n.el.value||(s=n.el.value)!=null&&s.contains(a)?(e.value=!0,(r=n.onFocus)==null||r.call(n)):(e.value=!1,(l=n.onBlur)==null||l.call(n))});Ve(()=>{t(),be--,be||oa()})}return $t(e)}function aa(){document.addEventListener("focusin",ot),at=!0,Ee.value=document.activeElement}function oa(){document.removeEventListener("focusin",ot)}function ot(){Ee.value=document.activeElement}const ra={class:"VPMenuLink"},ia=["innerHTML"],la=b({__name:"VPMenuLink",props:{item:{}},setup(n){const{page:e}=L();return(t,a)=>(o(),c("div",ra,[k(D,{class:M({active:i(X)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,ia)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ve=g(la,[["__scopeId","data-v-acbfed09"]]),ca={class:"VPMenuGroup"},ua={key:0,class:"title"},da=b({__name:"VPMenuGroup",props:{text:{},items:{}},setup(n){return(e,t)=>(o(),c("div",ca,[e.text?(o(),c("p",ua,w(e.text),1)):h("",!0),(o(!0),c(T,null,Q(e.items,a=>(o(),c(T,null,["link"in a?(o(),y(ve,{key:0,item:a},null,8,["item"])):h("",!0)],64))),256))]))}}),pa=g(da,[["__scopeId","data-v-48c802d0"]]),fa={class:"VPMenu"},ma={key:0,class:"items"},va=b({__name:"VPMenu",props:{items:{}},setup(n){return(e,t)=>(o(),c("div",fa,[e.items?(o(),c("div",ma,[(o(!0),c(T,null,Q(e.items,a=>(o(),c(T,{key:JSON.stringify(a)},["link"in a?(o(),y(ve,{key:0,item:a},null,8,["item"])):"component"in a?(o(),y(U(a.component),z({key:1,ref_for:!0},a.props),null,16)):(o(),y(pa,{key:2,text:a.text,items:a.items},null,8,["text","items"]))],64))),128))])):h("",!0),d(e.$slots,"default",{},void 0,!0)]))}}),ha=g(va,[["__scopeId","data-v-7dd3104a"]]),_a=["aria-expanded","aria-label"],ba={key:0,class:"text"},ga=["innerHTML"],ka={key:1,class:"vpi-more-horizontal icon"},ya={class:"menu"},$a=b({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(n){const e=I(!1),t=I();sa({el:t,onBlur:a});function a(){e.value=!1}return(s,r)=>(o(),c("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:r[1]||(r[1]=l=>e.value=!0),onMouseleave:r[2]||(r[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":s.label,onClick:r[0]||(r[0]=l=>e.value=!e.value)},[s.button||s.icon?(o(),c("span",ba,[s.icon?(o(),c("span",{key:0,class:M([s.icon,"option-icon"])},null,2)):h("",!0),s.button?(o(),c("span",{key:1,innerHTML:s.button},null,8,ga)):h("",!0),r[3]||(r[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(o(),c("span",ka))],8,_a),p("div",ya,[k(ha,{items:s.items},{default:m(()=>[d(s.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),Be=g($a,[["__scopeId","data-v-04f5c5e9"]]),Aa=["href","aria-label","innerHTML"],Pa=b({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(n){const e=n,t=I();j(async()=>{var r;await Ie();const s=(r=t.value)==null?void 0:r.children[0];s instanceof HTMLElement&&s.className.startsWith("vpi-social-")&&(getComputedStyle(s).maskImage||getComputedStyle(s).webkitMaskImage)==="none"&&s.style.setProperty("--icon",`url('https://api.iconify.design/simple-icons/${e.icon}.svg')`)});const a=P(()=>typeof e.icon=="object"?e.icon.svg:``);return(s,r)=>(o(),c("a",{ref_key:"el",ref:t,class:"VPSocialLink no-icon",href:s.link,"aria-label":s.ariaLabel??(typeof s.icon=="string"?s.icon:""),target:"_blank",rel:"noopener",innerHTML:a.value},null,8,Aa))}}),Sa=g(Pa,[["__scopeId","data-v-d26d30cb"]]),La={class:"VPSocialLinks"},Va=b({__name:"VPSocialLinks",props:{links:{}},setup(n){return(e,t)=>(o(),c("div",La,[(o(!0),c(T,null,Q(e.links,({link:a,icon:s,ariaLabel:r})=>(o(),y(Sa,{key:a,icon:s,link:a,ariaLabel:r},null,8,["icon","link","ariaLabel"]))),128))]))}}),he=g(Va,[["__scopeId","data-v-ee7a9424"]]),Ca={key:0,class:"group translations"},Ia={class:"trans-title"},Na={key:1,class:"group"},wa={class:"item appearance"},Ma={class:"label"},Ta={class:"appearance-action"},Ea={key:2,class:"group"},Ba={class:"item social-links"},Qa=b({__name:"VPNavBarExtra",setup(n){const{site:e,theme:t}=L(),{localeLinks:a,currentLang:s}=ne({correspondingLink:!0}),r=P(()=>a.value.length&&s.value.label||e.value.appearance||t.value.socialLinks);return(l,f)=>r.value?(o(),y(Be,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:m(()=>[i(a).length&&i(s).label?(o(),c("div",Ca,[p("p",Ia,w(i(s).label),1),(o(!0),c(T,null,Q(i(a),u=>(o(),y(ve,{key:u.link,item:u},null,8,["item"]))),128))])):h("",!0),i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",Na,[p("div",wa,[p("p",Ma,w(i(t).darkModeSwitchLabel||"Appearance"),1),p("div",Ta,[k(Te)])])])):h("",!0),i(t).socialLinks?(o(),c("div",Ea,[p("div",Ba,[k(he,{class:"social-links-list",links:i(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),Fa=g(Qa,[["__scopeId","data-v-925effce"]]),Ha=["aria-expanded"],Wa=b({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(n){return(e,t)=>(o(),c("button",{type:"button",class:M(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=a=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,Ha))}}),Oa=g(Wa,[["__scopeId","data-v-5dea55bf"]]),Da=["innerHTML"],Ua=b({__name:"VPNavBarMenuLink",props:{item:{}},setup(n){const{page:e}=L();return(t,a)=>(o(),y(D,{class:M({VPNavBarMenuLink:!0,active:i(X)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Da)]),_:1},8,["class","href","target","rel","no-icon"]))}}),Ga=g(Ua,[["__scopeId","data-v-956ec74c"]]),rt=b({__name:"VPNavBarMenuGroup",props:{item:{}},setup(n){const e=n,{page:t}=L(),a=r=>"component"in r?!1:"link"in r?X(t.value.relativePath,r.link,!!e.item.activeMatch):r.items.some(a),s=P(()=>a(e.item));return(r,l)=>(o(),y(Be,{class:M({VPNavBarMenuGroup:!0,active:i(X)(i(t).relativePath,r.item.activeMatch,!!r.item.activeMatch)||s.value}),button:r.item.text,items:r.item.items},null,8,["class","button","items"]))}}),Ra={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},ja=b({__name:"VPNavBarMenu",setup(n){const{theme:e}=L();return(t,a)=>i(e).nav?(o(),c("nav",Ra,[a[0]||(a[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(o(!0),c(T,null,Q(i(e).nav,s=>(o(),c(T,{key:JSON.stringify(s)},["link"in s?(o(),y(Ga,{key:0,item:s},null,8,["item"])):"component"in s?(o(),y(U(s.component),z({key:1,ref_for:!0},s.props),null,16)):(o(),y(rt,{key:2,item:s},null,8,["item"]))],64))),128))])):h("",!0)}}),Ja=g(ja,[["__scopeId","data-v-e6d46098"]]);function Ka(n){const{localeIndex:e,theme:t}=L();function a(s){var C,E,V;const r=s.split("."),l=(C=t.value.search)==null?void 0:C.options,f=l&&typeof l=="object",u=f&&((V=(E=l.locales)==null?void 0:E[e.value])==null?void 0:V.translations)||null,_=f&&l.translations||null;let $=u,v=_,A=n;const S=r.pop();for(const B of r){let W=null;const H=A==null?void 0:A[B];H&&(W=A=H);const x=v==null?void 0:v[B];x&&(W=v=x);const F=$==null?void 0:$[B];F&&(W=$=F),H||(A=W),x||(v=W),F||($=W)}return($==null?void 0:$[S])??(v==null?void 0:v[S])??(A==null?void 0:A[S])??""}return a}const za=["aria-label"],Za={class:"DocSearch-Button-Container"},Ya={class:"DocSearch-Button-Placeholder"},Oe=b({__name:"VPNavBarSearchButton",setup(n){const t=Ka({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(a,s)=>(o(),c("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":i(t)("button.buttonAriaLabel")},[p("span",Za,[s[0]||(s[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",Ya,w(i(t)("button.buttonText")),1)]),s[1]||(s[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,za))}}),Xa={class:"VPNavBarSearch"},xa={id:"local-search"},qa={key:1,id:"docsearch"},eo=b({__name:"VPNavBarSearch",setup(n){const e=At(()=>Pt(()=>import("./VPLocalSearchBox.DKkGbUCE.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:a}=L(),s=I(!1),r=I(!1);j(()=>{});function l(){s.value||(s.value=!0,setTimeout(f,16))}function f(){const v=new Event("keydown");v.key="k",v.metaKey=!0,window.dispatchEvent(v),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||f()},16)}function u(v){const A=v.target,S=A.tagName;return A.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const _=I(!1);ke("k",v=>{(v.ctrlKey||v.metaKey)&&(v.preventDefault(),_.value=!0)}),ke("/",v=>{u(v)||(v.preventDefault(),_.value=!0)});const $="local";return(v,A)=>{var S;return o(),c("div",Xa,[i($)==="local"?(o(),c(T,{key:0},[_.value?(o(),y(i(e),{key:0,onClose:A[0]||(A[0]=C=>_.value=!1)})):h("",!0),p("div",xa,[k(Oe,{onClick:A[1]||(A[1]=C=>_.value=!0)})])],64)):i($)==="algolia"?(o(),c(T,{key:1},[s.value?(o(),y(i(t),{key:0,algolia:((S=i(a).search)==null?void 0:S.options)??i(a).algolia,onVnodeBeforeMount:A[2]||(A[2]=C=>r.value=!0)},null,8,["algolia"])):h("",!0),r.value?h("",!0):(o(),c("div",qa,[k(Oe,{onClick:l})]))],64)):h("",!0)])}}}),to=b({__name:"VPNavBarSocialLinks",setup(n){const{theme:e}=L();return(t,a)=>i(e).socialLinks?(o(),y(he,{key:0,class:"VPNavBarSocialLinks",links:i(e).socialLinks},null,8,["links"])):h("",!0)}}),no=g(to,[["__scopeId","data-v-164c457f"]]),so=["href","rel","target"],ao=["innerHTML"],oo={key:2},ro=b({__name:"VPNavBarTitle",setup(n){const{site:e,theme:t}=L(),{hasSidebar:a}=K(),{currentLang:s}=ne(),r=P(()=>{var u;return typeof t.value.logoLink=="string"?t.value.logoLink:(u=t.value.logoLink)==null?void 0:u.link}),l=P(()=>{var u;return typeof t.value.logoLink=="string"||(u=t.value.logoLink)==null?void 0:u.rel}),f=P(()=>{var u;return typeof t.value.logoLink=="string"||(u=t.value.logoLink)==null?void 0:u.target});return(u,_)=>(o(),c("div",{class:M(["VPNavBarTitle",{"has-sidebar":i(a)}])},[p("a",{class:"title",href:r.value??i(we)(i(s).link),rel:l.value,target:f.value},[d(u.$slots,"nav-bar-title-before",{},void 0,!0),i(t).logo?(o(),y(ce,{key:0,class:"logo",image:i(t).logo},null,8,["image"])):h("",!0),i(t).siteTitle?(o(),c("span",{key:1,innerHTML:i(t).siteTitle},null,8,ao)):i(t).siteTitle===void 0?(o(),c("span",oo,w(i(e).title),1)):h("",!0),d(u.$slots,"nav-bar-title-after",{},void 0,!0)],8,so)],2))}}),io=g(ro,[["__scopeId","data-v-0f4f798b"]]),lo={class:"items"},co={class:"title"},uo=b({__name:"VPNavBarTranslations",setup(n){const{theme:e}=L(),{localeLinks:t,currentLang:a}=ne({correspondingLink:!0});return(s,r)=>i(t).length&&i(a).label?(o(),y(Be,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:i(e).langMenuLabel||"Change language"},{default:m(()=>[p("div",lo,[p("p",co,w(i(a).label),1),(o(!0),c(T,null,Q(i(t),l=>(o(),y(ve,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),po=g(uo,[["__scopeId","data-v-c80d9ad0"]]),fo={class:"wrapper"},mo={class:"container"},vo={class:"title"},ho={class:"content"},_o={class:"content-body"},bo=b({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(n){const e=n,{y:t}=xe(),{hasSidebar:a}=K(),{frontmatter:s}=L(),r=I({});return Ce(()=>{r.value={"has-sidebar":a.value,home:s.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,f)=>(o(),c("div",{class:M(["VPNavBar",r.value])},[p("div",fo,[p("div",mo,[p("div",vo,[k(io,null,{"nav-bar-title-before":m(()=>[d(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",ho,[p("div",_o,[d(l.$slots,"nav-bar-content-before",{},void 0,!0),k(eo,{class:"search"}),k(Ja,{class:"menu"}),k(po,{class:"translations"}),k(na,{class:"appearance"}),k(no,{class:"social-links"}),k(Fa,{class:"extra"}),d(l.$slots,"nav-bar-content-after",{},void 0,!0),k(Oa,{class:"hamburger",active:l.isScreenOpen,onClick:f[0]||(f[0]=u=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),f[1]||(f[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),go=g(bo,[["__scopeId","data-v-822684d1"]]),ko={key:0,class:"VPNavScreenAppearance"},yo={class:"text"},$o=b({__name:"VPNavScreenAppearance",setup(n){const{site:e,theme:t}=L();return(a,s)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(o(),c("div",ko,[p("p",yo,w(i(t).darkModeSwitchLabel||"Appearance"),1),k(Te)])):h("",!0)}}),Ao=g($o,[["__scopeId","data-v-ffb44008"]]),Po=["innerHTML"],So=b({__name:"VPNavScreenMenuLink",props:{item:{}},setup(n){const e=ee("close-screen");return(t,a)=>(o(),y(D,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Po)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Lo=g(So,[["__scopeId","data-v-735512b8"]]),Vo=["innerHTML"],Co=b({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(n){const e=ee("close-screen");return(t,a)=>(o(),y(D,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:m(()=>[p("span",{innerHTML:t.item.text},null,8,Vo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),it=g(Co,[["__scopeId","data-v-372ae7c0"]]),Io={class:"VPNavScreenMenuGroupSection"},No={key:0,class:"title"},wo=b({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(n){return(e,t)=>(o(),c("div",Io,[e.text?(o(),c("p",No,w(e.text),1)):h("",!0),(o(!0),c(T,null,Q(e.items,a=>(o(),y(it,{key:a.text,item:a},null,8,["item"]))),128))]))}}),Mo=g(wo,[["__scopeId","data-v-4b8941ac"]]),To=["aria-controls","aria-expanded"],Eo=["innerHTML"],Bo=["id"],Qo={key:0,class:"item"},Fo={key:1,class:"item"},Ho={key:2,class:"group"},Wo=b({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(n){const e=n,t=I(!1),a=P(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function s(){t.value=!t.value}return(r,l)=>(o(),c("div",{class:M(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":a.value,"aria-expanded":t.value,onClick:s},[p("span",{class:"button-text",innerHTML:r.text},null,8,Eo),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,To),p("div",{id:a.value,class:"items"},[(o(!0),c(T,null,Q(r.items,f=>(o(),c(T,{key:JSON.stringify(f)},["link"in f?(o(),c("div",Qo,[k(it,{item:f},null,8,["item"])])):"component"in f?(o(),c("div",Fo,[(o(),y(U(f.component),z({ref_for:!0},f.props,{"screen-menu":""}),null,16))])):(o(),c("div",Ho,[k(Mo,{text:f.text,items:f.items},null,8,["text","items"])]))],64))),128))],8,Bo)],2))}}),lt=g(Wo,[["__scopeId","data-v-875057a5"]]),Oo={key:0,class:"VPNavScreenMenu"},Do=b({__name:"VPNavScreenMenu",setup(n){const{theme:e}=L();return(t,a)=>i(e).nav?(o(),c("nav",Oo,[(o(!0),c(T,null,Q(i(e).nav,s=>(o(),c(T,{key:JSON.stringify(s)},["link"in s?(o(),y(Lo,{key:0,item:s},null,8,["item"])):"component"in s?(o(),y(U(s.component),z({key:1,ref_for:!0},s.props,{"screen-menu":""}),null,16)):(o(),y(lt,{key:2,text:s.text||"",items:s.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),Uo=b({__name:"VPNavScreenSocialLinks",setup(n){const{theme:e}=L();return(t,a)=>i(e).socialLinks?(o(),y(he,{key:0,class:"VPNavScreenSocialLinks",links:i(e).socialLinks},null,8,["links"])):h("",!0)}}),Go={class:"list"},Ro=b({__name:"VPNavScreenTranslations",setup(n){const{localeLinks:e,currentLang:t}=ne({correspondingLink:!0}),a=I(!1);function s(){a.value=!a.value}return(r,l)=>i(e).length&&i(t).label?(o(),c("div",{key:0,class:M(["VPNavScreenTranslations",{open:a.value}])},[p("button",{class:"title",onClick:s},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),G(" "+w(i(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",Go,[(o(!0),c(T,null,Q(i(e),f=>(o(),c("li",{key:f.link,class:"item"},[k(D,{class:"link",href:f.link},{default:m(()=>[G(w(f.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),jo=g(Ro,[["__scopeId","data-v-362991c2"]]),Jo={class:"container"},Ko=b({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(n){const e=I(null),t=qe(me?document.body:null);return(a,s)=>(o(),y(Se,{name:"fade",onEnter:s[0]||(s[0]=r=>t.value=!0),onAfterLeave:s[1]||(s[1]=r=>t.value=!1)},{default:m(()=>[a.open?(o(),c("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",Jo,[d(a.$slots,"nav-screen-content-before",{},void 0,!0),k(Do,{class:"menu"}),k(jo,{class:"translations"}),k(Ao,{class:"appearance"}),k(Uo,{class:"social-links"}),d(a.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),zo=g(Ko,[["__scopeId","data-v-833aabba"]]),Zo={key:0,class:"VPNav"},Yo=b({__name:"VPNav",setup(n){const{isScreenOpen:e,closeScreen:t,toggleScreen:a}=Js(),{frontmatter:s}=L(),r=P(()=>s.value.navbar!==!1);return Ne("close-screen",t),de(()=>{me&&document.documentElement.classList.toggle("hide-nav",!r.value)}),(l,f)=>r.value?(o(),c("header",Zo,[k(go,{"is-screen-open":i(e),onToggleScreen:i(a)},{"nav-bar-title-before":m(()=>[d(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":m(()=>[d(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":m(()=>[d(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),k(zo,{open:i(e)},{"nav-screen-content-before":m(()=>[d(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":m(()=>[d(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),Xo=g(Yo,[["__scopeId","data-v-f1e365da"]]),xo=["role","tabindex"],qo={key:1,class:"items"},er=b({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(n){const e=n,{collapsed:t,collapsible:a,isLink:s,isActiveLink:r,hasActiveLink:l,hasChildren:f,toggle:u}=Zt(P(()=>e.item)),_=P(()=>f.value?"section":"div"),$=P(()=>s.value?"a":"div"),v=P(()=>f.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),A=P(()=>s.value?void 0:"button"),S=P(()=>[[`level-${e.depth}`],{collapsible:a.value},{collapsed:t.value},{"is-link":s.value},{"is-active":r.value},{"has-active":l.value}]);function C(V){"key"in V&&V.key!=="Enter"||!e.item.link&&u()}function E(){e.item.link&&u()}return(V,B)=>{const W=Z("VPSidebarItem",!0);return o(),y(U(_.value),{class:M(["VPSidebarItem",S.value])},{default:m(()=>[V.item.text?(o(),c("div",z({key:0,class:"item",role:A.value},St(V.item.items?{click:C,keydown:C}:{},!0),{tabindex:V.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),V.item.link?(o(),y(D,{key:0,tag:$.value,class:"link",href:V.item.link,rel:V.item.rel,target:V.item.target},{default:m(()=>[(o(),y(U(v.value),{class:"text",innerHTML:V.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(o(),y(U(v.value),{key:1,class:"text",innerHTML:V.item.text},null,8,["innerHTML"])),V.item.collapsed!=null&&V.item.items&&V.item.items.length?(o(),c("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:E,onKeydown:Lt(E,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):h("",!0)],16,xo)):h("",!0),V.item.items&&V.item.items.length?(o(),c("div",qo,[V.depth<5?(o(!0),c(T,{key:0},Q(V.item.items,H=>(o(),y(W,{key:H.text,item:H,depth:V.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),tr=g(er,[["__scopeId","data-v-196b2e5f"]]),nr=b({__name:"VPSidebarGroup",props:{items:{}},setup(n){const e=I(!0);let t=null;return j(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Vt(()=>{t!=null&&(clearTimeout(t),t=null)}),(a,s)=>(o(!0),c(T,null,Q(a.items,r=>(o(),c("div",{key:r.text,class:M(["group",{"no-transition":e.value}])},[k(tr,{item:r,depth:0},null,8,["item"])],2))),128))}}),sr=g(nr,[["__scopeId","data-v-9e426adc"]]),ar={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},or=b({__name:"VPSidebar",props:{open:{type:Boolean}},setup(n){const{sidebarGroups:e,hasSidebar:t}=K(),a=n,s=I(null),r=qe(me?document.body:null);R([a,s],()=>{var f;a.open?(r.value=!0,(f=s.value)==null||f.focus()):r.value=!1},{immediate:!0,flush:"post"});const l=I(0);return R(e,()=>{l.value+=1},{deep:!0}),(f,u)=>i(t)?(o(),c("aside",{key:0,class:M(["VPSidebar",{open:f.open}]),ref_key:"navEl",ref:s,onClick:u[0]||(u[0]=Ct(()=>{},["stop"]))},[u[2]||(u[2]=p("div",{class:"curtain"},null,-1)),p("nav",ar,[u[1]||(u[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),d(f.$slots,"sidebar-nav-before",{},void 0,!0),(o(),y(sr,{items:i(e),key:l.value},null,8,["items"])),d(f.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),rr=g(or,[["__scopeId","data-v-18756405"]]),ir=b({__name:"VPSkipLink",setup(n){const e=fe(),t=I();R(()=>e.path,()=>t.value.focus());function a({target:s}){const r=document.getElementById(decodeURIComponent(s.hash).slice(1));if(r){const l=()=>{r.removeAttribute("tabindex"),r.removeEventListener("blur",l)};r.setAttribute("tabindex","-1"),r.addEventListener("blur",l),r.focus(),window.scrollTo(0,0)}}return(s,r)=>(o(),c(T,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:a}," Skip to content ")],64))}}),lr=g(ir,[["__scopeId","data-v-c3508ec8"]]),cr=b({__name:"Layout",setup(n){const{isOpen:e,open:t,close:a}=K(),s=fe();R(()=>s.path,a),zt(e,a);const{frontmatter:r}=L(),l=et(),f=P(()=>!!l["home-hero-image"]);return Ne("hero-image-slot-exists",f),(u,_)=>{const $=Z("Content");return i(r).layout!==!1?(o(),c("div",{key:0,class:M(["Layout",i(r).pageClass])},[d(u.$slots,"layout-top",{},void 0,!0),k(lr),k(Bt,{class:"backdrop",show:i(e),onClick:i(a)},null,8,["show","onClick"]),k(Xo,null,{"nav-bar-title-before":m(()=>[d(u.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":m(()=>[d(u.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":m(()=>[d(u.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":m(()=>[d(u.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":m(()=>[d(u.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":m(()=>[d(u.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),k(js,{open:i(e),onOpenMenu:i(t)},null,8,["open","onOpenMenu"]),k(rr,{open:i(e)},{"sidebar-nav-before":m(()=>[d(u.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":m(()=>[d(u.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),k(Is,null,{"page-top":m(()=>[d(u.$slots,"page-top",{},void 0,!0)]),"page-bottom":m(()=>[d(u.$slots,"page-bottom",{},void 0,!0)]),"not-found":m(()=>[d(u.$slots,"not-found",{},void 0,!0)]),"home-hero-before":m(()=>[d(u.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":m(()=>[d(u.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":m(()=>[d(u.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":m(()=>[d(u.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":m(()=>[d(u.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":m(()=>[d(u.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":m(()=>[d(u.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":m(()=>[d(u.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":m(()=>[d(u.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":m(()=>[d(u.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":m(()=>[d(u.$slots,"doc-before",{},void 0,!0)]),"doc-after":m(()=>[d(u.$slots,"doc-after",{},void 0,!0)]),"doc-top":m(()=>[d(u.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":m(()=>[d(u.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":m(()=>[d(u.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":m(()=>[d(u.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":m(()=>[d(u.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":m(()=>[d(u.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":m(()=>[d(u.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":m(()=>[d(u.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),k(Es),d(u.$slots,"layout-bottom",{},void 0,!0)],2)):(o(),y($,{key:1}))}}}),ur=g(cr,[["__scopeId","data-v-a9a9e638"]]),dr={},pr={class:"VPTeamPage"};function fr(n,e){return o(),c("div",pr,[d(n.$slots,"default")])}const Pi=g(dr,[["render",fr],["__scopeId","data-v-c2f8e101"]]),mr={},vr={class:"VPTeamPageTitle"},hr={key:0,class:"title"},_r={key:1,class:"lead"};function br(n,e){return o(),c("div",vr,[n.$slots.title?(o(),c("h1",hr,[d(n.$slots,"title",{},void 0,!0)])):h("",!0),n.$slots.lead?(o(),c("p",_r,[d(n.$slots,"lead",{},void 0,!0)])):h("",!0)])}const Si=g(mr,[["render",br],["__scopeId","data-v-e277e15c"]]),gr={},kr={class:"VPTeamPageSection"},yr={class:"title"},$r={key:0,class:"title-text"},Ar={key:0,class:"lead"},Pr={key:1,class:"members"};function Sr(n,e){return o(),c("section",kr,[p("div",yr,[e[0]||(e[0]=p("div",{class:"title-line"},null,-1)),n.$slots.title?(o(),c("h2",$r,[d(n.$slots,"title",{},void 0,!0)])):h("",!0)]),n.$slots.lead?(o(),c("p",Ar,[d(n.$slots,"lead",{},void 0,!0)])):h("",!0),n.$slots.members?(o(),c("div",Pr,[d(n.$slots,"members",{},void 0,!0)])):h("",!0)])}const Li=g(gr,[["render",Sr],["__scopeId","data-v-d43bc49d"]]),Lr={class:"profile"},Vr={class:"avatar"},Cr=["src","alt"],Ir={class:"data"},Nr={class:"name"},wr={key:0,class:"affiliation"},Mr={key:0,class:"title"},Tr={key:1,class:"at"},Er=["innerHTML"],Br={key:2,class:"links"},Qr={key:0,class:"sp"},Fr=b({__name:"VPTeamMembersItem",props:{size:{default:"medium"},member:{}},setup(n){return(e,t)=>(o(),c("article",{class:M(["VPTeamMembersItem",[e.size]])},[p("div",Lr,[p("figure",Vr,[p("img",{class:"avatar-img",src:e.member.avatar,alt:e.member.name},null,8,Cr)]),p("div",Ir,[p("h1",Nr,w(e.member.name),1),e.member.title||e.member.org?(o(),c("p",wr,[e.member.title?(o(),c("span",Mr,w(e.member.title),1)):h("",!0),e.member.title&&e.member.org?(o(),c("span",Tr," @ ")):h("",!0),e.member.org?(o(),y(D,{key:2,class:M(["org",{link:e.member.orgLink}]),href:e.member.orgLink,"no-icon":""},{default:m(()=>[G(w(e.member.org),1)]),_:1},8,["class","href"])):h("",!0)])):h("",!0),e.member.desc?(o(),c("p",{key:1,class:"desc",innerHTML:e.member.desc},null,8,Er)):h("",!0),e.member.links?(o(),c("div",Br,[k(he,{links:e.member.links},null,8,["links"])])):h("",!0)])]),e.member.sponsor?(o(),c("div",Qr,[k(D,{class:"sp-link",href:e.member.sponsor,"no-icon":""},{default:m(()=>[t[0]||(t[0]=p("span",{class:"vpi-heart sp-icon"},null,-1)),G(" "+w(e.member.actionText||"Sponsor"),1)]),_:1},8,["href"])])):h("",!0)],2))}}),Hr=g(Fr,[["__scopeId","data-v-f9987cb6"]]),Wr={class:"container"},Or=b({__name:"VPTeamMembers",props:{size:{default:"medium"},members:{}},setup(n){const e=n,t=P(()=>[e.size,`count-${e.members.length}`]);return(a,s)=>(o(),c("div",{class:M(["VPTeamMembers",t.value])},[p("div",Wr,[(o(!0),c(T,null,Q(a.members,r=>(o(),c("div",{key:r.name,class:"item"},[k(Hr,{size:a.size,member:r},null,8,["size","member"])]))),128))])],2))}}),Vi=g(Or,[["__scopeId","data-v-fba19bad"]]),De={Layout:ur,enhanceApp:({app:n})=>{n.component("Badge",Mt)}},Dr={},Ur={style:{"text-align":"center"}};function Gr(n,e){const t=Z("font");return o(),c(T,null,[e[1]||(e[1]=p("br",null,null,-1)),p("h1",Ur,[p("strong",null,[k(t,{color:"orange"},{default:m(()=>e[0]||(e[0]=[G(" Package Ecosystem")])),_:1})])]),e[2]||(e[2]=It('

Read n-d array like-data

DiskArrays.jl

Get your chunks!

Named Dimensions

DimensionalData.jl

Select & Index!

Out of memory data

Zarr.jl

Chunkerd, compressed !

Rasterized spatial data

Rasters.jl

Read and manipulate !

Array-oriented data

NetCDF.jl

Scientific binary data.

Raster and vector data

ArchGDAL.jl

GDAL in Julia.

An interface for

GeoInterface.jl

geospatial data in Julia.

A higher level interface

GRIBDatasets.jl

for reading GRIB files.

Array-oriented data

NCDatasets.jl

Scientific binary data.

',9))],64)}const Rr=g(Dr,[["render",Gr]]),jr=b({__name:"VersionPicker",props:{screenMenu:{type:Boolean}},setup(n){const e=I([]),t=I("Versions"),a=I(!1);ze();const s=()=>typeof window<"u"&&(window.location.hostname==="localhost"||window.location.hostname==="127.0.0.1"),r=()=>{if(typeof window>"u")return"";const{origin:u,pathname:_}=window.location;if(u.includes("github.io")){const $=_.split("/").filter(Boolean),v=$.length>0?`/${$[0]}`:"";return`${u}${v}`}else return u},l=()=>new Promise(u=>{if(s()){u(!1);return}const _=setInterval(()=>{window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION&&(clearInterval(_),u(!0))},100);setTimeout(()=>{clearInterval(_),u(!1)},5e3)});return j(async()=>{if(!(typeof window>"u")){try{if(s()){const u=["dev"];e.value=u.map(_=>({text:_,link:"/"})),t.value="dev"}else{const u=await l(),_=P(()=>r());if(u&&window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION)e.value=window.DOC_VERSIONS.map($=>({text:$,link:`${_.value}/${$}/`})),t.value=window.DOCUMENTER_CURRENT_VERSION;else{const $=["dev"];e.value=$.map(v=>({text:v,link:`${_.value}/${v}/`})),t.value="dev"}}}catch(u){console.warn("Error loading versions:",u);const _=["dev"],$=P(()=>r());e.value=_.map(v=>({text:v,link:`${$.value}/${v}/`})),t.value="dev"}a.value=!0}}),(u,_)=>a.value?(o(),c(T,{key:0},[!u.screenMenu&&e.value.length>0?(o(),y(rt,{key:0,item:{text:t.value,items:e.value},class:"VPVersionPicker"},null,8,["item"])):u.screenMenu&&e.value.length>0?(o(),y(lt,{key:1,text:t.value,items:e.value,class:"VPVersionPicker"},null,8,["text","items"])):h("",!0)],64)):h("",!0)}}),Jr=g(jr,[["__scopeId","data-v-44adf51f"]]);function Kr(n){return Math.abs(n=Math.round(n))>=1e21?n.toLocaleString("en").replace(/,/g,""):n.toString(10)}function ue(n,e){if((t=(n=e?n.toExponential(e-1):n.toExponential()).indexOf("e"))<0)return null;var t,a=n.slice(0,t);return[a.length>1?a[0]+a.slice(2):a,+n.slice(t+1)]}function zr(n){return n=ue(Math.abs(n)),n?n[1]:NaN}function Zr(n,e){return function(t,a){for(var s=t.length,r=[],l=0,f=n[0],u=0;s>0&&f>0&&(u+f+1>a&&(f=Math.max(1,a-u)),r.push(t.substring(s-=f,s+f)),!((u+=f+1)>a));)f=n[l=(l+1)%n.length];return r.reverse().join(e)}}function Yr(n){return function(e){return e.replace(/[0-9]/g,function(t){return n[+t]})}}var Xr=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function Pe(n){if(!(e=Xr.exec(n)))throw new Error("invalid format: "+n);var e;return new Qe({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}Pe.prototype=Qe.prototype;function Qe(n){this.fill=n.fill===void 0?" ":n.fill+"",this.align=n.align===void 0?">":n.align+"",this.sign=n.sign===void 0?"-":n.sign+"",this.symbol=n.symbol===void 0?"":n.symbol+"",this.zero=!!n.zero,this.width=n.width===void 0?void 0:+n.width,this.comma=!!n.comma,this.precision=n.precision===void 0?void 0:+n.precision,this.trim=!!n.trim,this.type=n.type===void 0?"":n.type+""}Qe.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(this.width===void 0?"":Math.max(1,this.width|0))+(this.comma?",":"")+(this.precision===void 0?"":"."+Math.max(0,this.precision|0))+(this.trim?"~":"")+this.type};function xr(n){e:for(var e=n.length,t=1,a=-1,s;t0&&(a=0);break}return a>0?n.slice(0,a)+n.slice(s+1):n}var ct;function qr(n,e){var t=ue(n,e);if(!t)return n+"";var a=t[0],s=t[1],r=s-(ct=Math.max(-8,Math.min(8,Math.floor(s/3)))*3)+1,l=a.length;return r===l?a:r>l?a+new Array(r-l+1).join("0"):r>0?a.slice(0,r)+"."+a.slice(r):"0."+new Array(1-r).join("0")+ue(n,Math.max(0,e+r-1))[0]}function Ue(n,e){var t=ue(n,e);if(!t)return n+"";var a=t[0],s=t[1];return s<0?"0."+new Array(-s).join("0")+a:a.length>s+1?a.slice(0,s+1)+"."+a.slice(s+1):a+new Array(s-a.length+2).join("0")}const Ge={"%":(n,e)=>(n*100).toFixed(e),b:n=>Math.round(n).toString(2),c:n=>n+"",d:Kr,e:(n,e)=>n.toExponential(e),f:(n,e)=>n.toFixed(e),g:(n,e)=>n.toPrecision(e),o:n=>Math.round(n).toString(8),p:(n,e)=>Ue(n*100,e),r:Ue,s:qr,X:n=>Math.round(n).toString(16).toUpperCase(),x:n=>Math.round(n).toString(16)};function Re(n){return n}var je=Array.prototype.map,Je=["y","z","a","f","p","n","µ","m","","k","M","G","T","P","E","Z","Y"];function ei(n){var e=n.grouping===void 0||n.thousands===void 0?Re:Zr(je.call(n.grouping,Number),n.thousands+""),t=n.currency===void 0?"":n.currency[0]+"",a=n.currency===void 0?"":n.currency[1]+"",s=n.decimal===void 0?".":n.decimal+"",r=n.numerals===void 0?Re:Yr(je.call(n.numerals,String)),l=n.percent===void 0?"%":n.percent+"",f=n.minus===void 0?"−":n.minus+"",u=n.nan===void 0?"NaN":n.nan+"";function _(v){v=Pe(v);var A=v.fill,S=v.align,C=v.sign,E=v.symbol,V=v.zero,B=v.width,W=v.comma,H=v.precision,x=v.trim,F=v.type;F==="n"?(W=!0,F="g"):Ge[F]||(H===void 0&&(H=12),x=!0,F="g"),(V||A==="0"&&S==="=")&&(V=!0,A="0",S="=");var mt=E==="$"?t:E==="#"&&/[boxX]/.test(F)?"0"+F.toLowerCase():"",vt=E==="$"?a:/[%p]/.test(F)?l:"",Fe=Ge[F],ht=/[defgprs%]/.test(F);H=H===void 0?6:/[gprs]/.test(F)?Math.max(1,Math.min(21,H)):Math.max(0,Math.min(20,H));function He(N){var Y=mt,O=vt,q,We,se;if(F==="c")O=Fe(N)+O,N="";else{N=+N;var ae=N<0||1/N<0;if(N=isNaN(N)?u:Fe(Math.abs(N),H),x&&(N=xr(N)),ae&&+N==0&&C!=="+"&&(ae=!1),Y=(ae?C==="("?C:f:C==="-"||C==="("?"":C)+Y,O=(F==="s"?Je[8+ct/3]:"")+O+(ae&&C==="("?")":""),ht){for(q=-1,We=N.length;++qse||se>57){O=(se===46?s+N.slice(q+1):N.slice(q))+O,N=N.slice(0,q);break}}}W&&!V&&(N=e(N,1/0));var oe=Y.length+N.length+O.length,J=oe>1)+Y+N+O+J.slice(oe);break;default:N=J+Y+N+O;break}return r(N)}return He.toString=function(){return v+""},He}function $(v,A){var S=_((v=Pe(v),v.type="f",v)),C=Math.max(-8,Math.min(8,Math.floor(zr(A)/3)))*3,E=Math.pow(10,-C),V=Je[8+C/3];return function(B){return S(E*B)+V}}return{format:_,formatPrefix:$}}var re,ut;ti({thousands:",",grouping:[3],currency:["$",""]});function ti(n){return re=ei(n),re.format,ut=re.formatPrefix,re}const ie=JSON.parse("104"),ni=["title"],si={xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",width:"20",height:"20",fill:"currentColor",style:{"vertical-align":"middle","margin-right":"0.25rem","margin-left":"0.5rem"}},ai=["title"],oi={__name:"StarUs",setup(n){const e=ie?ut(".1s",1e3)(ie):"";return(t,a)=>(o(),c(T,null,[p("a",{target:"_blank","data-decoration":"★",title:i(ie).toLocaleString("en-US").concat(" GitHub stars"),href:"https://github.com/JuliaDataCubes/YAXArrays.jl"},[(o(),c("svg",si,a[0]||(a[0]=[p("path",{d:"M12 .297C5.375.297 0 5.673 0 12.3c0 5.292 3.438 9.8 8.207 11.387.6.11.793-.26.793-.577 0-.285-.01-1.04-.015-2.04-3.338.727-4.042-1.61-4.042-1.61-.546-1.387-1.333-1.756-1.333-1.756-1.089-.745.083-.729.083-.729 1.205.084 1.838 1.236 1.838 1.236 1.07 1.835 2.807 1.305 3.493.997.107-.774.42-1.305.762-1.605-2.665-.3-5.467-1.333-5.467-5.931 0-1.31.47-2.382 1.236-3.222-.123-.303-.535-1.52.117-3.166 0 0 1.01-.323 3.31 1.23.96-.267 1.98-.4 3-.405 1.02.005 2.04.138 3 .405 2.3-1.553 3.31-1.23 3.31-1.23.653 1.646.24 2.863.117 3.166.765.84 1.236 1.912 1.236 3.222 0 4.61-2.807 5.625-5.477 5.921.43.372.823 1.102.823 2.222 0 1.606-.015 2.902-.015 3.293 0 .32.192.693.8.577C20.565 22.1 24 17.588 24 12.297 24 5.673 18.627.297 12 .297z"},null,-1)]))),p("span",null,w(i(e)),1)],8,ni),p("a",{class:"mobile",target:"_blank",title:i(ie).toLocaleString("en-US").concat(" GitHub stars"),href:"https://juliadatacubes.github.io/YAXArrays.jl/stable/"},a[1]||(a[1]=[p("svg",{xmlns:"http://www.w3.org/2000/svg",width:"21",height:"21",viewBox:"0 0 21 21",fill:"none"},[p("path",{d:"M19.625 5.60534C18.7083 4.03477 17.4649 2.79135 15.8945 1.87479C14.3238 0.958185 12.6091 0.5 10.7492 0.5C8.88947 0.5 7.17422 0.958325 5.60388 1.87479C4.0333 2.7913 2.78997 4.03477 1.87332 5.60534C0.956814 7.17587 0.498535 8.89089 0.498535 10.7504C0.498535 12.984 1.15021 14.9926 2.4539 16.7766C3.75744 18.5607 5.44142 19.7952 7.50571 20.4803C7.746 20.5249 7.92388 20.4936 8.03954 20.387C8.15524 20.2804 8.21302 20.1467 8.21302 19.9868C8.21302 19.9601 8.21073 19.7199 8.20629 19.266C8.20171 18.8122 8.19956 18.4162 8.19956 18.0783L7.89256 18.1315C7.69682 18.1673 7.44989 18.1825 7.15178 18.1782C6.8538 18.174 6.54446 18.1428 6.22419 18.0847C5.90377 18.0272 5.60575 17.8937 5.32988 17.6846C5.05416 17.4755 4.85842 17.2018 4.74272 16.8639L4.60925 16.5568C4.52029 16.3523 4.38023 16.1251 4.18888 15.8761C3.99754 15.6269 3.80405 15.458 3.60831 15.369L3.51486 15.3021C3.45259 15.2577 3.39481 15.204 3.34138 15.1418C3.28799 15.0796 3.24802 15.0173 3.22132 14.955C3.19458 14.8926 3.21674 14.8414 3.28804 14.8012C3.35933 14.761 3.48817 14.7416 3.67512 14.7416L3.94196 14.7814C4.11993 14.8171 4.34007 14.9236 4.60266 15.1017C4.86511 15.2796 5.08085 15.5109 5.24994 15.7956C5.4547 16.1605 5.7014 16.4385 5.99072 16.6299C6.27982 16.8212 6.5713 16.9167 6.86488 16.9167C7.15846 16.9167 7.41203 16.8945 7.62567 16.8502C7.83908 16.8057 8.0393 16.7388 8.22625 16.6499C8.30633 16.0535 8.52437 15.5953 8.88017 15.275C8.37304 15.2217 7.9171 15.1414 7.51212 15.0347C7.10736 14.9278 6.6891 14.7544 6.25761 14.5139C5.82589 14.2738 5.46774 13.9756 5.18309 13.6198C4.89839 13.2639 4.66474 12.7966 4.48247 12.2183C4.3001 11.6399 4.20889 10.9726 4.20889 10.2163C4.20889 9.13941 4.56044 8.22304 5.26341 7.46665C4.93411 6.65705 4.96519 5.74947 5.35676 4.744C5.61482 4.66382 5.9975 4.72399 6.50463 4.92412C7.01186 5.12434 7.38323 5.29587 7.61912 5.43808C7.85502 5.58024 8.04402 5.70071 8.18642 5.79842C9.01411 5.56715 9.86825 5.45149 10.7491 5.45149C11.6299 5.45149 12.4843 5.56715 13.312 5.79842L13.8192 5.47823C14.166 5.26459 14.5756 5.06881 15.0469 4.89083C15.5185 4.71295 15.8791 4.66396 16.1284 4.74414C16.5286 5.74966 16.5643 6.65719 16.2349 7.46679C16.9378 8.22318 17.2895 9.13978 17.2895 10.2164C17.2895 10.9727 17.198 11.6421 17.0159 12.225C16.8336 12.808 16.5979 13.2749 16.3088 13.6265C16.0194 13.9781 15.659 14.274 15.2275 14.5141C14.7959 14.7544 14.3775 14.9278 13.9728 15.0347C13.5678 15.1415 13.1119 15.2219 12.6047 15.2752C13.0673 15.6755 13.2986 16.3073 13.2986 17.1704V19.9864C13.2986 20.1464 13.3542 20.2799 13.4656 20.3867C13.5768 20.4932 13.7524 20.5246 13.9927 20.4799C16.0573 19.7949 17.7413 18.5603 19.0448 16.7762C20.3481 14.9922 21 12.9837 21 10.75C20.9996 8.89075 20.541 7.17587 19.625 5.60534Z",fill:"currentColor"})],-1)]),8,ai)],64))}},ri=g(oi,[["__scopeId","data-v-a679c84d"]]),ii=n=>{if(typeof document>"u")return{stabilizeScrollPosition:s=>async(...r)=>s(...r)};const e=document.documentElement;return{stabilizeScrollPosition:a=>async(...s)=>{const r=a(...s),l=n.value;if(!l)return r;const f=l.offsetTop-e.scrollTop;return await Ie(),e.scrollTop=l.offsetTop-f,r}}},dt="vitepress:tabSharedState",te=typeof localStorage<"u"?localStorage:null,pt="vitepress:tabsSharedState",li=()=>{const n=te==null?void 0:te.getItem(pt);if(n)try{return JSON.parse(n)}catch{}return{}},ci=n=>{te&&te.setItem(pt,JSON.stringify(n))},ui=n=>{const e=Nt({});R(()=>e.content,(t,a)=>{t&&a&&ci(t)},{deep:!0}),n.provide(dt,e)},di=(n,e)=>{const t=ee(dt);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");j(()=>{t.content||(t.content=li())});const a=I(),s=P({get(){var u;const l=e.value,f=n.value;if(l){const _=(u=t.content)==null?void 0:u[l];if(_&&f.includes(_))return _}else{const _=a.value;if(_)return _}return f[0]},set(l){const f=e.value;f?t.content&&(t.content[f]=l):a.value=l}});return{selected:s,select:l=>{s.value=l}}};let Ke=0;const pi=()=>(Ke++,""+Ke);function fi(){const n=et();return P(()=>{var a;const t=(a=n.default)==null?void 0:a.call(n);return t?t.filter(s=>typeof s.type=="object"&&"__name"in s.type&&s.type.__name==="PluginTabsTab"&&s.props).map(s=>{var r;return(r=s.props)==null?void 0:r.label}):[]})}const ft="vitepress:tabSingleState",mi=n=>{Ne(ft,n)},vi=()=>{const n=ee(ft);if(!n)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return n},hi={class:"plugin-tabs"},_i=["id","aria-selected","aria-controls","tabindex","onClick"],bi=b({__name:"PluginTabs",props:{sharedStateKey:{}},setup(n){const e=n,t=fi(),{selected:a,select:s}=di(t,wt(e,"sharedStateKey")),r=I(),{stabilizeScrollPosition:l}=ii(r),f=l(s),u=I([]),_=v=>{var C;const A=t.value.indexOf(a.value);let S;v.key==="ArrowLeft"?S=A>=1?A-1:t.value.length-1:v.key==="ArrowRight"&&(S=A(o(),c("div",hi,[p("div",{ref_key:"tablist",ref:r,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:_},[(o(!0),c(T,null,Q(i(t),S=>(o(),c("button",{id:`tab-${S}-${i($)}`,ref_for:!0,ref_key:"buttonRefs",ref:u,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===i(a),"aria-controls":`panel-${S}-${i($)}`,tabindex:S===i(a)?0:-1,onClick:()=>i(f)(S)},w(S),9,_i))),128))],544),d(v.$slots,"default")]))}}),gi=["id","aria-labelledby"],ki=b({__name:"PluginTabsTab",props:{label:{}},setup(n){const{uid:e,selected:t}=vi();return(a,s)=>i(t)===a.label?(o(),c("div",{key:0,id:`panel-${a.label}-${i(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${a.label}-${i(e)}`},[d(a.$slots,"default",{},void 0,!0)],8,gi)):h("",!0)}}),yi=g(ki,[["__scopeId","data-v-9b0d03d2"]]),$i=n=>{ui(n),n.component("PluginTabs",bi),n.component("PluginTabsTab",yi)},Ci={extends:De,Layout(){return _e(De.Layout,null,{"aside-ads-before":()=>_e(Rr),"nav-bar-content-after":()=>_e(ri)})},enhanceApp({app:n,router:e,siteData:t}){$i(n),n.component("VersionPicker",Jr)}};export{Ci as R,Si as V,Vi as a,Li as b,Pi as c,Ka as d,L as u}; diff --git a/previews/PR484/assets/development_contributors.md.DJXEd1h6.js b/previews/PR484/assets/development_contributors.md.I99J6XWx.js similarity index 98% rename from previews/PR484/assets/development_contributors.md.DJXEd1h6.js rename to previews/PR484/assets/development_contributors.md.I99J6XWx.js index ea2b882f..fcb093a7 100644 --- a/previews/PR484/assets/development_contributors.md.DJXEd1h6.js +++ b/previews/PR484/assets/development_contributors.md.I99J6XWx.js @@ -1 +1 @@ -import{V as u,a as l,b as m,c as g}from"./chunks/theme.UIEISKWu.js";import{c as h,G as r,w as s,k as n,B as c,o as b,a as e,j as t}from"./chunks/framework.Bl-lyKae.js";const p={align:"justify"},z=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"page"},"headers":[],"relativePath":"development/contributors.md","filePath":"development/contributors.md","lastUpdated":null}'),v={name:"development/contributors.md"},j=Object.assign(v,{setup(f){const o=[{avatar:"https://www.bgc-jena.mpg.de/employee_images/121366-1667825290?t=eyJ3aWR0aCI6MjEzLCJoZWlnaHQiOjI3NCwiZml0IjoiY3JvcCIsImZpbGVfZXh0ZW5zaW9uIjoid2VicCIsInF1YWxpdHkiOjg2fQ%3D%3D--3e1d41ff4b1ea8928e6734bc473242a90f797dea",name:"Fabian Gans",title:"Geoscientific Programmer",links:[{icon:"github",link:"https://github.com/meggart"}]},{avatar:"https://avatars.githubusercontent.com/u/17124431?v=4",name:"Felix Cremer",title:"PhD Candidate in Remote Sensing",links:[{icon:"github",link:"https://github.com/felixcremer"}]},{avatar:"https://avatars.githubusercontent.com/u/2534009?v=4",name:"Rafael Schouten",title:"Spatial/ecological modelling",links:[{icon:"github",link:"https://github.com/rafaqz"}]},{avatar:"https://avatars.githubusercontent.com/u/19525261?v=4",name:"Lazaro Alonso",title:"Scientist. Data Visualization",links:[{icon:"github",link:"https://github.com/lazarusA"},{icon:"x",link:"https://twitter.com/LazarusAlon"},{icon:"linkedin",link:"https://www.linkedin.com/in/lazaro-alonso/"},{icon:"mastodon",link:"https://julialang.social/@LazaroAlonso"}]}];return(d,a)=>{const i=c("font");return b(),h("div",null,[r(n(g),null,{default:s(()=>[r(n(u),null,{title:s(()=>a[0]||(a[0]=[e("Contributors")])),lead:s(()=>[a[8]||(a[8]=t("strong",null,"Current core contributors ",-1)),a[9]||(a[9]=e()),a[10]||(a[10]=t("br",null,null,-1)),t("div",p,[a[4]||(a[4]=e(" They have taking the lead for the ongoing organizational maintenance and technical direction of ")),r(i,{color:"orange"},{default:s(()=>a[1]||(a[1]=[e("YAXArrays.jl")])),_:1}),a[5]||(a[5]=e(", ")),r(i,{color:"orange"},{default:s(()=>a[2]||(a[2]=[e("DiskArrays.jl")])),_:1}),a[6]||(a[6]=e(" and ")),r(i,{color:"orange"},{default:s(()=>a[3]||(a[3]=[e("DimensionalData.jl")])),_:1}),a[7]||(a[7]=e(". "))])]),_:1}),r(n(l),{size:"small",members:o}),r(n(m),null,{title:s(()=>a[11]||(a[11]=[e("Our valuable contributors")])),lead:s(()=>a[12]||(a[12]=[e(" We appreciate all contributions from the Julia community so that this ecosystem can thrive."),t("br",null,null,-1)])),members:s(()=>a[13]||(a[13]=[t("div",{class:"row"},[t("a",{href:"https://github.com/meggart",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2539563?v=4"})]),t("a",{href:"https://github.com/felixcremer",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/17124431?v=4"})]),t("a",{href:"https://github.com/lazarusA",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19525261?v=4"})]),t("a",{href:"https://github.com/gdkrmr",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/12512930?v=4"})]),t("a",{href:"https://github.com/apps/github-actions",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/15368?v=4"})]),t("a",{href:"https://github.com/pdimens",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19176506?v=4"})]),t("a",{href:"https://github.com/twinGu",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/29449917?v=4"})]),t("a",{href:"https://github.com/dpabon",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/13040959?v=4"})]),t("a",{href:"https://github.com/Qfl3x",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/20775896?v=4"})]),t("a",{href:"https://github.com/kongdd",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/9815742?v=4"})]),t("a",{href:"https://github.com/MartinuzziFrancesco",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10376688?v=4"})]),t("a",{href:"https://github.com/Sonicious",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/16307399?v=4"})]),t("a",{href:"https://github.com/rafaqz",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2534009?v=4"})]),t("a",{href:"https://github.com/danlooo",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/5780565?v=4"})]),t("a",{href:"https://github.com/MarkusZehner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/56972144?v=4"})]),t("a",{href:"https://github.com/Balinus",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/3630311?v=4"})]),t("a",{href:"https://github.com/singularitti",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/25192197?v=4"})]),t("a",{href:"https://github.com/ckrich",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/28727495?v=4"})]),t("a",{href:"https://github.com/apps/femtocleaner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/4123?v=4"})]),t("a",{href:"https://github.com/ikselven",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10441332?v=4"})]),t("a",{href:"https://github.com/linamaes",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/7131773?v=4"})])],-1)])),_:1})]),_:1})])}}});export{z as __pageData,j as default}; +import{V as u,a as l,b as m,c as g}from"./chunks/theme.JyDuiASx.js";import{c as h,G as r,w as s,k as n,B as c,o as b,a as e,j as t}from"./chunks/framework.Bl-lyKae.js";const p={align:"justify"},z=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"page"},"headers":[],"relativePath":"development/contributors.md","filePath":"development/contributors.md","lastUpdated":null}'),v={name:"development/contributors.md"},j=Object.assign(v,{setup(f){const o=[{avatar:"https://www.bgc-jena.mpg.de/employee_images/121366-1667825290?t=eyJ3aWR0aCI6MjEzLCJoZWlnaHQiOjI3NCwiZml0IjoiY3JvcCIsImZpbGVfZXh0ZW5zaW9uIjoid2VicCIsInF1YWxpdHkiOjg2fQ%3D%3D--3e1d41ff4b1ea8928e6734bc473242a90f797dea",name:"Fabian Gans",title:"Geoscientific Programmer",links:[{icon:"github",link:"https://github.com/meggart"}]},{avatar:"https://avatars.githubusercontent.com/u/17124431?v=4",name:"Felix Cremer",title:"PhD Candidate in Remote Sensing",links:[{icon:"github",link:"https://github.com/felixcremer"}]},{avatar:"https://avatars.githubusercontent.com/u/2534009?v=4",name:"Rafael Schouten",title:"Spatial/ecological modelling",links:[{icon:"github",link:"https://github.com/rafaqz"}]},{avatar:"https://avatars.githubusercontent.com/u/19525261?v=4",name:"Lazaro Alonso",title:"Scientist. Data Visualization",links:[{icon:"github",link:"https://github.com/lazarusA"},{icon:"x",link:"https://twitter.com/LazarusAlon"},{icon:"linkedin",link:"https://www.linkedin.com/in/lazaro-alonso/"},{icon:"mastodon",link:"https://julialang.social/@LazaroAlonso"}]}];return(d,a)=>{const i=c("font");return b(),h("div",null,[r(n(g),null,{default:s(()=>[r(n(u),null,{title:s(()=>a[0]||(a[0]=[e("Contributors")])),lead:s(()=>[a[8]||(a[8]=t("strong",null,"Current core contributors ",-1)),a[9]||(a[9]=e()),a[10]||(a[10]=t("br",null,null,-1)),t("div",p,[a[4]||(a[4]=e(" They have taking the lead for the ongoing organizational maintenance and technical direction of ")),r(i,{color:"orange"},{default:s(()=>a[1]||(a[1]=[e("YAXArrays.jl")])),_:1}),a[5]||(a[5]=e(", ")),r(i,{color:"orange"},{default:s(()=>a[2]||(a[2]=[e("DiskArrays.jl")])),_:1}),a[6]||(a[6]=e(" and ")),r(i,{color:"orange"},{default:s(()=>a[3]||(a[3]=[e("DimensionalData.jl")])),_:1}),a[7]||(a[7]=e(". "))])]),_:1}),r(n(l),{size:"small",members:o}),r(n(m),null,{title:s(()=>a[11]||(a[11]=[e("Our valuable contributors")])),lead:s(()=>a[12]||(a[12]=[e(" We appreciate all contributions from the Julia community so that this ecosystem can thrive."),t("br",null,null,-1)])),members:s(()=>a[13]||(a[13]=[t("div",{class:"row"},[t("a",{href:"https://github.com/meggart",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2539563?v=4"})]),t("a",{href:"https://github.com/felixcremer",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/17124431?v=4"})]),t("a",{href:"https://github.com/lazarusA",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19525261?v=4"})]),t("a",{href:"https://github.com/gdkrmr",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/12512930?v=4"})]),t("a",{href:"https://github.com/apps/github-actions",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/15368?v=4"})]),t("a",{href:"https://github.com/pdimens",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19176506?v=4"})]),t("a",{href:"https://github.com/twinGu",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/29449917?v=4"})]),t("a",{href:"https://github.com/dpabon",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/13040959?v=4"})]),t("a",{href:"https://github.com/Qfl3x",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/20775896?v=4"})]),t("a",{href:"https://github.com/kongdd",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/9815742?v=4"})]),t("a",{href:"https://github.com/MartinuzziFrancesco",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10376688?v=4"})]),t("a",{href:"https://github.com/Sonicious",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/16307399?v=4"})]),t("a",{href:"https://github.com/rafaqz",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2534009?v=4"})]),t("a",{href:"https://github.com/danlooo",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/5780565?v=4"})]),t("a",{href:"https://github.com/MarkusZehner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/56972144?v=4"})]),t("a",{href:"https://github.com/Balinus",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/3630311?v=4"})]),t("a",{href:"https://github.com/singularitti",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/25192197?v=4"})]),t("a",{href:"https://github.com/ckrich",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/28727495?v=4"})]),t("a",{href:"https://github.com/apps/femtocleaner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/4123?v=4"})]),t("a",{href:"https://github.com/ikselven",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10441332?v=4"})]),t("a",{href:"https://github.com/linamaes",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/7131773?v=4"})])],-1)])),_:1})]),_:1})])}}});export{z as __pageData,j as default}; diff --git a/previews/PR484/assets/development_contributors.md.DJXEd1h6.lean.js b/previews/PR484/assets/development_contributors.md.I99J6XWx.lean.js similarity index 98% rename from previews/PR484/assets/development_contributors.md.DJXEd1h6.lean.js rename to previews/PR484/assets/development_contributors.md.I99J6XWx.lean.js index ea2b882f..fcb093a7 100644 --- a/previews/PR484/assets/development_contributors.md.DJXEd1h6.lean.js +++ b/previews/PR484/assets/development_contributors.md.I99J6XWx.lean.js @@ -1 +1 @@ -import{V as u,a as l,b as m,c as g}from"./chunks/theme.UIEISKWu.js";import{c as h,G as r,w as s,k as n,B as c,o as b,a as e,j as t}from"./chunks/framework.Bl-lyKae.js";const p={align:"justify"},z=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"page"},"headers":[],"relativePath":"development/contributors.md","filePath":"development/contributors.md","lastUpdated":null}'),v={name:"development/contributors.md"},j=Object.assign(v,{setup(f){const o=[{avatar:"https://www.bgc-jena.mpg.de/employee_images/121366-1667825290?t=eyJ3aWR0aCI6MjEzLCJoZWlnaHQiOjI3NCwiZml0IjoiY3JvcCIsImZpbGVfZXh0ZW5zaW9uIjoid2VicCIsInF1YWxpdHkiOjg2fQ%3D%3D--3e1d41ff4b1ea8928e6734bc473242a90f797dea",name:"Fabian Gans",title:"Geoscientific Programmer",links:[{icon:"github",link:"https://github.com/meggart"}]},{avatar:"https://avatars.githubusercontent.com/u/17124431?v=4",name:"Felix Cremer",title:"PhD Candidate in Remote Sensing",links:[{icon:"github",link:"https://github.com/felixcremer"}]},{avatar:"https://avatars.githubusercontent.com/u/2534009?v=4",name:"Rafael Schouten",title:"Spatial/ecological modelling",links:[{icon:"github",link:"https://github.com/rafaqz"}]},{avatar:"https://avatars.githubusercontent.com/u/19525261?v=4",name:"Lazaro Alonso",title:"Scientist. Data Visualization",links:[{icon:"github",link:"https://github.com/lazarusA"},{icon:"x",link:"https://twitter.com/LazarusAlon"},{icon:"linkedin",link:"https://www.linkedin.com/in/lazaro-alonso/"},{icon:"mastodon",link:"https://julialang.social/@LazaroAlonso"}]}];return(d,a)=>{const i=c("font");return b(),h("div",null,[r(n(g),null,{default:s(()=>[r(n(u),null,{title:s(()=>a[0]||(a[0]=[e("Contributors")])),lead:s(()=>[a[8]||(a[8]=t("strong",null,"Current core contributors ",-1)),a[9]||(a[9]=e()),a[10]||(a[10]=t("br",null,null,-1)),t("div",p,[a[4]||(a[4]=e(" They have taking the lead for the ongoing organizational maintenance and technical direction of ")),r(i,{color:"orange"},{default:s(()=>a[1]||(a[1]=[e("YAXArrays.jl")])),_:1}),a[5]||(a[5]=e(", ")),r(i,{color:"orange"},{default:s(()=>a[2]||(a[2]=[e("DiskArrays.jl")])),_:1}),a[6]||(a[6]=e(" and ")),r(i,{color:"orange"},{default:s(()=>a[3]||(a[3]=[e("DimensionalData.jl")])),_:1}),a[7]||(a[7]=e(". "))])]),_:1}),r(n(l),{size:"small",members:o}),r(n(m),null,{title:s(()=>a[11]||(a[11]=[e("Our valuable contributors")])),lead:s(()=>a[12]||(a[12]=[e(" We appreciate all contributions from the Julia community so that this ecosystem can thrive."),t("br",null,null,-1)])),members:s(()=>a[13]||(a[13]=[t("div",{class:"row"},[t("a",{href:"https://github.com/meggart",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2539563?v=4"})]),t("a",{href:"https://github.com/felixcremer",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/17124431?v=4"})]),t("a",{href:"https://github.com/lazarusA",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19525261?v=4"})]),t("a",{href:"https://github.com/gdkrmr",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/12512930?v=4"})]),t("a",{href:"https://github.com/apps/github-actions",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/15368?v=4"})]),t("a",{href:"https://github.com/pdimens",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19176506?v=4"})]),t("a",{href:"https://github.com/twinGu",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/29449917?v=4"})]),t("a",{href:"https://github.com/dpabon",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/13040959?v=4"})]),t("a",{href:"https://github.com/Qfl3x",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/20775896?v=4"})]),t("a",{href:"https://github.com/kongdd",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/9815742?v=4"})]),t("a",{href:"https://github.com/MartinuzziFrancesco",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10376688?v=4"})]),t("a",{href:"https://github.com/Sonicious",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/16307399?v=4"})]),t("a",{href:"https://github.com/rafaqz",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2534009?v=4"})]),t("a",{href:"https://github.com/danlooo",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/5780565?v=4"})]),t("a",{href:"https://github.com/MarkusZehner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/56972144?v=4"})]),t("a",{href:"https://github.com/Balinus",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/3630311?v=4"})]),t("a",{href:"https://github.com/singularitti",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/25192197?v=4"})]),t("a",{href:"https://github.com/ckrich",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/28727495?v=4"})]),t("a",{href:"https://github.com/apps/femtocleaner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/4123?v=4"})]),t("a",{href:"https://github.com/ikselven",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10441332?v=4"})]),t("a",{href:"https://github.com/linamaes",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/7131773?v=4"})])],-1)])),_:1})]),_:1})])}}});export{z as __pageData,j as default}; +import{V as u,a as l,b as m,c as g}from"./chunks/theme.JyDuiASx.js";import{c as h,G as r,w as s,k as n,B as c,o as b,a as e,j as t}from"./chunks/framework.Bl-lyKae.js";const p={align:"justify"},z=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"page"},"headers":[],"relativePath":"development/contributors.md","filePath":"development/contributors.md","lastUpdated":null}'),v={name:"development/contributors.md"},j=Object.assign(v,{setup(f){const o=[{avatar:"https://www.bgc-jena.mpg.de/employee_images/121366-1667825290?t=eyJ3aWR0aCI6MjEzLCJoZWlnaHQiOjI3NCwiZml0IjoiY3JvcCIsImZpbGVfZXh0ZW5zaW9uIjoid2VicCIsInF1YWxpdHkiOjg2fQ%3D%3D--3e1d41ff4b1ea8928e6734bc473242a90f797dea",name:"Fabian Gans",title:"Geoscientific Programmer",links:[{icon:"github",link:"https://github.com/meggart"}]},{avatar:"https://avatars.githubusercontent.com/u/17124431?v=4",name:"Felix Cremer",title:"PhD Candidate in Remote Sensing",links:[{icon:"github",link:"https://github.com/felixcremer"}]},{avatar:"https://avatars.githubusercontent.com/u/2534009?v=4",name:"Rafael Schouten",title:"Spatial/ecological modelling",links:[{icon:"github",link:"https://github.com/rafaqz"}]},{avatar:"https://avatars.githubusercontent.com/u/19525261?v=4",name:"Lazaro Alonso",title:"Scientist. Data Visualization",links:[{icon:"github",link:"https://github.com/lazarusA"},{icon:"x",link:"https://twitter.com/LazarusAlon"},{icon:"linkedin",link:"https://www.linkedin.com/in/lazaro-alonso/"},{icon:"mastodon",link:"https://julialang.social/@LazaroAlonso"}]}];return(d,a)=>{const i=c("font");return b(),h("div",null,[r(n(g),null,{default:s(()=>[r(n(u),null,{title:s(()=>a[0]||(a[0]=[e("Contributors")])),lead:s(()=>[a[8]||(a[8]=t("strong",null,"Current core contributors ",-1)),a[9]||(a[9]=e()),a[10]||(a[10]=t("br",null,null,-1)),t("div",p,[a[4]||(a[4]=e(" They have taking the lead for the ongoing organizational maintenance and technical direction of ")),r(i,{color:"orange"},{default:s(()=>a[1]||(a[1]=[e("YAXArrays.jl")])),_:1}),a[5]||(a[5]=e(", ")),r(i,{color:"orange"},{default:s(()=>a[2]||(a[2]=[e("DiskArrays.jl")])),_:1}),a[6]||(a[6]=e(" and ")),r(i,{color:"orange"},{default:s(()=>a[3]||(a[3]=[e("DimensionalData.jl")])),_:1}),a[7]||(a[7]=e(". "))])]),_:1}),r(n(l),{size:"small",members:o}),r(n(m),null,{title:s(()=>a[11]||(a[11]=[e("Our valuable contributors")])),lead:s(()=>a[12]||(a[12]=[e(" We appreciate all contributions from the Julia community so that this ecosystem can thrive."),t("br",null,null,-1)])),members:s(()=>a[13]||(a[13]=[t("div",{class:"row"},[t("a",{href:"https://github.com/meggart",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2539563?v=4"})]),t("a",{href:"https://github.com/felixcremer",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/17124431?v=4"})]),t("a",{href:"https://github.com/lazarusA",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19525261?v=4"})]),t("a",{href:"https://github.com/gdkrmr",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/12512930?v=4"})]),t("a",{href:"https://github.com/apps/github-actions",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/15368?v=4"})]),t("a",{href:"https://github.com/pdimens",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/19176506?v=4"})]),t("a",{href:"https://github.com/twinGu",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/29449917?v=4"})]),t("a",{href:"https://github.com/dpabon",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/13040959?v=4"})]),t("a",{href:"https://github.com/Qfl3x",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/20775896?v=4"})]),t("a",{href:"https://github.com/kongdd",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/9815742?v=4"})]),t("a",{href:"https://github.com/MartinuzziFrancesco",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10376688?v=4"})]),t("a",{href:"https://github.com/Sonicious",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/16307399?v=4"})]),t("a",{href:"https://github.com/rafaqz",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/2534009?v=4"})]),t("a",{href:"https://github.com/danlooo",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/5780565?v=4"})]),t("a",{href:"https://github.com/MarkusZehner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/56972144?v=4"})]),t("a",{href:"https://github.com/Balinus",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/3630311?v=4"})]),t("a",{href:"https://github.com/singularitti",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/25192197?v=4"})]),t("a",{href:"https://github.com/ckrich",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/28727495?v=4"})]),t("a",{href:"https://github.com/apps/femtocleaner",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/in/4123?v=4"})]),t("a",{href:"https://github.com/ikselven",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/10441332?v=4"})]),t("a",{href:"https://github.com/linamaes",target:"_blank"},[t("img",{src:"https://avatars.githubusercontent.com/u/7131773?v=4"})])],-1)])),_:1})]),_:1})])}}});export{z as __pageData,j as default}; diff --git a/previews/PR484/assets/index.md.B4oX8vNy.js b/previews/PR484/assets/index.md.DL_Vo461.js similarity index 94% rename from previews/PR484/assets/index.md.B4oX8vNy.js rename to previews/PR484/assets/index.md.DL_Vo461.js index 13d02f68..58571085 100644 --- a/previews/PR484/assets/index.md.B4oX8vNy.js +++ b/previews/PR484/assets/index.md.DL_Vo461.js @@ -2,7 +2,7 @@ import{_ as s,c as a,a2 as t,o as e}from"./chunks/framework.Bl-lyKae.js";const g julia> Pkg.add("YAXArrays.jl") # or julia> ] # ']' should be pressed -pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
+pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
 Pkg.add("ArchGDAL")
julia
using Pkg
 Pkg.add("NetCDF")
julia
using Pkg
 Pkg.add("Zarr")
julia
using Pkg
diff --git a/previews/PR484/assets/index.md.B4oX8vNy.lean.js b/previews/PR484/assets/index.md.DL_Vo461.lean.js
similarity index 94%
rename from previews/PR484/assets/index.md.B4oX8vNy.lean.js
rename to previews/PR484/assets/index.md.DL_Vo461.lean.js
index 13d02f68..58571085 100644
--- a/previews/PR484/assets/index.md.B4oX8vNy.lean.js
+++ b/previews/PR484/assets/index.md.DL_Vo461.lean.js
@@ -2,7 +2,7 @@ import{_ as s,c as a,a2 as t,o as e}from"./chunks/framework.Bl-lyKae.js";const g
 julia> Pkg.add("YAXArrays.jl")
 # or
 julia> ] # ']' should be pressed
-pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
+pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
 Pkg.add("ArchGDAL")
julia
using Pkg
 Pkg.add("NetCDF")
julia
using Pkg
 Pkg.add("Zarr")
julia
using Pkg
diff --git a/previews/PR484/assets/lnenoem.D9rvatPm.png b/previews/PR484/assets/jkytbph.D9rvatPm.png
similarity index 100%
rename from previews/PR484/assets/lnenoem.D9rvatPm.png
rename to previews/PR484/assets/jkytbph.D9rvatPm.png
diff --git a/previews/PR484/assets/mmzaksu.C-WFBMfk.png b/previews/PR484/assets/lnenoem.C-WFBMfk.png
similarity index 100%
rename from previews/PR484/assets/mmzaksu.C-WFBMfk.png
rename to previews/PR484/assets/lnenoem.C-WFBMfk.png
diff --git a/previews/PR484/assets/pdifvqr.DldUI1n7.jpeg b/previews/PR484/assets/mmzaksu.DldUI1n7.jpeg
similarity index 100%
rename from previews/PR484/assets/pdifvqr.DldUI1n7.jpeg
rename to previews/PR484/assets/mmzaksu.DldUI1n7.jpeg
diff --git a/previews/PR484/assets/ssvwqbb.BJNzQY3Z.png b/previews/PR484/assets/pdifvqr.BJNzQY3Z.png
similarity index 100%
rename from previews/PR484/assets/ssvwqbb.BJNzQY3Z.png
rename to previews/PR484/assets/pdifvqr.BJNzQY3Z.png
diff --git a/previews/PR484/assets/xzwnmje.Dwd2F2F-.jpeg b/previews/PR484/assets/ssvwqbb.Dwd2F2F-.jpeg
similarity index 100%
rename from previews/PR484/assets/xzwnmje.Dwd2F2F-.jpeg
rename to previews/PR484/assets/ssvwqbb.Dwd2F2F-.jpeg
diff --git a/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.lean.js b/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.js
similarity index 99%
rename from previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.lean.js
rename to previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.js
index 1b583acf..57208418 100644
--- a/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.lean.js
+++ b/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as h}from"./chunks/framework.Bl-lyKae.js";const l="/YAXArrays.jl/previews/PR484/assets/mmzaksu.C-WFBMfk.png",k="/YAXArrays.jl/previews/PR484/assets/lnenoem.D9rvatPm.png",c=JSON.parse('{"title":"Mean Seasonal Cycle for a single pixel","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/mean_seasonal_cycle.md","filePath":"tutorials/mean_seasonal_cycle.md","lastUpdated":null}'),p={name:"tutorials/mean_seasonal_cycle.md"};function t(e,s,E,d,r,g){return h(),a("div",null,s[0]||(s[0]=[n(`

Mean Seasonal Cycle for a single pixel

julia
using CairoMakie
+import{_ as i,c as a,a2 as n,o as h}from"./chunks/framework.Bl-lyKae.js";const l="/YAXArrays.jl/previews/PR484/assets/lnenoem.C-WFBMfk.png",k="/YAXArrays.jl/previews/PR484/assets/jkytbph.D9rvatPm.png",c=JSON.parse('{"title":"Mean Seasonal Cycle for a single pixel","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/mean_seasonal_cycle.md","filePath":"tutorials/mean_seasonal_cycle.md","lastUpdated":null}'),p={name:"tutorials/mean_seasonal_cycle.md"};function t(e,s,E,d,r,g){return h(),a("div",null,s[0]||(s[0]=[n(`

Mean Seasonal Cycle for a single pixel

julia
using CairoMakie
 CairoMakie.activate!()
 using Dates
 using Statistics

We define the data span. For simplicity, three non-leap years were selected.

julia
t =  Date("2021-01-01"):Day(1):Date("2023-12-31")
diff --git a/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.js b/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.lean.js
similarity index 99%
rename from previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.js
rename to previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.lean.js
index 1b583acf..57208418 100644
--- a/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.B0rxzeNg.js
+++ b/previews/PR484/assets/tutorials_mean_seasonal_cycle.md.DnUGdDLG.lean.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as n,o as h}from"./chunks/framework.Bl-lyKae.js";const l="/YAXArrays.jl/previews/PR484/assets/mmzaksu.C-WFBMfk.png",k="/YAXArrays.jl/previews/PR484/assets/lnenoem.D9rvatPm.png",c=JSON.parse('{"title":"Mean Seasonal Cycle for a single pixel","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/mean_seasonal_cycle.md","filePath":"tutorials/mean_seasonal_cycle.md","lastUpdated":null}'),p={name:"tutorials/mean_seasonal_cycle.md"};function t(e,s,E,d,r,g){return h(),a("div",null,s[0]||(s[0]=[n(`

Mean Seasonal Cycle for a single pixel

julia
using CairoMakie
+import{_ as i,c as a,a2 as n,o as h}from"./chunks/framework.Bl-lyKae.js";const l="/YAXArrays.jl/previews/PR484/assets/lnenoem.C-WFBMfk.png",k="/YAXArrays.jl/previews/PR484/assets/jkytbph.D9rvatPm.png",c=JSON.parse('{"title":"Mean Seasonal Cycle for a single pixel","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/mean_seasonal_cycle.md","filePath":"tutorials/mean_seasonal_cycle.md","lastUpdated":null}'),p={name:"tutorials/mean_seasonal_cycle.md"};function t(e,s,E,d,r,g){return h(),a("div",null,s[0]||(s[0]=[n(`

Mean Seasonal Cycle for a single pixel

julia
using CairoMakie
 CairoMakie.activate!()
 using Dates
 using Statistics

We define the data span. For simplicity, three non-leap years were selected.

julia
t =  Date("2021-01-01"):Day(1):Date("2023-12-31")
diff --git a/previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.js b/previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.js
similarity index 83%
rename from previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.js
rename to previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.js
index 93b75e1f..149d5b1b 100644
--- a/previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.js
+++ b/previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.js
@@ -1,4 +1,4 @@
-import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n="/YAXArrays.jl/previews/PR484/assets/taklqov.CQ9uchq9.jpeg",l="/YAXArrays.jl/previews/PR484/assets/cyhvrkj.B7KFIfDV.jpeg",k="/YAXArrays.jl/previews/PR484/assets/mbalbzx.96k_BqPR.jpeg",p="/YAXArrays.jl/previews/PR484/assets/oowdcxc.B074eX2X.jpeg",e="/YAXArrays.jl/previews/PR484/assets/zvezrog.C5U_qDue.jpeg",r="/YAXArrays.jl/previews/PR484/assets/dzarsbx.DX1O6I5P.jpeg",d="/YAXArrays.jl/previews/PR484/assets/frwqpez.Blc9BtwN.jpeg",E="/YAXArrays.jl/previews/PR484/assets/idgplot.Bcyn0CpL.jpeg",g="/YAXArrays.jl/previews/PR484/assets/weuosxb.-RBZ8LkA.jpeg",y="/YAXArrays.jl/previews/PR484/assets/xzwnmje.Dwd2F2F-.jpeg",b=JSON.parse('{"title":"Plotting maps","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/plottingmaps.md","filePath":"tutorials/plottingmaps.md","lastUpdated":null}'),o={name:"tutorials/plottingmaps.md"};function F(c,s,C,u,m,A){return h(),a("div",null,s[0]||(s[0]=[t(`

Plotting maps

As test data we use the CMIP6 Scenarios.

julia
using Zarr, YAXArrays, Dates
+import{_ as i,c as a,a2 as t,o as n}from"./chunks/framework.Bl-lyKae.js";const h="/YAXArrays.jl/previews/PR484/assets/taklqov.CQ9uchq9.jpeg",l="/YAXArrays.jl/previews/PR484/assets/cyhvrkj.B7KFIfDV.jpeg",p="/YAXArrays.jl/previews/PR484/assets/mbalbzx.96k_BqPR.jpeg",k="/YAXArrays.jl/previews/PR484/assets/oowdcxc.B074eX2X.jpeg",e="/YAXArrays.jl/previews/PR484/assets/zvezrog.C5U_qDue.jpeg",r="/YAXArrays.jl/previews/PR484/assets/dzarsbx.DX1O6I5P.jpeg",d="/YAXArrays.jl/previews/PR484/assets/frwqpez.Blc9BtwN.jpeg",E="/YAXArrays.jl/previews/PR484/assets/idgplot.Bcyn0CpL.jpeg",g="/YAXArrays.jl/previews/PR484/assets/weuosxb.-RBZ8LkA.jpeg",y="/YAXArrays.jl/previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg",o="/YAXArrays.jl/previews/PR484/assets/ssvwqbb.Dwd2F2F-.jpeg",D=JSON.parse('{"title":"Plotting maps","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/plottingmaps.md","filePath":"tutorials/plottingmaps.md","lastUpdated":null}'),F={name:"tutorials/plottingmaps.md"};function c(C,s,u,m,A,b){return n(),a("div",null,s[0]||(s[0]=[t(`

Plotting maps

As test data we use the CMIP6 Scenarios.

julia
using Zarr, YAXArrays, Dates
 using DimensionalData
 using GLMakie, GeoMakie
 using GLMakie.GeometryBasics
@@ -24,7 +24,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 fig, ax, plt = heatmap(ct1_slice; colormap = :seaborn_icefire_gradient,
     axis = (; aspect=DataAspect()),
     figure = (; size = (1200,600), fontsize=24))
-fig

Wintri Projection

Some transformations

julia
δlon = (lon_d[2] - lon_d[1])/2
+fig

Wintri Projection

Some transformations

julia
δlon = (lon_d[2] - lon_d[1])/2
 nlon = lon_d .- 180 .+ δlon
 ndata = circshift(data_d, (192,1))

and add Coastlines with GeoMakie.coastlines(),

julia
fig = Figure(;size=(1200,600))
 ax = GeoAxis(fig[1,1])
@@ -36,7 +36,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 surface!(ax, nlon, lat_d, ndata; colormap = :seaborn_icefire_gradient, shading=false)
 cl=lines!(ax, GeoMakie.coastlines(), color = :white, linewidth=0.85)
 translate!(cl, 0, 0, 1000)
-fig

3D sphere plot

julia
using GLMakie
+fig

3D sphere plot

julia
using GLMakie
 using GLMakie.GeometryBasics
 GLMakie.activate!()
 
@@ -55,7 +55,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 using GLMakie.GeometryBasics
 GLMakie.activate!()

let's continue using the cmip6 dataset

julia
store ="gs://cmip6/CMIP6/ScenarioMIP/DKRZ/MPI-ESM1-2-HR/ssp585/r1i1p1f1/3hr/tas/gn/v20190710/"
 g = open_dataset(zopen(store, consolidated=true))
-c = g["tas"];

and let's focus on the first time step:

julia
dim_data = readcubedata(c[time=1]); # read into memory first!

and now plot

julia
data(dim_data) * mapping(:lon, :lat; color=:value) * visual(Scatter) |> draw

WARNING

Note that we are using a Scatter type per point and not the Heatmap one. There are workarounds for this, albeit cumbersome, so for now, let's keep this simpler syntax in mind along with the current approach being used.

set other attributes

julia
plt = data(dim_data) * mapping(:lon, :lat; color=:value)
+c = g["tas"];

and let's focus on the first time step:

julia
dim_data = readcubedata(c[time=1]); # read into memory first!

and now plot

julia
data(dim_data) * mapping(:lon, :lat; color=:value) * visual(Scatter) |> draw

WARNING

Note that we are using a Scatter type per point and not the Heatmap one. There are workarounds for this, albeit cumbersome, so for now, let's keep this simpler syntax in mind along with the current approach being used.

set other attributes

julia
plt = data(dim_data) * mapping(:lon, :lat; color=:value)
 draw(plt * visual(Scatter, marker=:rect), scales(Color = (; colormap = :plasma));
     axis = (width = 600, height = 400, limits=(0, 360, -90, 90)))

Faceting

For this let's consider more time steps from our dataset:

julia
using Dates
 dim_time = c[time=DateTime("2015-01-01") .. DateTime("2015-01-01T21:00:00")] # subset 7 t steps
┌ 384×192×7 YAXArray{Float32, 3} ┐
@@ -84,6 +84,27 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
     figure=(; size=(900,600)))

most Makie plot functions should work. See lines for example

julia
plt = data(dim_data[lon=50..100]) * mapping(:lat, :value => "tas"; color=:value => "tas")
 draw(plt * visual(Lines); figure=(; size=(650,400)))

or faceting them

julia
plt = data(dim_data[lon=50..59]) * mapping(:lat, :value => "tas"; color=:value => "tas",
     layout = :lon => nonnumeric)
-draw(plt * visual(Lines); figure=(; size=(650,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
+draw(plt * visual(Lines); figure=(; size=(650,400)))

Time series

For this, let's load a little bit more of time steps

julia
dim_series = c[time=DateTime("2015-01-01") .. DateTime("2015-01-04"), lon = 150 .. 157, lat = 0..1] |> readcubedata
┌ 8×1×24 YAXArray{Float32, 3} ┐
+├─────────────────────────────┴────────────────────────────────────────── dims ┐
+  ↓ lon  Sampled{Float64} 150.0:0.9375:156.5625 ForwardOrdered Regular Points,
+  → lat  Sampled{Float64} [0.4675308904227747] ForwardOrdered Irregular Points,
+  ↗ time Sampled{DateTime} [2015-01-01T03:00:00, …, 2015-01-04T00:00:00] ForwardOrdered Irregular Points
+├──────────────────────────────────────────────────────────────────── metadata ┤
+  Dict{String, Any} with 10 entries:
+  "units"         => "K"
+  "history"       => "2019-07-21T06:26:13Z altered by CMOR: Treated scalar dime…
+  "name"          => "tas"
+  "cell_methods"  => "area: mean time: point"
+  "cell_measures" => "area: areacella"
+  "long_name"     => "Near-Surface Air Temperature"
+  "coordinates"   => "height"
+  "standard_name" => "air_temperature"
+  "_FillValue"    => 1.0f20
+  "comment"       => "near-surface (usually, 2 meter) air temperature"
+├──────────────────────────────────────────────────────────── loaded in memory ┤
+  data size: 768.0 bytes
+└──────────────────────────────────────────────────────────────────────────────┘

and plot

julia
plt = data(dim_series) * mapping(:time, :value => "tas"; color=:lon => nonnumeric)
+draw(plt * visual(ScatterLines), scales(Color = (; palette = :tableau_colorblind));
+    figure=(; size=(800,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
 specs *= (smooth() + visual(Scatter))
-draw(specs;  figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

',61)]))}const D=i(o,[["render",F]]);export{b as __pageData,D as default}; +draw(specs; figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

',68)]))}const v=i(F,[["render",c]]);export{D as __pageData,v as default}; diff --git a/previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.lean.js b/previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.lean.js similarity index 83% rename from previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.lean.js rename to previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.lean.js index 93b75e1f..149d5b1b 100644 --- a/previews/PR484/assets/tutorials_plottingmaps.md.DbY5YmNa.lean.js +++ b/previews/PR484/assets/tutorials_plottingmaps.md.PQqZL_Fc.lean.js @@ -1,4 +1,4 @@ -import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n="/YAXArrays.jl/previews/PR484/assets/taklqov.CQ9uchq9.jpeg",l="/YAXArrays.jl/previews/PR484/assets/cyhvrkj.B7KFIfDV.jpeg",k="/YAXArrays.jl/previews/PR484/assets/mbalbzx.96k_BqPR.jpeg",p="/YAXArrays.jl/previews/PR484/assets/oowdcxc.B074eX2X.jpeg",e="/YAXArrays.jl/previews/PR484/assets/zvezrog.C5U_qDue.jpeg",r="/YAXArrays.jl/previews/PR484/assets/dzarsbx.DX1O6I5P.jpeg",d="/YAXArrays.jl/previews/PR484/assets/frwqpez.Blc9BtwN.jpeg",E="/YAXArrays.jl/previews/PR484/assets/idgplot.Bcyn0CpL.jpeg",g="/YAXArrays.jl/previews/PR484/assets/weuosxb.-RBZ8LkA.jpeg",y="/YAXArrays.jl/previews/PR484/assets/xzwnmje.Dwd2F2F-.jpeg",b=JSON.parse('{"title":"Plotting maps","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/plottingmaps.md","filePath":"tutorials/plottingmaps.md","lastUpdated":null}'),o={name:"tutorials/plottingmaps.md"};function F(c,s,C,u,m,A){return h(),a("div",null,s[0]||(s[0]=[t(`

Plotting maps

As test data we use the CMIP6 Scenarios.

julia
using Zarr, YAXArrays, Dates
+import{_ as i,c as a,a2 as t,o as n}from"./chunks/framework.Bl-lyKae.js";const h="/YAXArrays.jl/previews/PR484/assets/taklqov.CQ9uchq9.jpeg",l="/YAXArrays.jl/previews/PR484/assets/cyhvrkj.B7KFIfDV.jpeg",p="/YAXArrays.jl/previews/PR484/assets/mbalbzx.96k_BqPR.jpeg",k="/YAXArrays.jl/previews/PR484/assets/oowdcxc.B074eX2X.jpeg",e="/YAXArrays.jl/previews/PR484/assets/zvezrog.C5U_qDue.jpeg",r="/YAXArrays.jl/previews/PR484/assets/dzarsbx.DX1O6I5P.jpeg",d="/YAXArrays.jl/previews/PR484/assets/frwqpez.Blc9BtwN.jpeg",E="/YAXArrays.jl/previews/PR484/assets/idgplot.Bcyn0CpL.jpeg",g="/YAXArrays.jl/previews/PR484/assets/weuosxb.-RBZ8LkA.jpeg",y="/YAXArrays.jl/previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg",o="/YAXArrays.jl/previews/PR484/assets/ssvwqbb.Dwd2F2F-.jpeg",D=JSON.parse('{"title":"Plotting maps","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/plottingmaps.md","filePath":"tutorials/plottingmaps.md","lastUpdated":null}'),F={name:"tutorials/plottingmaps.md"};function c(C,s,u,m,A,b){return n(),a("div",null,s[0]||(s[0]=[t(`

Plotting maps

As test data we use the CMIP6 Scenarios.

julia
using Zarr, YAXArrays, Dates
 using DimensionalData
 using GLMakie, GeoMakie
 using GLMakie.GeometryBasics
@@ -24,7 +24,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 fig, ax, plt = heatmap(ct1_slice; colormap = :seaborn_icefire_gradient,
     axis = (; aspect=DataAspect()),
     figure = (; size = (1200,600), fontsize=24))
-fig

Wintri Projection

Some transformations

julia
δlon = (lon_d[2] - lon_d[1])/2
+fig

Wintri Projection

Some transformations

julia
δlon = (lon_d[2] - lon_d[1])/2
 nlon = lon_d .- 180 .+ δlon
 ndata = circshift(data_d, (192,1))

and add Coastlines with GeoMakie.coastlines(),

julia
fig = Figure(;size=(1200,600))
 ax = GeoAxis(fig[1,1])
@@ -36,7 +36,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 surface!(ax, nlon, lat_d, ndata; colormap = :seaborn_icefire_gradient, shading=false)
 cl=lines!(ax, GeoMakie.coastlines(), color = :white, linewidth=0.85)
 translate!(cl, 0, 0, 1000)
-fig

3D sphere plot

julia
using GLMakie
+fig

3D sphere plot

julia
using GLMakie
 using GLMakie.GeometryBasics
 GLMakie.activate!()
 
@@ -55,7 +55,7 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
 using GLMakie.GeometryBasics
 GLMakie.activate!()

let's continue using the cmip6 dataset

julia
store ="gs://cmip6/CMIP6/ScenarioMIP/DKRZ/MPI-ESM1-2-HR/ssp585/r1i1p1f1/3hr/tas/gn/v20190710/"
 g = open_dataset(zopen(store, consolidated=true))
-c = g["tas"];

and let's focus on the first time step:

julia
dim_data = readcubedata(c[time=1]); # read into memory first!

and now plot

julia
data(dim_data) * mapping(:lon, :lat; color=:value) * visual(Scatter) |> draw

WARNING

Note that we are using a Scatter type per point and not the Heatmap one. There are workarounds for this, albeit cumbersome, so for now, let's keep this simpler syntax in mind along with the current approach being used.

set other attributes

julia
plt = data(dim_data) * mapping(:lon, :lat; color=:value)
+c = g["tas"];

and let's focus on the first time step:

julia
dim_data = readcubedata(c[time=1]); # read into memory first!

and now plot

julia
data(dim_data) * mapping(:lon, :lat; color=:value) * visual(Scatter) |> draw

WARNING

Note that we are using a Scatter type per point and not the Heatmap one. There are workarounds for this, albeit cumbersome, so for now, let's keep this simpler syntax in mind along with the current approach being used.

set other attributes

julia
plt = data(dim_data) * mapping(:lon, :lat; color=:value)
 draw(plt * visual(Scatter, marker=:rect), scales(Color = (; colormap = :plasma));
     axis = (width = 600, height = 400, limits=(0, 360, -90, 90)))

Faceting

For this let's consider more time steps from our dataset:

julia
using Dates
 dim_time = c[time=DateTime("2015-01-01") .. DateTime("2015-01-01T21:00:00")] # subset 7 t steps
┌ 384×192×7 YAXArray{Float32, 3} ┐
@@ -84,6 +84,27 @@ import{_ as i,c as a,a2 as t,o as h}from"./chunks/framework.Bl-lyKae.js";const n
     figure=(; size=(900,600)))

most Makie plot functions should work. See lines for example

julia
plt = data(dim_data[lon=50..100]) * mapping(:lat, :value => "tas"; color=:value => "tas")
 draw(plt * visual(Lines); figure=(; size=(650,400)))

or faceting them

julia
plt = data(dim_data[lon=50..59]) * mapping(:lat, :value => "tas"; color=:value => "tas",
     layout = :lon => nonnumeric)
-draw(plt * visual(Lines); figure=(; size=(650,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
+draw(plt * visual(Lines); figure=(; size=(650,400)))

Time series

For this, let's load a little bit more of time steps

julia
dim_series = c[time=DateTime("2015-01-01") .. DateTime("2015-01-04"), lon = 150 .. 157, lat = 0..1] |> readcubedata
┌ 8×1×24 YAXArray{Float32, 3} ┐
+├─────────────────────────────┴────────────────────────────────────────── dims ┐
+  ↓ lon  Sampled{Float64} 150.0:0.9375:156.5625 ForwardOrdered Regular Points,
+  → lat  Sampled{Float64} [0.4675308904227747] ForwardOrdered Irregular Points,
+  ↗ time Sampled{DateTime} [2015-01-01T03:00:00, …, 2015-01-04T00:00:00] ForwardOrdered Irregular Points
+├──────────────────────────────────────────────────────────────────── metadata ┤
+  Dict{String, Any} with 10 entries:
+  "units"         => "K"
+  "history"       => "2019-07-21T06:26:13Z altered by CMOR: Treated scalar dime…
+  "name"          => "tas"
+  "cell_methods"  => "area: mean time: point"
+  "cell_measures" => "area: areacella"
+  "long_name"     => "Near-Surface Air Temperature"
+  "coordinates"   => "height"
+  "standard_name" => "air_temperature"
+  "_FillValue"    => 1.0f20
+  "comment"       => "near-surface (usually, 2 meter) air temperature"
+├──────────────────────────────────────────────────────────── loaded in memory ┤
+  data size: 768.0 bytes
+└──────────────────────────────────────────────────────────────────────────────┘

and plot

julia
plt = data(dim_series) * mapping(:time, :value => "tas"; color=:lon => nonnumeric)
+draw(plt * visual(ScatterLines), scales(Color = (; palette = :tableau_colorblind));
+    figure=(; size=(800,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
 specs *= (smooth() + visual(Scatter))
-draw(specs;  figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

',61)]))}const D=i(o,[["render",F]]);export{b as __pageData,D as default}; +draw(specs; figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

',68)]))}const v=i(F,[["render",c]]);export{D as __pageData,v as default}; diff --git a/previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg b/previews/PR484/assets/xzwnmje.Cj8iZQLt.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..4d27b9c370ed0fa0a07c4d1a6d7466755b258f57 GIT binary patch literal 74261 zcmeFZ2UJttwm%vKLAprqN>`dlhX5kdL_lijsEBls9%>W?qzed0?;s#VdM8Tny(1+- zI)Q{5AcTLubKf}kobQ}F?z!*%$9r$QcXr0wBP-e2Yt6mZY`-~Yu4b=R05_kgX{rGT z2mk;A{0nfk08jxCUi;(t<4lM@h=_^)IBpOVUneHLK}JS;gOrqvf|`PioQj;3l#+&$ ziu&eFnww-4w`gzOq{Y9#`NvHN{`e&!(GC0$Z<3Re<3If$9#=mAG&cx75#A;w-~wEu zAt0n7xatIO;^%pt;4cT@|2PP)5fWV|Cb>aMMvlLr_9oyOe(Y;Rgx9YV5#g^6!ha7S zqPc$Sj+inrt=I@8WZBa6hX2Nv}VK;t_x85kgAFz{teR!pp}maQB{sq?ELb ztenbYRW)@D%_jziM#dl$Q!|@awy*8%9UMKqynTGZe*W)2gocHGjEGD~{G61W@+CDb zFTbF$sQ7D1X;pPiZC!msV^e!aXIFPmZ(slT#N^cU%##|mBn-lx0aMB*^!oa9QIg&5EkfJAB; zYYFi70^Pj=klVoRF6m%oSAdoEg)2Z*K8~TMedPRZF#Q$a=TQ9>fbk)_C4E1neHLSS z1yB`jhhb#vt^kP5D?n%^su~w*9ST8tx?BOeMoB=b9@(fmMFz;277B`^a)Du*l>R-r ze?PhZpYOTgzc57czZv5Hi=yOzw5)kem>yJQH*r%drex&;Y`|KOVo|GVkwKAwVf!RN z`2Fuxz@JsZKlTZGt^f{{{7RkVds2Vba>q$iPsG@>VLj>QRkcI(&5&Zw7O)Fl{CDX`B+gA30PBt8wBF@Q=S7{7fWjnLDNCni~f)mk0;u* zF?@e$8Nsr=f6wlpJ-by&&JTFy&8XXGi*bTKdn}^NB3XZ`dqMvokPl;82|>(*4RWpk zU;eU6mVCumfZIFJbHo+koU~;1BI<~aVBjAfw!lBE8wjKdz^n8>ZG}HC8~xPSL$=~S z?}WI2*i+tK&q(ll@J~A-{~tD$r6nB!-r)GtR`~bq=mSvsaQoyz>aaF?=4=ui&-5>B z46e)UAD4|19kAMIO${`#fp1C>w}F#H_AHAIei&0+D<*1Nn|L+z4d!hFK zBzL%L;dhMNNk$Z&>t@;;4sNbquq<2*{nI`35OzS9h-;m=0z7i8|0n$1(s7cCu|duE zti(l#d~4&tI4-@q;F#kYcNt5Oe)B$rmODf>V9F1KRKEi72zD-?tX%;LKaG-Ohmm7Vp(iw>*WQOqy zFsiM~`O7-ztK^?Q$szeyW(Nw#1~j09ikgcwi>wz_o{us_xU300E?t(FqR!{%k31!V zL%n(fZ4gMG=@sI-iKEKG65u$=sS30kWOFSx6BV<(@l5WsKS5{%4hnpP(L{{U)Q923TCC@qycaK% z6N!AA+ot?q$In5@Y)&0`Vi%ra7oH?WBihz5uG2`=X@`<+d_ja))MI0t~iCt#-GRCruPrDx%2ZP1qT%#{)<-5wY)1pufFd2sqQ6d z>7t?a8JXr4z-sFXkSl4PbFHQ9B>xJKK#y>{@VEku_c~2E^}`&M&hA+8T>xG|x}Oq~6CJLHQH7J6XVP|Pmpl3ob(orW4jK#mcr>`D4x|FC@*E>- z+lT`78!^o*Of7m}?M3sKRXll<7E50C^FA#0pzYIV)?JtFcG9&~)OB!?k4L^3+1=lF zvl+wBZSX&g$d-v!yRI^5XqrzZUv@!HfOm-|S8nRZ7<$04dmsOsAHDmQoE_FI)E_x0 zzoV5arQAGQUxmw(ZFcEQ{JQl(u*l>|Wlp7VK>7TJko#x5k6^>gql%g1ZErd~RZn(h zRk~*ce`c#ecKu4 zspz=A_8m!11*$fsagtk@%vUnXeT(1vZd0-K<*rglvQlW^#D$3ygep*QRg~JnKMN{Z zIPMVN19X3EE9hDk8olBrA2=~$nLpj)db?|#Nrwk7h^kK@b%;X?S+EG44iIMZxt;&H+atTO#%EYTxb;<+0N2ipY% zGvFSxLnOz3Cxl&*$8-o`c~4vEXOkhfVfEOa!L47!yw9_?0wl7s#JPw2)QI7>&v#>)qi)REY~~XkIL!q!%vlWNFM^v5J{Dd9 zBKCChwij*Q#(c*MOoC`pgmw@Idw(XUo1U4m*0{Eln`%%Hb!L~q_~R`Prn<9aX3mLcUE(lsLqv zzI3oK@Q~`EeDgT=?hH^BRYiUg!>^rfiV|11DYY>BL6MSXW@*;LpLugf=yuq3#e+~H zyR@?mDsE04lV~+A3yiO*&wzjqx-%*(W8;vF;`J5oLJ3%M#3; z4!#Qp>7o`>KGu|VO~dN$r>WMyC*_5GKGNuMJBfh%jTC}6x?5fYTq^9-yKA+DTo1f7y64hWCJBo_@~$0ZOdhi` z>*WdaGUaw3OA1rweCB8t^21CxrfHUlA&=)K(M2ARvf-rro_~Dkzo3rj8F7yiATv#n zO>N`tzY}W!`ZeoXPV6TrEo31Dm#kt{W@U7NcbEFe(9)NUkgZn|1lu)wssKFS{kP3% zvQ|M_tuozkT9Vv}RnT@>vTLx6P7hipe-m)ZS7Hu^wfm;gVu~iZSRS7XIS!sj`&LSp zewE?rXMGMhUT=g(&D*_|ESG*b9(>!P{rfMcY1o|4DR0}5U&+1R6Vy|{oli;pPH&#X zVo27$c%3<8?SfVyEDrOMEe2T2(ZZSCnoy9~Kl8)&JPU_;n zZQ^cEAf{^AjYsq=Gid3D3U(y)0dIVo5~y#-QYz_A)*#J(EpGXq%zPr{5S3aoikHr( z_wG-4@Qo~fHiR-TwG^CUh2oD?6ave`C7-EJwN96c~3_Tx*~PO#4CPvNYFXW^7wbk^(%m1wII*E z9Pg1q4P@Fmtz0qou=WbjwtyA5wn%UAH{D^p^amm#`*=r|3{bCX__uxWQpkwB^#u~v z{#JO*=s$bW+u4W1Gq?*kR1Ue9(bK>7^8e<(|8E$^%KSnF>rss%U-=TKClz^KK82j0 zGczX*ED$mJQr$)cAPabv5#%&>_*XhxL{~fPmuaxtg@L?iV4AZ(aZ+`sB5yFr*w7Sdv`#beafXPKL(UXU=OBYq5`8k;0{ml4HgBhd}d_#7S46 zEy7X>zW1?oL&Ky3x-NS!g;9sQ?tL6WfbY}!y*RU_%Z%D6PHKoNmT&TxO1b@f!S4{A zg{1j#54+2dn7F+L#fDy#^#`mnLrKvUpk0%K5<&S$aD>Ha&gQ`4X_j^kNi31Zldo5R z=V`U8x?~m|=(@fSVXCaVCmlVcdKXY@^&myd zAm*;)0EAt1QR|xRb~$vUxK!b!MgF7$)3r+d9!EFs24r`074g>UdAGL_HE43JXysZK zxwOoPt>hxct_PHo%o450YtAleIEu%C9J_=+EPPeZ27Pm*kaFTe*Ia%2ym>bfX6Jk2j)6&c?E_RwcMMF5nw_|R23>CkyrJ$B zP09HBT)oaS@>sSga*037k3nWte{c5<{lh+<6Z)TE7+ftI;pcK}sbGV`wLX6*R2y`6 zP`o|oP4qQng3<{aP27`1b_hZ=idCPJs_pL33x)_gpHGfB-iZV~JI^GFgsxHyJkn`B%@bH{C1x&nxvZ4RC(*SAb;~936pcWXa!j?F_E~ zSw67S1xP5sJg@X`y3Bta^WlFv42gVs)poG_m{&J<@A&g{<81!7J*Vz=hn^TvKPQbM z^+NDiHXT$lAV?oE3_eQFG+sB-Y)Cs;XO7Jm+fn$1?wx2n9%v3`g7RXt zR>M%q@8E(Tk1k?#^=AS(9bP!u0M7PAh1S7ubXA`<^2Pz~mdC|f*XT5(M!M>YF?;CWs49{Q?3ViUiE_@`iNDFH_TN6q8Q z>R6UZS63{dZP7N>P*AR>NQ`eYG}U?izV6f`=~c^CKf8C%$DAaAkEXHg8>$liS=kQX z7W#N%F8XLxTaXj`x8f_W0RFAq|Ec-~H!YW-C5Opcj|ct>n6YZ%9B&Kcy#+$FE(^UZ{RbU`IWXpEQKN|^ zO`EWjnU1d940Y~1uXuk7HtIaMZjQeL9w9IUA)q)~$YoXBoEuI%zVoS%SxSz|BZ_G>|oznI%vB9}jg$5yhqX2FHV~=bG$nPY~0Ius2@7-z^^x5deZ{Zizkn7A z#$)PB!1d}F7X+p5kK`fuiiNrAxxAj%`d6;^V4XjGZ_0m?o3T{2wMs94VmO&$u5IZG zo$|{!qo-%7{E8?@)ETj}t3I$BgjB*h<02Kso6w5!XhMU=wkREQzubT+a(C8V3;J$C zx;vh|Ke%ISkJkLMyMhFtq1JP4&`}*yRoajowHH&!mn1&9g|w*#gk{|jaJCxz&Zt)= zNO#7oS=&ytDR#a8oUS3{l`JR*@9VyUit-g25Nd7HuW!gW4W52BAH&u;?oIEG?bvxc ztZrWc?4K3ol5X|aMJIqPr7?+Btrtb&=F`qcln;W8vERc059n;aB)$b4^F$7!ietQB z3=z})vbo92*H=GNBq`kZ`Py1e!JDs*1#)^f21vrtcG>bF;Bu8}` zCg^);MV*3Uq(Fsu%|8R`y3yg0HBch3wISNIUNptF&|G1#VSASC-gz~f0DB+(;Ym4a z1T=-?+#25*XTtifUV3{6eEpJH`C5vc(3fW6XN}j&#>LbUW){*uiYYI|N__N7qy8`` zhYxASK1j6KkTMRh{LTEupUZ#JY$Uea3+bkhiT8XxQ&;z(?p@wvR>$V(+QEhIZ^%V{ zxcBP%BStpWY2L-^Ppw5brT3E?RGi`=aNFPbqy z=m*v}wi$&$on}Fuy37_rX0h4wZVv;(Lf~v1@Sw6*^cOtSr=qPjG2Tpv5=x|gR<~y` z{aT)hCxXVSB%fZt*o@e*l13XKq_T^*{nfh_?#=Y2YfrlD?|plm1N)M_c_;u3tXdeE zVXL|A4YkKWY~4}&aJ8~kHyTa0r90ENAUC%Uaw%B0Rr?>^z|mQY@N({6O#Q}~z`sj; z{}fZGb?URrmna8vF&uWO=BL)cogn$znoNh*P}ZF%=aFMJ%e#z#s@;7XVb$6#r+ zdk1gVfP+u@72v7Mvyz_5_yTNc3X;IaoAYfB-t{I;)I(`s)_;6X*7!P>_TuPVf>NL& zuAM~?;|6a{PVs<1II>ZPl-`Tz;IAKE^iZdaH;_te_^b*>}#`csXI}ockRn z)P9*A__Pj35VEwPjY3vwl`Tm`$2%5AK1q9R7}Nid;y0?`>z>nWi~On*)%Fr=oVnIV zuLXN0cX!GGAtjq6u)VbmnIZb@WdmfcXnwf^N7RN1ei13SPqHK3WHhHb|61`y!rfW_ z7JW5O9Q``1PC5+f{Bm3}=7Hw(6q6>~mikAJrEjTa^L&$YBltMte)R1CD^ZkPKmDz# z+__2FPb713u@xyX=q~ml<@`QfXE$%4k@eo#sxk$c9syPGg6+^_oYQ16N+(0=kY8mmpzq4dH@>=3f4AC5Mo(Ls+a6rfT$JTMKNYbN5lzOV&y5`y& zzv~RDAK#C5t2>?z@>vTJ+sIXxh}!B4t8vS`PqK>XmM{zo1 z;xleCpO?36SyM*Xye%`Xz&`!B{I<)PgtqtHKJRj@LtijD?g9-~pp@8Wn8Fib zJ003Nu#=8%?So1c;m(mJnbgm}OY@R@F1*>KN@OnG7#Ys?^{~j^>;gXaZ1r1i9brdK}^3erZVJ6J5)ZSqcrm1$LKHwqy!t(uupdEg=OGTkw ziNiA8aZ-X{_Qw=oYERaU)0=YdUvMgj(LD^Zm~x9w1I}bAp=LVD>2EE~bSHDp`3`W9 zBo)s;sn&Y8AeI~rfmxNTX5RhLyIU~Q_3Gj-Mz=v=Wb%gO|*jGfLDI7`C17VdIptRAb zZL38srEKW%e!TCn$Mz+u_0cz>9~_E~zsui^lXQaPA8}G*m8+*m31TXB*{dr#X8i=~ zF}m(o0MeUNZMUnwb8ydCEbLtYvdzKKG}J|UBdZp;{9^L#j}T^{R0jzNwVqm{io=9~ zJ z7r-8T)8Fde`Vfv8$kH4Zh`A^68y;!Vw2-ooi4AD7|ZWlqG};jzdW9KyZq3JV@xsZ2@Hy{w|X6QPmN9x6#m0o#rdRjoukySk0-+g`$ox z#8*K&z)oV^?RjfVlR)05|LZ`zA85B8AHe4C;5@-w`h|(0QoLU=fcGl`#qe4Uc5W)^ zU;Y;)9=wl?xdQN&pq+4Cl=!qM&80R?Ja7&k=$tu+bi}BiyqgTBwdc5w5r;1Zs7Z+{ zJI~in)(MR33igvG%k+N`6ScNUyCk1J(&p|=Q(b=t-AbO1P5=7nWX2~&EP^YGkLi^+ z@TT%l;zlJpEICGUHNb^yqziAiwupUG$!SlXe`&Q9|3vuC!)sj}YiG{@idGq3In)t2 z4(wA5`a&IZinnn?kK>}Ocu{g-D4cg1R+dSjPL#qJ?|4g@y+2H!`vF(}Z>n%Y=H7Gl zlbe{BRi#KsHD@RmgeEi#vaz7uW?*DI5HJ-nUOF&|UuI*NjY|9#eGIjW`k8gJe!3i} zP7-?b_1IFe=R#!sSZLL>eD^TBx_iaerkCXTkCT!>X*h%uBd-~!jLLdnygBbIa-i;D zRXO@J{&W?^`g zb4%hg;2->hHAPxHp9`VfE~CzUaf#}dmj4hT`BUnEmC@hB{G$XG`X!TC&TSd(z(IT!;A*AIkS&^C32(e+z+3%QUO_Cz@a@(Tvatw9%DU1Ni zTsqg`RG}ks6xGPvH)iu$leeqEU@EK~E#j|~Q|@BWePE8&fQ{l99a*f(gH~B(UTNkv zXg;6V2=~wgHfs)ZlRY|qnb+h3TB%D?dRv5=&J4Qe^wN9k&h(mWqg)>QfXC3x{u@wH zyK(f|y{Y5}A8sXpG#vuUUtU6v3bK`dyNu?cOd{$Tb{D3ngLhMkm;2|p9i&6O;>hjI zltR2TOkXs$smM1j@?7Yq3ROuPzZUFMtbK=;)@c~W-2vNmo{+psOVBJ3w~4C}d0jVh z(W%9GSyOfepaL2Ntu8cMs+dk>br_5yUsX>cP24H*S!nv&ZKaQGKVJd7L!AQ6$6RZn z1di5oWtr+aq@^bDlNRRRlf;haLAdKi>NktYyzf+lE-tX;UaHRWAGQrjntU#r1NUEh zHK`R+RTlmH`s0RaBCoEIYp8C6EN7@ig?PK%;qcIrBGx)9`4o%`a z$+Ej;6cSxChrA3Xc;c!zN9 z!+@R0SYGzIU!`%LmXv-B4G_2k*0vf|6@1!}O>L%NV7QmUQeENlTp{lBhko_bRB=lg zGrbb|5qKiFmh@{9`>UK8U9AL(F_uBgHs_DFXJ^pRL2 zSu1iNl|(j#-)RD-Pd@_h7SyG}vqOzXBW_bv4{z)jws4D_?GEn}L*^YD3pp`bZCqA6 zgT4-JjK&kru%^>kf`(6!re+&_5UQ+CQ8CaI9oLafw9QE$$oYaTMXs)dBgW1bX!Xj+ zM=xCQ^-^krs>}#mYzrvVb7k6BQFm%wZ-NiO8zu*z3 zA7#E5iXCvgW9aN!QzjtfC2VQ)y&>erv`qOPpi_kIxxkA9&Y;?r4(f=`^}}+x`a+^| za{Hob=uFZ+tkq_VKceGBmAzi5pwZU_&$bHE%~rPLg@Af7kRsJ(ZmORa^+!1=_~kN^ zm5LfMeL#J2Y~bjxmWt*^ly_%-GwFcjgH?2CTEqpwOSm1%-eZlV;IJo3_T+-;kQ*kL zeeI~=+?7n@1&fbVP%^23kGL3$gy2WD!IWF4G++_Yo7-ecH9%cp+S=HWc;*;%%;sPQ z1Sz7JabqcZGp9wvu@8tq?ZGS5PH%l_Z$RI z*QcfZUIG-zv2(i_lg%Smg@P(N;YqmZrCV{UYI!(@QJE$baeP39qwlOxJY$rX)bm$_ zJXz0dE~l7(4&T!aZ(~56{Bc}jOPQvO~fT5E{mv}?Iqx}&$eP_Wbi zq_;JF;2XP5D@4QDZj%4a-K)?lDn>L?@hEU!8=utS7N{7#Om4>H-)|Jm98h(jU9f!F zjP}pp_7}{;1R)v%-B-$4yWUiEe4Xb>=!s@pXVVB@w0MA{A02yA;PgoH_FkH{znD?s zJxN|2$04cgQoMxvHu$%$hTzX&S#VMRg5G4?0{=O0%$K@sl58I8nnjym-SO(jpUCnr zv~W`(*fp$n9!6Ic^})Yuuh3PLHy~o3$7C>+p4MLWrBUOi%*uKL2A@I9pm=-poDCJv zQ2({|B$va3p?`54;mtpmz58sVZTg#dG`&6C!62>1ojS?s#JKvE6DvNFY61B{S4#bgz6@2` zz7{Bj3ou?o0Q!;Q_Wx0BnUbdp}UE4D(4nipEYCf}0Y^SCbd5#6GL_$fXU`D$=H7Ci`4EIr&Dk|i8q7>RpBO*}pqcrsG?;wILqvoB}! zrK3T5b6Sl0j)<+GpNNs0AjguY9w=Amjqx*&qUM91q;8yB>hkc0!b;rDpLnOp-|d}u zvr~kKmwcF-{p9oRffi~0#8lliEnHLu*5fLhkhWF5BBTo+rsK z#pl$^O);MX@7k<3v&P+AtTC>?f4hk$#MH!++jxlc!ASH$ofHam`OPiv}3NXh-|+gEIncR47Sgd8QJY zPrckwvda->HeeeBNoX6dnaJ$RmJ6z!hpW8}daQ}NHzNA307d-Mb&B+m&g6@(;Oov` z$Gm+TYW4liEUD%0E4-J8!hp08tsKWHf132yVEUo}=TO0}ll~J+jh)cG3;@lfP5pCF8u{;qyuhl3D{3AC7iOX|K z^dP_Q@?QoN<33Eee!q>j4&y@y;#k5v&1|;E7VbFFH>7KXdo6}UsOLMo6F0&Q`7DbJrBjFymWKPrB=5}`KAf)$mn_U{ zzW>bj^AX$8whjsNkQe;Bccq73KI`J_?=G9K&-2#IjH_V1r=@~x`}i!kI*~Fot;!@X z+PcHVXZ^h0TSYp|tE2)s$8?J@I+2xvgH)CcZLJIz??PcFv=R;Rdr~4a(&v5ev=Gbq z>-Lf*nnuCH=bX=i1fN=2fBezcUgKf|WUvbxyu&=2wC6TvC0gKQO#{Cy6UB-msOiis zFs|0u`%1RbTnfwDze_KSD;zTT9NI2)uh2cuAV{>bMxA!zfTMx7g_!D92^fRd#}*X? z>yEaReENm;?(1aD*B8Ryl5?05#xaI>oUi@xB5sI1+=&!i6TJq`?@4A+Z|96|%8ol8 z(s7GO+jcnbj&Xm(suM}x>&o-Nyd&<{m#2Es?~_^U?IgE2X^!H|~6VN?>awF8@jKgc10Rq-xB{?m`}%Z;b|ZF!7?*^5$bp z3by^TBHRP}=__zOev(atKinG=BzamC0kR(7o7G9qEqm$R~#-;)6()E0zQOr zC2Yb7@fBbeRt(va@Sd8vi^|4n+P#PDT2H`^(&V-`|GwfiQh@LuvuzKce=1cXTW{k5 z8}D@Eh^GVZ+6D`4OqNIM4SI&kl2FF_WIVs1wG_T{NBQ+_fXpwKHW)u>iBZy|-2HnUw_`sTTh7}riH<^R zFrvax=lvJSHSt=gdU#0{eCw9&xJk9RNk;KmgQKWC?fs0wi!d^>&i%NG?OWN0-PF6 z%$t()^ATm>FhAqR_6?ejcE)@V(i)zitGb<+*}Pa$Jo(}c*x6WH=<&8$t7x@bq;R=) zej*6@>YO8D#qxpuk@d|$#fW|@j5^47!sOV5M=_`#9{%e5E>wNYTcbAf0p%mf`BxTl z9A8(%4EAntHME*@uwZ)fw>wCk5Uq;Ze4e90r4$3Cifa^Q7_!aVcsz+ZB5N|k)amg6 zW1hv=vl$#w%cU|j562_xzX!8ERCK}ZIa+eW9bEyq^YGc@8JmA~+5U*yDxGxAv~gja zR%+LwsP%J1KZ3QFIM>s8!7g(2x0uQ#`}%#24Wb#w3$bOa8VdBo#oQ2Gk>tzJSni}> zmmnISd~gyF8e^>K8#r{hC+q4{f{Z-ckL5(`Z3h!$p1-Za#9783oDuB2c&Ruhpx8A{ ze+77FjKJ4Azd#GXmM4H5&FbEXdP#m)0GNA50AsnQMLRe!kBLm|Nuh(OR;eXEWqh&# zr|B*0(b6Onz3vxkDy?rx0cuD=KFyNLjSSuzQz|&>9;#$~Q_a?_jc0C>Z=*@_xDyN!3kng=&m) zspXGS0if9;1#Z;EVQq4~Qj{v4Aim4*;EBDFBpSD8B`hu+RbQKJqAL%+)U@L{HU)$&lMT(kx-VDw>8HEVadX~v5LE60{81zHp8NgnGyH(i!uxO zzFo*{XXm8|9#&>?((H;=ew|t++G{ScpDBw>ILp{8>gZf%-I(t}2C~8sb^w6^$m%N!blgUhGlbIHiX#S5U8%Y*ZH@#1F#VH;ELn%{s8Nau-08~L_ zd8iI&7mFz~X+^t+7GMQn@hK)#l43>M7cxpVZ%JQ&4v-@PocF4N_dnupW71VIe!1BD zwP?z&x)OK*Qbl!geCf66TI48nu7Ee#C5*7)@O?dhG5bhV3%E(TD=47*T;FVnFUir1 zX%#$I`If~gd7iYrcdTc7;YsA0A`4i(lL03`RSWsZ@X#@vAy5<|k~UGikF*3BM_dRc zJRIx&;Wbx}aaf-<-HE+AhPn335@JLQvhC`!5Lpm+zf zMcujO6=qFl?Z_x+9PTw7m|FWdg4<~^Qwe;_B>n<9;$LltKpJ#sQ($RP>FvHA%4Ohm z-TT{&?m`YXs7&5sH-?tECPv{vr36w0ObHtcM}ZhUtQ*@_GBt z-nUZEYy@zVe>uPbZKCa-K*9!`x-4!-htfw*@kM=E+<(Fq@Y`8 zpAfLM z)@oc#Fm=yBso9*PJAX-5U+zn#731S=c;W7L(YeGGfVRK0XI}3!$Ph1(Y~b&qp)KBc zc@Pfq8FxtOoR{e)nX8C6j1NlihFo9-C!IRIk=kBEobc>!FPF+K^uktC#}!~A2EpSx zw3~P%eIadC$v&F}1M5x$vV?bVBI{7YpI#;EO(N-YL+n-^)QBWLzLhee%!wcJ`@*6V z^W=;42@ev-SbC9(Xr(q_HF|k>yc=3i4?zoaE|v4+xVKpZV=>B%k#LM#E`N-jpEso1 zH8t~8alEsq<Kv0yAK63&0|zeiRubqhH& zsMH-#dW;Wln+U%7N?Uqdz@Vfl3d8>Ez{oT$KA%z1Q zT?{Ey1|8lGCBcnaGkKGGFUUfwfXogYslbyeKR3TXooU%@^hX!ZxxSw4|(I{2R*Kg0nbAj4YONrJ0>!&rL}$ z(R;nveJNnhJaAYS^5qlWSr7+y7<41@-=*mn(iNN+CC6X*z<2B7AYbj1qMmM zjkUYH9GYc=#vDYpHOphdM1qlOL^| z-QAj2-so{MfvWtiXSE?61Yym@%1pF9uqb-dH2jXO0e6&qNUwz1&1-voS<+$&zf@Y~ ztw@`He4z6(Qm{q08Y#qe2(Y4Bj*pl2&&u#Tg2nJ?OZO;}&aj2X?1>!BS!4jJA6j|@ zNk10cfHDP2#v!u9TKv%4=lxny&4TYd;Wd3EyLBGKsc-jQJr-LzI_P6}>OfFbg$1z4 z27#Be9;D=lxZ@*bKYoc`&Tvoli3_Qz-kZe&%lmj*4bwiS-~h#L`vTb@aPa!@q4I?5 z5r%`+bQhj*+}5AZzL3z)~f=Z+9FG zst**Lnd!uvlI#{56(g_XHTpfsdk(~~PZBXR^yo6xFir-HdglS4?(|>)9(Ag4&EoCJ z;L?CQ3-yJ4kYj#ScvXH(NDZg(%&DC%KKj3?g(^?yLGS|`J&N9GC75(i2^>0Tr1dc{m4#PL2*0Ow(Nu?>#NSN`RhD|*iB2*M~ zXj$lQ5cMI$T4m_NXGB3$C>?0v3c#e~wCD+kbu|J>i@|Es`#KX@L@j=)U7g*JL5jvy zj08WJNqBsq;tz)IH)`{m(+jHB)VYDSHvLnr3?hf`H8E){X-YSliCP;5DXU816Dz6! z51+FVJ&!)0C>sNg{;4XFFar}&B9*c-qz}#zs#ZC%kHBFI@CNH>H3md-A+!0$B9NI; zT*RPD+CMDsjQwSroyis8;8u_3#Zz#IHs_BCbytXg@(d`4s(JO}Hx+c6N!cit6n=y% z4)LO<=zgb`RJ36FNkL!I;QYOr3z6CZ&=a1yi_a(qT00b3R_an=mi&YphX;g%DGDNX zMQ8}APbU8e#a@095b6XFYbultO5*>k!35I@o`6psmAi`0Q`+e?C?C%Mx_|asWiG+~ zeXz{F1v0#|+@^=)R`?IID0ca-`+bU;h$5Zq(NaHx^1Kxj^6y0B^^vvXn88W)(&Dmh zD^AU`WcNjY<&ou5U*O!z@(mmXIKL~q25n3o?KM4q@TPQx2Z(2x0NO%2oVe^rU&Sl_#yE#!K0fW!{Jud)(Y_}Z!kdllJJ-$ zwT&`ZSE)7ct00D;FE7O!l5}YVn>1A(r*z~)q<#LoqA1DTtUG@xi~5IXZQ-{6>&$Y8 z!!5Jc&{ky9IMYUbL$oH_NB=N`pY-e5e-B4!OJ$CxX`6n*F`yu!fi(C^3mc3|$25yV z^5LD3;p-9PS>GPAWqX>_>FMZyUY5w5&Al-Z8BL!c8-}7vTc%}1ylZa2jarh{P;4?e4+=eQy=AaU`SJ?T(MH$O07LDEZ)m8tWdeWxbQ3ew6i`i8 zX7cbM-hT(Gg}s-{DsAJO7H;F)@xh1Px0imBe7s&;lQ81q1uqD(Hw6~!)hV=Gqj2=! zP|Q>XcxF@Ms}r$OsL=5DUa}&*b(Ocobv-WD8`3mcG;QPGGW*6a#sZju06~12E zaXaLUHwz#0tAyy_Bf0iFWq(tFy8-lD-KWCJjHXzldFmAnXT(g+7UmaPP8oe4)Xl=f zB(7)99ubZvz9p?NAIYSD_aZRY=c~t zNo0S>0FL?v2O;phV0L`13?6DEWmt4WD$Os?D$Qok89*HI2B!1!iCeXe&lNy)V`On* z*r^x;LDP0*->M0SvFRu}P^z@jDqc3Tns2Qg%A5o*Q&cuwHz79I3L|0x{0{ze4e&pr z605;tU|kFJOa~_oSiQsS)Az|^dA_ivmuqUfA%^k26a@M~Of$Bs61#iU2EUhQqu|hJ zMHbBao+ieqiqOKvbW;_P&s7nOA~9SR*Qmysbw<^J_hq{LFQ>kpyLGbbwmYx}MRnFQ z_&3?)+)ZlWj7wt1d!h!wS4wa)%miGQHD~Sx;)`{AQ#!$q?9^`=7kjsQvQN4!Fz?HL zIRuN0)y_V=;0p)REY~USf}W1iVr*HOQB|L}<-M&V7tr-fewZny3GE}u`(+gDm%ou8 zq>BP0*o}AHs{wbNh~7V%`MBxq%64PT&Aw>Xa}#NmYnsJ}I>|(gP&+CzPvzY*-S!zb z8*IQa>OWBE(c2U3>K;w<7rBo~t~@q_CY>HMB3GPxs4bsB$j7bW{z{p3hm}KtuO{{? z0;v_Ni*lXtvEvb{dWZTFC!Zy}q`wyDkCSxjI&Ur9cxTXQEMEZ93RsY(Els|shx-D& zbP``#ulK6}Kd`32q<)y62`f%io-%^1l|8b?Um0I-TaiJQGdWE@*x}rH*g2TN&<-f?zYU$}gYq{CVes|1 zZMAHlcE;!DEVv0+U1t;CZ#AIQXIg!>xSoV)ELxg>>i3{De6Kn#TuvFyVq0on$9qPw-o_%8A8pifA(OOzU~0M_oU zs_wyjO=xIXjl;fhExF4h34mXmOP&2sr2sOYI>padfUvAP(=956zqG#vqdEjM)@K>P zJ>0P}tB1Mpf)csDqEAAGmPV>Y=^%L)fxO1poV>{Ll5MFbwRGPyYYpzYst~P+j3Yx; zp`HWcH0|a)QVGq9j+ol7m|_$3el*Y$u2sSn^;62&ik-H7)+-=!W06il1=5qp<{9GD zfRXh>KuEB6CyybFrn+?ag0HmoDG|De4To#*V8DcNwrhTuf^n#wMQD3D`+n}H?Ik%_ zGdkvg=J1}T0Qh~tz19YfO~GbVXm>55Tt$1-JE9VFX zf}->i=^!2HRYX8UKtwtOsgW9b4MdS9y$C1>h;$GlH3EUqd+!}W?0j2s69ZVGW*g{kVNqvEG)A zV&5q|C$~1`2L>3Zr(H%TgHMTCb?EUo5+AUj;MGLB8e?N^%$_aOiX#bV; z58zQP-Zrg!jw_!DmoJx1nGC^;E@7f!PrHL}&n)6uvE_9bxWQlh5Umf-pR!Tvy4rt1 zF{-V>FtoJ$C|V`nS-b)UKLoywoCM9})z*M~K6QQP{dMaxtokKcGRWxa-3Q-U-$(_; zRc$uS+>AG2)tbnhV}&n|vz8b(-2{|wZx$VzBh!^*kQVtLQ1>X!=SZy?J!&?+Dc8f~ zz(t}+l*4zS7mtqO-|77hl!Wffow8>jlgY^`JoK{VL3;*C=@!f$+J%)K0rFgg?UB&R z?EN3M<2&kaBRGOjGUviB^L~vwl|)T|c5Tp>ZGRPDC1ojn3X7~5Ld)ODL)H7U8%U2K z2CGR*d(W}(mL<{wPkO6#pxeOfl1o_=Up<@eS9YbM>URPn&+?J zOOfx7g1*I2pT*|~<#Vg&8;=y!Ih4*}T~M;}h}|`)7op~fc$wbuJ0H|?5=hTb)87|N ze?{luF8x{ZkY>l!d9wbrvqC6#+_RY4<;JVBN0eF5sUvvoKvi%S zfyHyPy32NBWx_5q?ZX!I#+&M$RHt`U`B~gl?go{{*JJwd5?FW}ActC&Azjn6~3%QX(q0$`T@Z9^bhpn?%^Dr#!}Y4Z{V824#e zK2xMCeSf^z_PpMpHU+{SH`)2lSC4%z{QG!9ui2;0o8F5zkl9_?H+V)QU#57=2U4P_ zcf@XX_7xfA1j~c3MO0CY;%ovT!lkRsTAE}ngsQV?%@0i<1&y94&fFEjN&5TerUF?hhQJ4?tAIg~$xGN=S8)p8is-{% zsTJmZ#08{nqtGF2u236OWgxfI7JtvtRp+9*&z%R>R78uyE;|*MlP#C;T2d_e1zm2L zF6I_~+6qBuDr0Bp8ZNg|_gdviZZ&U3e?_e}aX>*hcT54L13qXa!$n{}KMd&#=Ste& zdHz`FQ{tf5fQ6iX88?MP?WK@OrfKz-%6KU^LwVT@ZLkpT?5gEbvOEPHZQF^V2mbzlB6ZvZ|c4~SMBsTTQUc~`igp-K9l&7=D8!Xk4iuBJvq$hZB$18q5^Sh};jR+Tp1LEN5o!-DZ_A45k6$bm}y7AssSI_aUD{#8M zUJWfb(j1a@^tf%M*(p?c?z}KZ|F*{Ay`}b{9 zUeQ9y8ki$YPhp{;hbRpE^Dh^#h^dDi?S2-49I0v0K8JeF5D zYP4~>_ittD8iKEC)wTDKyC&MM<_YYQ*lfTv}22kUKk`K2zu{VnR?9zI6JD~XRC1V8k9HLSBV3*x?#94Kfz z=J03E`Lnv`q3}UL&Y>H*iY3B<0kUeA6T)`uT>iRy&Bq^1b-ySvf@F^I+@*a^ z47}N#+%^y#%}*GP)t5xkL5fJn1hYD&(|+&RonzcHr+T}?!4(=Gv{lp2fI{CR6hK=- ztFVLd4FzNtb02@h4nre|my&xm8zcEl)w^ik%CBj?!IxSini^{Xo~2Ko=0t~|MPIZW z)e_A8o4}uOHY+iSy;=NYLN=*W?S{2!Q};y$)_bklK7jn>`!*GcDF-8elOz*JX3^7% z>P~B%7^kjt6dhCx4I}r9W0lt(6In$bfiwT4rU{O5a`~};6-yE8;y<*=jzUTn?Z}N2 z0hpyo??#Pwar4`24ax2L(b`h;<%i-g-#+VTB}{kSSjGqp8`m3%O6>HRCK@K0BDixa zj~wtdGv+IPPpT_U`88g7_(litb?lVm$1D}49oUjrha%%Q2HHI+8Qhb{0yU7MU4G)kQ|B(P$ZPsC{-x_O*bnIOXNzD&Eo~g zU8e;+L5b+p>>!lMmG0u@Fw2ctwhZ?Yb1{R|!07LJf5%;Q^Bh}DrcVH{Sbybq%b8ZJ z1Znwx88$ZCcJHV?u)H_N&m&+r%iy1vz36;*;L}IXs10IgxE15Oj)r3gAW0Yy0rPiV zU+h!M-7%T3-0sY}XO?CH3&fiR!tL0m0ve4b1MG7hO1Eq4%R+x?IZe~7(6chKs`BF_ zOC{I-0aRH=mep8BWKWAO`2PdI#4hv{zSs)}SIZ<##1~j4iJj_$DvUzQPNT$%CNfOR zhe|Hwa~14vhQps|F7W0a)GMb~kxQ%gCy$X`?a{C zDprik=Af6#6B=76|N3i-HTmk^>wP!>0gw$eMfTSCS*;F{wqiz5(hfc*@NhO``79f& z0OhHhEH^T~dOKac1Xi}wN^)a&c-rR5?ioYYBDtG_B~6V;!X8G2rvXZ`n&sxW-1d6= z9AKn3Ndhy<9C&VmoS6im#N9JXGzS+0rpBe3JVZ%m4eGp2~F z*mX`rcBR2n&QDO0&#+AgtF;Juk$zf}2EWMi(KiErDU)OP%gu9mqsCQa^gM_a_0FHV z6X}=HDQ6T;<{I}8z+&XYUT<(~QZ^ofRJ;a+5{|_Z1XKGYsi}05iW1 z2MC)PDEs|yR}GEFaY3cw6;)Hgym*`8J=StB7rDiyci5-qt9IbN^eF?dvekuLryvCKULEU`L!QJ3L+TRe=S! z&JV7-`P6cS`7*A_z7>d8+4pn*dn^@lU$I#4CpsdDyuYBxp4zNK+nTBcR{Gc)Gm+bV z@tWAU9R8@jy>lt)__*k*fp~1cGx^m78bTG7VxIhUp^3J!!77ds=kKNNuBf2 zjlO}Qn0`_dFHYdPxMENLmEGM~;48H>T?{O(bjKyOPqGz1GDo~qH@EXEK8h~DvK_{V zqeq{vJwMb$YBj?2LSufXVq4Zc&U&&d}6mWtDNPHX-#Nz*;EIhPVVfsdPMjPImqGHS&;q z{xjheP2xXt)RDzf>F4i2@bU_XE>DxL{&2GmANq;9cai!pZAJ513kipyZDK??o()%q zRc*f%nx9&HklcR#P6+p!zN*8xN2nB;&4dQyMkB24GOnU{M&WWQVr^v8ghG(oEt&51 zb!HDYSuPtmZSEtnXCZtXFNeL}y#e5FD%DlSRMDo5gemAeF)%mC9CyZ_ZHx`R-WsT4 zky5JOvBHexWz<)tOs)2vtFh7N89UX3_rE|TsTm#9%Th>B;{1l%in<4abU>_ltj~*z zUz;D5!1G-!q)u=-`|j=%rGf#PbhrT@DX|$ZF5s#f%g>we%p41PjmJ4Ah7t4bb{%M--$n@~cYO zK|#{d_`nsJeFaUga}VXS80iEHO$iTm|{LPd-xC>ndEn*0tIkN$$UT5g1O zD&4Z+Ig=hac{?O%nv*0Vykczl!r{JJBW>mLr?#t)r@YZaAG4|OLMxF9dikb1@_RgW zbz{yvQNhzSzhN! zi;F_{X;bPj2X=M=1;E#g7&-ucz&1FQE*89e@VN|Es?~^1E&XY-GZ_F5aXno}_*+}( z7_%c&U6!lz^lpEyRX6zK%Q9X|WWwl1!|Wk9NR9O*g2<2kdX|VY(nwm>N7f{s($yu= zhO4lY0DIhdHs5P;33`q;ju{fNl~|T$w^A=(%OS$oFob9aA89$NLdlqwfk^vLYwG=x z#;)>}zIIhfnlpcJ8q11LhFVQsGjf@oL~it-%PCgACYrw`2~Ta^G>@5Sx_zZ|HiV|q z0T;)eu&T7EWD^WL6e^oz;)iGpro#M4WT=7BT1;yyGjg=GJU7ye1k>wLN0& zkPZ$zB)Q%F0t)Jtm4=ZiWEZbx>1YE!{Qpq~xh>H{O>+H2o{!Zm-N*Ut>W%5Y3m1r< zbFz}(YMB_f+@Ec~J^j%{-6%M~zR6Z}rT>M0J?cFJ)e5rRIJ%tQ z9-Y$_;8PQCbK*(}vyB1dRAlB&&5=Bg`{XQRy;zkyi1IiRTO}YH&mJs}+x1YkBpdn$4Tv+N)zwd1{*jSIwv~wI&?Zx&##6=a`cLmkt zKXLuNs_i;!>7VIX5-a;IwMV+(l9njqM|a+tO)VM3)TZ~BI2y+uSWt222-Mta%wVMg zl;gX6Xp%)gR<6VYm1!D3mE}cbx1XUDG$04lFKAU(L&~XNd%>9q2})8>3+!arsyr$( zP2bT_PQh_9?buB4HG2_O67aG*5>8&b;Enm35VUm2UmpGM|4q3@3ku7DMMWWbmIS3~y2?#r-aG$r`9_^r zq>HC&NMC91P|sbT*=b}e^r6#vmz27zu~UurRmcFm8XY}c)2b+6RW?!w;i+stVVv{Fz zZ0PCrBiHp9Z5w4j;Z=5Y0^78=Wt-#*kOiqm->y89y3{ec7%O5@`!{a!1$CwIVddl$ z-HyiN^*ot_Qjj72IYTjeaqOHVjzx$xjgnroZKgY5)mH3ZEFUS(!1mz>NZ9_w{H2hP ztv6MASsVYBMydw!v(|qss2)@mc^K>i>ND|SV`CHMo!mieac^=*KFmcuEdfv{-b!W7 z-U8(J=KUafP_NN-7%^qklk1lnczD}!@Od=wfoV3fgU}$NO5YA3rTSm<`HCSN#J} zPAvWRpEL6B7ZddY53LKQ3;zN9%$!;$83aBA*^>1CE zd#T}Ao0jyafw)4~DoaOc!}@@yRBH2;7gJPrJN@aheykYHX`pwx%1s?0bLQ3{vvtdqFyo^rf@?aoGMCTq3D7>PJySCtVD5 zoL+>e4HmibJ3(FZqXS;|lYfax2`}`p8FNYHfhC_Oc_*o+44U+b4VAse+hO-fSSOIO zTP*;VgIZhuAxY)&pTZ=m7Wh11}35MH?-|xD7LO{9>$L2K|*l;+4YbP0gS$ zuwn2|;4tvW$@}!w%G(#VUqc=vhET$b%_N5hx(5b_CLpm%OA(wLi%eY)dS7Ms?Whu* zc&jPga__hV5lLjtZ%*Br{Qz;LS&j{}Ps!+axF(PV9qQNrEyRNbb`9vPEtyNOQ4Qx* zYFsFpm3AEifx^lYYCys%C^6rGNjKsIcQU}%y4X1g@KK|odwcsm9Uy(o@h?6e(smH^eY6KLMX6wzUWI zW6o-@;7-%nagrrlq-(o~hn^8s?^nWom)0VoDhdE$s>Tag^9}pD3Gk;9v(TOc@#fnv zcUk5gsJr`H?-7-;E92t;>Q`GRur_7KA`8yUDi7DWuwQPSZionZM%Lll^`tB=f;)~{ zhNH30dIj^KjW2J^r3v15d8EMi-nQzF_57SRSMG=z9KKq&WoeyF4Dq%63d3uA$YqCl z9kM#n*P4za=%tvf1@9c+RPwaSzHx2%2JO_2FV-QzdoWk_LTJT-x`|x3EB`H~CbX7G zP??0-#%Cl=8IcpyU-|<3WbguU8Ec=jEz)*z!C-H-AxY{Cf-kYbQ|G+AX!oS$Syb5js^(h=N_-SqLVzu2{)cAcL#73)!kjh-4$9^pLNW zKh@C1?wa_Y_?=c?J>qGgQgVsOuBlyZnHA4fU{QNyP`u579MIid;t}WDlFwI0!R7p@ zWZ#SV{WAXENApu!B5FJ+0qAew|NhPX5nXc*Ui%MQ7rCXU?n>y=J4g$*^L8g`ugRi= zcqDfXHkGTjV-QO>@Rn!Z3z7v{kku}Wv%M5b$?BZ;jb<#tYj%=gU5YJ^%;?NOG0-bmztp~AY8=uv0+Xy1)%>?0sI!sSIqJ#HpqBkrI zrZj!4X6BD|XW%AS9b^+1g#M1#KIp*7MQ7#q1VDsCLU8&0vKV5a3n&=~{*Mz>3v*!R zB*M1kX%w01iumSIcXN1l$4D*nV#mDDFU zoW#Mgl^0pNB_{KJmTi~dy?xAa`+0Y|aBA6#qTAkJT45M>?XtVObpHd-qY$${<+;lu zpIjs$R6TIx4xVhfpDzsG{50axMvq|t{*q*Gc?sJh|xmB|azxIJXP2A6^Er5iUdW-ISeriMKCOQ{8 z_qn%u^FXA`6x$V!yay@JTt&^28CPqot%7SS%?`QQW3O4c+`hqRmZd9e(HWEbL7I^n#+FNHjZc0ET?n!)#FVeywPgK2pml<&Kg zAJ}HM*0^dM6E^JsW?*mbr-E(&pY1` zC#Qo{xJLd$%BWebI=J1d%2`OEidnCuTXtYrr zR2J$DqlOwx)TrKgonX3~pyu%p;NW8CLH7`NVej3sF;u z6V-Z%26rt$(D@yEm}w`&y-7hSBBtZJ^$wM8>QPA0JF1D3|L6}ah4D_f_~pa<{{XD; zni!uFA*2CXz9=6#D)KAPY&=rRZMd7PvUvUuAVzkR_GBs?sZxk5eKv;I$k%Kd(?e)Q z#=9{DjU7;_oZtGpt|PI@3#>Ubs|qCSOCQVAYQ777cOKsmyzO$%lh$4F@2$#z^(}nY z|Kn?EOp_Rn|Eq^F++EI&x|H6hU5%fGnP5_5i~YibScUh|iGm__QN2^IzpKpg$A%Pa zoo_0O$#(j|HH4c5q3iULH)(xlHtfGg_gURh&&Wt#*MyQXE-tmqutQP7>`q2XXBocNKZ9&#nZ`YJvXrj&$GP`g+&r$vwAt1S@BufOVh6p_Y zlVIs`VOzV9!3ib8K$}}4eEd}LBhO##w;kgEaYTcTT+_jVC5)?fyBuD1^J6Kf+Prb6 za>U1ItHB>px?2$4t)OwGvbdckTaU3%$sO`to6oqB?({XLv2*`t0;i1jQk-nL2~teD z6;7j#hCfnI6LXT1rf;J2lg`kxP+POFt9`k|&U_xV)du8qwxQk2dW6%?F#X{CB2o+$gC*vLCXME6~K~atLo8#D}6!&t@V;?K61a0bpycxz0@;Y;pB6? zV}U=F+Nb(4L~@|1XK9vhmUs&K-d8%Tho(ud5_EEM@L+QkjO(Z6d(Oxu%S-DpsdX$3B|lxL@vQg=~bArhYm{M(Au5^2}BFBf*UrR2A$0}chSu?y!*`&f11KvMOxCVcFMPkaGJgmo)TD%pf zeu<@7U^7!%`zD690Yu1IBM!ywwJUrPrv3JaT)s|$Eau_GRGAS%7*g%$j(Gkbn-*kp zr91mNn@r(V*PFj?N*zakUIS0MgXkIq{yPE3@zwtuctic%Z@5#WmnY&nZtP{50n3($j$9SWMbx zcni*sGxNpHMK@KG9M>+TR#@ z-cxyIkN(K%-FH_v?_E!ZS&O8-mQJATj2x^bzCV8bEKHcbeE20}r?{G3+iLtx^PSDM zGor`{_r#6ZI~Cf`dH&J}`--G8`>0c?i;IC&^ZYDzhhfgU1X3^jHr>SreUkPxy5XYy z0rQnMz&K?(GQsBsAkZisuZ&q=YK>KGCMqQDqEWFzc*yFVJ*H#b5x}@r(wYC#{{1C7 z5%!q1m-)9IiQcf0ya@zR?$R~6h=QI$Xh`rz`{#iNH1A|V4Vs34RYvmB;@w3a%u<;1 zlpaaM(JltE+v`clehFYM#+kOL+dQ)MI>c93$Ul||x_E2B znYZrGSkluWXdK`C*8eKw5@&WV#LZ1dU_<1NG43gmF|aLF8gyq^a*0;6#KP~XMza3c zazmV=y7qG~pHDNomlEKC6hQOQ3R#&mF89o9G$KZUcNuK|?^a@Xs zmRJ)>dnj-8&9(oMkMDlPk@h54RSW7&WP9mSo7LOvf5eP|EJ?6)Cy^aP9^s|v`LeO@ z&sbaogsuVRQowv61_6rK^YdvG^-KCS~FT z$q)K^l)%Hz2n$P!9gQ}XxPr&Z;JMhD?!kEytK(@rRR7gM^NB*C79v?4*R~3|#-&r6 z#o0KDRJ%>KK8r>ADrcBphb@+&VwAC(ex)riI_nGe(L)lqUebs0A3#FT_Pe`_BZKS^ z=k((tGF-gbh!Q8x4sR~Pv}@ED#M|Gvu+bU5=+6n1mVf=3tk!I?@w`ikwi4U*xhDIz zBa2F@NuQ(HRZOqX-*dw@YIjhaZ1px`Qs5szBH_Wt`nHI}qqF1-%SD1o*lIj35!cY# zBx;$;>2WEv3I^8y1vcaTTRIuEcDydff3usZ(d}+naYv7GvWS-Q%0@H za11}SK{{^<_HoP)o_KSmiNCc>#;2_WltGoTA7-4IWU%xt=%QYZ5JG#&rr8 z5zW6V#2sDAl_@=7dvIaY4zI1KHwv6NQH0jlyf!fUoO^4+pwH)bU3T++Q&P=dZGBU| z?hJ2dfNw;#<^64<5H>9TtC%*~>?~+Lbef{}T)T@wnU6gXuBaZAVTwz}1X@%jYfaP$ z$(z+CSnYQtFLII^gXf}>Xc&b)dZP?&gp0PFz}0>$j@rC1{d*{ci6*w)Tev6 zpYbEg<)>7xxVP$m6K`N45w4PfyN#j)^wV@Zs=PDnd>yS~`-#jp6_-<^Q&N-X37Ss6 z5Ee{tK1lYF_@9%<7&U*RHbgbXvLl-wFC8vXTQyDxyzh`u5~gNkk$jWvqqH!9^@jHX z#R)j#2Ro&9V9(;AIx=x{JO{+^?OpL(jBm7IWrNOwC0=%$jdk42U_?kHk0E81lJ6uj z*bw+lGT)pS_78xD;AuFbd;380_ATXb9Tw``&leN0FTe*#X-risf=vYbdQ9jCRmGF% z8EdKP%1<75Gs^HL-MS{ZZoQ-5#&3{OP1CrfR=2ynJ<%aETJWP_;Wq*TY2Ojph-D){ z)tt(3tzmEuN%m0Y~#;QRN`a7O4|taKcdVoD(JhK5$iR*~Bu zOe4abIqJrLD~}1=r9b8JIX0)$8WuvrgDOZ}|P)+Pn3!hmo%3 z!tmZ@%kG^RbE=Pg9HQia$LGaOPadqq%AKn`|Gg-WHHZ)Y#V~Y9Tjig2SFyH3dJ}YL zRXFWn=$|>m;{u&Vm zT}H z-`fYZP>6F|Z!31vA1aqRysglZo$sH3svZ z7XtrYGW`RnYk3=CBCB}`6*zFT^zShzRo(7b<~NPXO3BNCCPFy}m5!boSDoiaE9^nh z=_lR)3K8_kqQ;c^$v5-o&TDO2O3=(N4J|s=i67M|9<{GdQ|$aJ;For*XE$dfm%JT? z6>A(*kVBUBFFDi!PdWvqs3&UU2kR*|PpEO`_V z@kiU~V~V8g&T#(Af!ilTOJobB$%NwHwsklS_ds$Qhx)8+ufnUJ^IXob!|zND7SEe; zV=X??KFPP?pv8O7J7E`_GH<$rBV3#L7h>P-_b7qP_QidLCatklEAP{T$a z$M1c0=->wvmTz#X7+A+cDej88u`)13o8ezuf#F~kr>z)NxoIm zv9fc^i}ZA1FdBaII_-X!0+^p8LVr(P&1-Vh8a8kbVgP=p!?jtKcMm8(gb z1PS)E3_}fIzi5ej^rAiM)a@P2u;$XG(v9pW7wK>!pHr2(RBk47`-n}08efz>o@SmJ z#~SqH_T&2=)Es|{-JR;IA?5S!xi7W?XX;lg7YX~Z{yRwaI@ zDwYLEhXaGjzQ2^nH1mA|9?F)3&y6?;uwmU^TK;YgEI*I5;CHAYiNE?L|VC(NT z!LG2`#hMvEt(NoJ^FxxY0)sB=VPv`fd;Wf@2fzy}fFk*MMk&y7v+0JP;|)ys_f=LM ze(s4=$~RF*KY0qX$OS4$y@!})>wf(JX}MjF8W-s?%?X4jNy!0 z8-x!B4reTNHhWPuX)Ozom9+MuTiZnDiTw@&A*`QgcKy3`2m^z>&P#Ge@vu%=b{KW8 z0y(-^fqA*{VQaEw<6gRUj8v=}!Itmm!#$bRIofVNW#W_gm@F}@ja?a1`6en{FoVVa zqyPDfzyrUpq)iUWu#`@H&!<6aDHd{GB8AvyRi?{0sW@dUw*mQ?GCD6c=1TSfO9NAZAXSS(1SS4b5Aps^VoPjqoX2h_n}?zR63UGIB#)d5iTcS#0Rh<%-|*Q*v7}n; zlfIuK$diW+=(J z7e6?xG$YzGUXZ@sa=<#MjGfoVtE_zhJ*fYz^NBrbacpmL0 z%LkytTxs6Ha=gGPfjlrqjf*avTbL#?7h5cNZ?OB5Coa)w31Ola`)0T;0( zKQ5`V>;$V|`_h)_V^ zjPeY7UBPgvGY{`3<;pZ@#pXxcfTB1)#d+KdQYXKsV7?&Z9gUa5J3}|DzJybym+I%G zt)kGLTR~d-W7UED-mHdalv>6{UdgY~v>J7i=wPx5ylT*@E}fr7vr)qKrG1&tEMEG& zc97fHj@{0W{XN-rynu8sV35jbxEgp(sd_S)7Z(Y}?iLpNhs6a7ePtdOX()@b)=RS<;&Ao!xEP!bCR;2RU^q@lRwq4Oma-DQ5@^vm6zqOB^ zpxXYT{DqK`m?Rwl?FAaU*-YYmC1T}GaQkSpzFLe@cG2u?M|pLQ+HbcD_dW^!hQQ}Z z5c%=<==fr|DrehO!06lbsM>uCsWY=O%dH`iNHN`e&xJ)jeP`q)QV+qu@WM4p!&sff zWeCs&NR5AinLyG*m^JREB^2|uKd5KCV#D7LD&0hV;>Q|2o2(Iu0I^|D=;-Se2L_O) z_GM0I8I;BBu*D~piGpg0s|n&sx9#P1?kHO@2P&$!u-82RwFo+T^fKDs2s+dWm>N=k zSZ$1?#zIt+UyP;BJ0&vrQAYj)m}FHSzW~0)23VplP%AuTXjD|aK~rua4%9i+&i0O84pjGtxm4?` zT@nZL2bY|WcSA`laHG9qWaQU$4tW=ENE>;h_X^*u zuh#3#=4&~TVPJ0ZK-OEu#U>x>?G`JFU$a+NglK(VQ>2l2+YbZW^PeJ_FBE`!(3EhX z(;J2w2&-iue6U<}M1_ZLQsmdOikN`pH~64*mq4B2V4CTdt(#q@Niz$NcG)th4+-xU3Br&L*l%(aIm9y!x9DG|3Mp24&yJz&`59S^CJd1anz2g0?SIvd} z-y=ruAMdF76}HCDrnMU%ME33H?cCx0s8#Sj83!SdB@QgRZc4=3S zMKiig-Toz&7q-o$le)a{Al*XfR8aBunZr2OESxQDSR3d9s1EkGavIF1mr4U{~|juT^0$yBP+6j^0iMwNre1Lq0&^ONDTlt!(pceWCW#3JM(f29M zw8Hs-Y7X89r@5j_OQJ_S{N=aUyKCfNAHrwA^NXd+NE#D0~`X;tzqQxvTME%2dJJlDW9umP?;1?l?4ryB((BI6a>e zPBr!^WspjimV2mu2r%o%uEeFg(x?c1D#-7a{w>){IOch|SPysH!cVY*je-G;4Qh(> z$Mo#2U=d%e$2L$VY_m5*Og0i9GS6$!R5_c+R4}WnYXiK_n1bR`Y#;>=KBUCA*%yCW zAUCWyqa+y&3|RO806@9te+D+B#IIP+K3qnHI#;`BSmHhx%+2|Qk1uW~bv4=5e{|`O zUN42#*)b{(nBzYEc4&Hx6IgNa)u=biU{!6SM@WtFJ=T0U+aLgV#`!odSK^xI|2I2P zvOeVxGI%q05-XH?#?O^Rbv~1l4t|XIY+jEUO)gTk9_f{42UNl{*C2L`lvy)yK|-1f zR2PEfIRoC`1>Tp;xT2=2iK~(Rl7-HxL}~R4`s{Orx=Yv$^d2;;3=Kq`W=ElJ3M=vM z)>9$qJAe#+wjYwe1P|nbxb(Ec5`Etn&+#6*qY|raAOVfb%Ae1I$+7o_qIj@VF;J}{ z^O@+IL4j}0!opdvx?|r;08+`g*09f53I8)fobA8zDW+1O|4q{d7(yaX|03moEjT@W zJ|38hgHY@VrNl$wDfKOllgqOL#JJAc@Wo*l=<#PG zOhMzSN%fv1k@+tIdxM6zpXN53=(6v{J4lxYd1D|fR6!rSvcRUOKJV`-OtW&`!#bI< z>n|x#&`qVBq~>hBghU`!ebKU{nfw>(IEfjraR;i^o820>6uW-NiE%29{!zL=@7RZF zYs-@O6I(bTVP-#kdZl(X^?XqMQ=IZ<$wgp9kxUu-OKyCj-k6T?j|=BZ5I;Qm)%Ka= z<@|=9<1|I}szLFSgbi)qw^bJfdsAMsBdN@70S2fJ7#&_>ii1}b7x6ypakYVU1H?*z zc35>L^1jx^)s)S$Zg>+lP9=ZG$dF#&IT3o**VpqXB}!D63vj(iFu+J2TfPItsYy`B zfPk=S>CZK{Yl5)J-@VQW6SJ_TLP3q+HlyFMQh2B?mMR4UR;fRh*u~jQD(HGrx}}3W zS(`M}|60YLld+vlIF@8rzI7Dw-jaTvTv94i$X#{Hi&L}nUUl(&i(4%>LxN4>_mo%= zDQ+%aVa}z?C;oHi5roW;YSf2&${G_*k9JM%5q4)8fjN&HbI!gd_gj=xmn3Gljn)r1 zS&S-h7Cwj5^SU&qq}1DMe!DB^{`0Ks4{ch3AL!f+se2!{B2$p5a>bKzzP~qq85hsa zYJ9RKke)AN6dh*Z*T{6x!1}IaJV#PaXH;jqJihLDY44}kQ1~MEIF!}XbqS1B>iRRD z#~^P0{I}^u{OdjI9eMnMAN&KRN0~|iBK?V1UIKVu0dYzB@Tf(3F>7qvbK~)epu8dM zi^9$Shp_jIYU=IUec_LaN>h4|3W#*2OBE3i5F$u#Q4uK-kRBiqmEJo@R{^OZQUcOD z2uSZWkVtO{H9&}GJ!kCwKJR|sea88aFJWYiH5O~ld*1iFuIuMmriX%EADGfhMF@7< zfa)S1Uql{DGFMU#QycvPwQnmtoVpsUbEJUFjm4S$e~F9(uDd!CWSQU*;3DP)<*?{6uHJL?0@153 zC`smQw$}~KifCmT5p~NT=54Es4p(@*XWX)y@}q=6ks>J4^`=OsV`HP-!}=Tnzrfj~ z$Wy;Vl75;={YME;Rpwb8l(Q6#eLOEGN9#R|UK>JzFa&69JIS269jU7H=%@MVd*XM- zUHLz}wN!M#P$nt)CO){=@U#0MC~|rf?!Sy+Ac;;?=ic1hy2NQHaco=hJ59FgR>rR{ zn>~&+J$k`ev>E;Qme%vV2qtKtFfq4GY4U6Zr^i!}`Odv!HdB0NMepdk>|9sCs#G#ULSoMxHisj-cuO->%z}uwCJ{-4*b{n|XIVc!MlNq%NseUGkHsmEDkRF`Cy6j1FDS}P2!zN0-smmNL%dic;kDnd7Y^1bxQ!2|YRVz&T9 za2|K$k)j?em=TDZuEG0s(!HHI($hQK+EH0%gxyY@PLf@pcfI861RgqYxpY)6D$W|q zz;-0BGm^(^R_eSXW~g&A(dCXz$>T3SvbParF$IO5ZBMLNSdIB$W)`!ok@;^789gF$uu|58Me*@o>Dad_2Gy9x218%0hGKkVo4JVPuQZ!{|qq==>+V-SmuwM{nK znv8%J-|~D#TgZ1`mDZ`>J2+P$ZxCM?ts>?CnA6hwu{`gmRZ4!`Pn9q0tR9-yfxF|*a3anenvEtAXbWa7i7!m7#o{+5w%e%h^hY1_CI&DKX$qW)9ptKu$x znG!wyt3$kHEB(D-AEGZQVaMhgz7GcOsF~H(Tbs`wTeRY>ng_r-VVj*~3L`&3k~X>l z!ytD9oVg{TSB8KEt{7z9{%^lBvKh;}7Pwxj@74|9hzoDvRH0s`IUB<^T)%ataJ&UuODwg| zlNc(1iLpIzAa7?xmpr)|0IvqdkR}$rc-GqQ|8lO15z33*1?zrJNXYpAC=Im__;xSZ z9o)wk?U!Kf+P+7(Nc3;-l|>&wEjouvoZ>J$QaoLO;j&+jEe`OX{eGHho0w!KXP!2x zti16v`>iKxgLto}~ZmE@c8b890!PnFQKCT=d#&ZtlX z)vQ)+lSsDu_LqV)d<(8o<_KVMNcu8!GbE%SCm@gQx^XD`M^#c|AnCtj}li!JJk9 zP2eQ_tC{uLZXc8K$dDx zHs>|C-EwAc=$%RF1yl7bT=D+os?1r^r4NWEn~G(csc|Kdd>fsaRLgtMTK2Xn!!8c# z+#sMl*5;dIN-uuMk@)<`*~Kb|wYaQ1Y54sW_+(n!j@FI}Ym#6+v$7n|GG);I3#_E zXzI3Xec#uVSFpYczfjWCJ>ntUO+3Eo8@4VYx0Gyh))NJXVCP^pv!Wx83cfs-tNC71 z&0XUlK?~;|)_=}!@P#~S);T_Wm~vTP8sAXf>^;!}%+_8^jW9}^;WVB+VlmdFp!)Jp z5i!i78owA+MErEoKId3dxzMNG(-#SZSqcxMq=-9woAvZ@_~V6^0G!zCIlXxLZzJGr zcMMoqmil6oP=Q|L4c^r9tUhpk((Ll<7%$B#c=Nj9Ow<2+iy9YcC|D3GGA0}R0O920U+o!@s9p5Ie> zd*)%Iac;yAc^}%$QH3`iETm6&Z?UfpdzO;0h-X!N`uN(#^d)b0r(BXskf{(m`!3Z9@1qmVW8qU(JDrIc@&F6EaXy(Aki53f^(FbuUyDGx|_7LF{l=FL^fqj!3T< z4jSI`B)MpwdU&;&PoT3*-zz$=Z!~|0t5hOz5aAyQ?SHW&6)n~AXIiJRx4zU;vBiB; z)jbJ3r2d=CZ~h3w(afX$Ue&8)2AUzgxFt}pLrqqb87Fei_L$-qb7W#vW&w$YhR+Yj zyCK%NL{_2rr@#0wEBQ?+5|DwtNVxQrT3aO{1>GR`%}Py4@W`t?>B*}+A`UWYwH@|6 zQp|=si^6TC|EwgpyLmyb|0@A`_ekyt`MT%PnBWAO!&}XzA@+)SoSngZ(g*5dRCbGF z6RUqq5NA#;R?*!HIB|lQTbQ*?Z5wc??T57_^S@Od8f}WxHz6$k%-C+trq)f4QIM2x z$a?Q`b+_~v7@o1(EHJBv-HXbh#4ERRIE!M(8`T0p&czHf%R?mk<(9pSZnT_&`}bNX zVS|`yQ1sPM%3qM^MWX*p(PlA_7T$RK+g64rlm~qj%+$la!TyHYet8UEsz460!zznA z3lnc7zDm?s#>Tss7gkaILP=d@qOa|cq>wQB)9D4Gu6bQ$hu8fEj+@Py85*Enle8`g zZYW|_wuL5;`&SHh$Ayn?KA~QjvtQo7H{e{erE{@$+eDFe2Og zP3W{~2QLUrhiC_}Cb{y)980|vO?hymR;22!vMj+WCagV1u`P#ntPD=uY*PF!Ek~p{ zQxc*>8aNK!Tz!$Kz3vv9G6nO1pb2+VGh*tc^{>UkKw+PZm-Ak2G91dx*i!e3jL_ z+MRgsZu-v4U=#j>(aPWJ7cNP~dNaL{Q78)IDADk>=7r^^m$7ikCOrllv~gl1F?s>c zf-4gI)qfB+9o^QiRan(r?kg*zMzLShxJ~HO^MHiN=3DBe#J?04W=f{T zHeySodG9POtDNt5@m+39;?lJXHN)|?h;&KFc1^@m^P8m2I;(nTjFR=5Of47Zq&8sY zc4i8a-D}_lfBvZ^gRTD6#4$87V8{($7+TgS_)R@;rb@>sT`&jS;wHu280(*^M9wY+ z61m6oG}-;!3bZXAnCSL$vy==rX_@3TW;O)A1;rf6jVcM0U^K{R=kz-#31ncc>G^D$ z?Zjyz*R>ZKNE<_?u^hk(TyvH;L#3iw+?1paLSd`XIl#7Pi<3IoWcNzWnqllJ7Ifd` z=Hu_+&t4pMR(?}*%a*0U1|$Y?lVs^7cP0_$d7-GTrF=uw)k}3t*nY$Mfj(yHYmn3G zQ7y?xm9^YO

qxxl*GKJGUPCy|#JB2!vNS0P~Q4+1zL(*kQWjDD_lwaqK82v+7Si zreg(7+LyxMc0Lq;xR-y>yrG}i1YO&CtHP>srzskV3E%xbv3lucNHTc`akc&WmJH2S zfMolcVZ-})i^m6jJ(a?#g8NtM7iG(@lpae~MpkW)E|T@;4<`SKeWmRWTj)Iy-)KV4 z6xi)6L6(jI_Yw`Xn^%?)Sevi+eZbisy6jjz_lY*OJaW%7*pK7QEjhxa0jYLIFcv7f zfI`k9-q9A%@AG2wV;qB$%jD!2V1^;rvLup?FAM@~4yY@R5D*;XD%KN@zLaZ1pihKQ znf>^gzIIirHHZJbt@7!Mw(_JUt?=ck##dMfW0_k%uhd}it6z(^Ycq7+qp3B!yZJ6k zPBV;NX*~a(R9XBxV|!CZI=2AHHhH|bHg1A4EGu0>T92+&?G~4732c=nZa{aSCoOc= z*osWe&#Trf82xv-%dw_2K+X?y`Di0o2e2KKR%Lgs{&lz#%L9JC@8S%vN-^TPl)icO zIeSiM(`r*mf}2kOn3qoGi|K!mto)GwNxPb~%P9q@wbZeJgOjrbYujsIXV>d9Hm3Hw z;58@C6rUfj?!zBO$8+(fbCgL$wb1;fZ~)j7s}=d{e<|2@(7Ku7k67Nl{Izkn5!t?_~)0e zvI6l}KjJ>;S?9m3m$@7m5d5K9M^W->cl{M*>%Z+=UoOVeeoOQDKYB(ojM z@fXSS3)6WlOzobi>oA`VptaRoE&RG};w{J7({bv8zV;=U&uY+1`gA_7ae5c}8%~8X zgZ;DCc7r5ETnWGyqcN;jz_^yZskS!e3p&I6Ph&cAB5=eBFKg9MN6n3IHJw&@qT(|P zPd@P8K9G%>^T@I& zZe4s@sh?1K=op|HW?%0tVvx#1_D4WpV%mP%UHVJ0MZrxm&HcK`^k2@&t8isvLBWQC z-B3t%9Iw+EP0vLO7SO6z%{b0Na=;=#eFsNNSz^4`-kN`)00sD4nv0Qp1*-L~3^yA* zdO`K2=b5qp0-NS|zB!ubZr`Scb;&_%?4zv@Pd5Msa$*_$Ha@J~l*}2YeNkB6s348H ztjn8SJjW$nGaj5aI-uO?p@U-1ZTSU-ol@NDWdUHN5hP=r>WnOcnK(PHhTOEFYs%Ta z3jcarcGNk|9`E`bRa-+cEnWaToN1HC$7%IfGTkocou(3Wpjw50!U%g&MPnfH)Z#K5qFjTPmwfAn0Wq|LK;Wz zyAlVu-=Px@{{n+iQT6b0xiS;o*YrL??jBvApB`G|`aHNkk7x~LsE}C!?qhDa#hMNA zUWb4y>G<(LblGR;h*41l0I2(+OvQNGxjO#djtWlkQ8mZ)32!18Mt}=1c zoH@7rKDBp3X=wf=&CMP1z>}{Mg8uCgK^S80#E-9BdQtMzw`O7IK^4bReN`_Y`oYEA z>37R4%_Bl=6n?Es0rJ60pfG&t0eihl~==@`$N-H`h>lXCaF$a zn=uRQo^|4^vIJO)@Atsf_xrzEbH!O`^F;mMi)^BJV1BqRAcabrOZTg*%qT_d%v^li z54UL?^_Ep(+g|8w?MEg9AYe^w)_)RkxQle@l-JX%+3OZs}jq$L(zsICC@113h zJy*#UED0EM*lc^v%86=5T@%sv0V6U-$_MVgB=(LiPem>fvt8Oe^lS^FXG5JwdszkjLbKM|rF!MSXT)c8E=8%i zq^nF!*|lnYY(lr!(sa&p+c&p^fmYWC=gKe-tDoH6)5D7w0|W2D0-4T|VVa`+L`C^L z_EqT_rV6Fh6d=FJ^*D;))5#DD;2z+n5*;atibV0Rjpt7csQoR4s@8PAd{QyBvgf82 ztZ@QehCi&q7e*>M;!P|!3WGW=cyd~teMD9kk325_#_Vwza;PpDwXhtCU|8WSa+SYc zj=PGj;>k$%^RDq#Ptp^~o7+d2G<|kqFi(uB&uRunV~;=0k{@T+Fgca5`gS-+p>X`Z zc;EaFf2WJ7yJyyDk*3tNY6F0kpcE)VcpLN%Zt^CcW~Qs5mv@HWG9qxqgD)2PM$F2G#R3sY5{1XT!_ zYzcT5|BF-Wvf6bEQ~rdU5Bv^a{3xvuU8e#B!0^|?(DO?9Fh`Z3ZmsJ~v*TOl9Ei35 zAsSD6Obd3}UoWvOaW!!&uWVJ;K9O>(<4tP;4kdfzNgO=`F~ zOTRhzaqphiTa%%?P3~AMjTwJ^eTMw22;E-(XcmJ8R84;42N2gFqhd#%g_BiF zRMOZVUt{;&Qk=C@eZQS^9i$xqXs*7uP>nl+FgQJjnPQV~%-B3zw2rN~I%ivy(;;~A ztYuq{ny8IZCH^Ff5;v3r*@!ZMH3Xsyp|EkP;B!H88YPEHKQBw;Dp$m7N@G6mjD>Og z@fHWI06uL-Gq_@`!7=hFKt@gH+O>RRcl+0>4U(jSP61lFn_HkN`iM&kc8v;aA?0?^ z0NGJrT2oGVKHJRd84hx>rkwYtAsxVg6t5i#Y4+eKrD-bRDCaO&@0P?)HS$L-AUddLe?n$DI%Uby_~t5{dETp1r?bw1B1U<` zl5h8hPo6}7;XN;%+#3JZjMSHwNsP@oa6VhuLZtthLRgfFY9_e*oEYkk_Upo9{kFQA zd4G<&@+&02uYA%+0H4?048QeHSk@@)e$9D~jskb4A`3;s%`8GF#E6-VUN6XG(#<GZ9C_4%(r+XmDTpUgtko z`EE^#;ODD3FP%x{Wcq|J7HQdO7SFn+%1p#*x+H88Ft>oT0PF%# ze{p>iQG{P&F;g8F#x=)LlASGAZN86)Kto_9(%CHN6(PzvOy1h`aZO!MX@^udLd#;k z0QnFl(Tf^hLG6wQw=|u8Z&Bm~F&$E3bHi)|@I=F*fP(ohb{_bUXtL_bFw2T+)l>wK zq}Z6MeNE3!4CTAdpELRJFNN~zQhFHKw zgR8kUcXUK53FJR$GhBaCTPZR5IAM*P&N+DT4dEC^52qa|%afH;NUbWj)V-TcD}VKa z_@&ARWS-xR6xwYY)(qR&`rAaoWkuwbo${}ZmFGq$^qDr$VxElU&wi)f;J&7!<;~?E zaZLASzzbjkBBgP6=pVBZ`LcKKe`rq z|Kt8`aG1T7O{GQ&I$YcUbvFuPZAt)yAqvO!>qMJA z=Xh2+u-_#J1~T8fcGk87F@||Ov*zkJb4knty+KDZ9T`*P4*uNKO?^pl>tF9`z2@QCyjUsR4f>KD*~~%;%79b;Yypv^ovnG zxuHTy_#=>*-_z>wrUj1#5_-h*<~(r9CTr$@+{I=Z8@$f0+D6AAedSvgrwY`E($BP9 zN$FjrI0*H52}=d9j>x1X&>EKLu38c#NO~&wfz1j{opdRWx@podBjeQ}@)N(ktq=HP zFK~2@=y*h*Bd1Glf!6j=vk!=P=!Kao5D!0iZlED)Zg@4vk)BmXv}c-jJh}r{BC4y^-%PUY<4 zEJdPa%KR_IR1f*rgi8qoQ4S=5q2ewQN*3O{^Yz)e^&J$NJEz;>kTIE19JJ2Y90u6L znzhS4aI$d(DnJHI_iY9;@b>uI;=&GPH`m4MI-7K5AGc^zDB&-Ket_vxVT|(~j(CS! zslxM-uknFJB1rt?HyH%IqeW#_)Z9IB$|DTB>y|}3Jo1l@(k!cVsjdBY3kzw3&f(UC zO3nL`k3T#*M#>#`WS%|4!)7X8{_luo>F{K!0F zonp_%_FN%9t(mfp5RE%ol$i9Q^UOl@KeV?C`%7_~A68^3D_5@-4mToh*qtlGT?lVW zzi-%^=s6A2Kr`LsQd3Xb1yWf9=}j4bS#p!e6NiHB5K6(|YG3q#=?iPy&SpNlmPr}s zpXX1aTZAcQl8Xz*2?y!VL3G7Bvq2Me5w#ZW227U_H`d5`K6>aTD| zXTg8&*qpdx86qZcXtAtySc-h)ygU$E!Ol(Jf2Uj}9hK8hObxcR6f+Xm7|TjZ8|Zw_$JeP9oKgA<4|bu)^P?&52PKzKcCY(=eJ2Rufa%#EoL_6MQvW(gKrc?bSZ@E8c6D zm|C$vQ6EoEa(Dvlmul+X?_*%H8l0Y$+~~TC2j?GNK~4aigJs*;Mvy+$|d29V104-{ZmL{25Wdh(2Q1E_>|B zRiA^wZk+5Kw5YFCRKUC|u9X+=m#r=j(ywpJ z52Y$=1Td7rK}0p|(9K!W^9i`jE8ik5ZXa#<8&_csrL#U0_>Ns6ccv5d|j%w;cO_j znn>BY;3paR2GP$57wgLjKKBM$@*jaMI*Cy}_!p0fMK#TAK$f!}&o~p0>@3EsILSTf zAFI+=y7ak16j_Xl{tPkX8!&)beBRchIp$oAxzUr&_TpTaLwfEnMH45-)rE@B|490t zCgY()Nm? zkgA;)8s)VG`U2?2Xk9L!wr#D~^lChSC*8wp46az%Tu=gD>HKW`Typ>6dU#%{?KGgC zp@nNrH8a8n*V6TON@n}P2D z{5OY%qlIx#kSAC6<3$nGE5x_V82*ydyI&PTk}l=wlr#s>Ocm&4oAnxHdFpJf)Z%P^ zqb!n_HXd8l+8bvxdZ_*u&?sLRJYA*|8{BSy58r>40ic=OM&+RZR{v3>2 z&D>PLcqxJ54E?V1!a6c0^O4JcQ-yN-o$RZCE z5D^Ex%a}0eaxMdTbId*$8CSSFR|7#eZrRr9d->P38=DfzjJHuZ>ymTkl+reSrfW(R;J5`XzlWB zemJZZLAqVKF5kZ}`!vD->6PbXTISK;d~%<%g+(myre#?qBbb9OEg$_dDmiS*+|JLk zBg&fpNYZa<;Y0^n4)F|R8EUw(vTJj(3ait9i8d(+3?y9z_88W3xaO2E4)IU|Onqn2 zrgu_vOzf~G;d8K9^7F6ZR@|Xn0UCiHO-my?+M^vO3S{JsB9kq)k4z6L{=BU4=+r4t zsGb+p*JlLRkIeNg|Nm)`t-{>??_%Vlc`G$Xs`&*l_x;X-9Bp>tA|7qQ4 z!XEigm#erKEzsKLEY$S#y52oaj(@K;iX>u|CQGprv^E>EkQ*corGtAytY5uRE`RPT zS_xCds#3+$xjxQTNYu$c_1f{sy=j7!uhromTo_g6dp1$s3eg4zV;-M_Jiyv3NF~-gYk?p7R?wTv`(RW=BT29bfDEc*b88Dthl~J`Zq8T=#iSp6ExZT?6 z_*|ABa3MV=7P#W~p=RYubU0;SmpotEdiuzdigxD1gyfjuBaR&#Hd~}%T(blKAfgWO zlwh5PDk%S{fG)C(m)+G9>8QcHNfok-$>5K8J8xhxk_q$pK#6)z%*I}5b%W?U=OifS zpf~z)0Tv(zn$(I^jxw+^lkwP^UJ)*(98Wcv5+1%E#brtR@Pk+usOE&Fip4zyETn%2_$g?|}azUuNC2Nmr{0ubjLnT}3cP1&h7gMyub=_Vsb2 z$QH0nVz-OAvp7n{VJ8$@7^h9lR*ge?ideRUow3B$Nt=!!934#!MfLn&s*8?v?miaH zmHe^j9iPvOUQz(J0)4uI8GytKAyGn?r=>BR8;gP?a7G#SK(p7?iL(ccx9@9+w!eM< zwI+zYm*We=qcB`;tYB>mzFL(w?`~YjxL4SDx90qr&ydH8i>}8F!Otfy zTy9AjTg}WQ?FqPtTtqd9kr;@1Iz{3uE>AD&a`bjVz7e~w$DN>KeC;wnhspCkwJVK2 zoqj?GH zPi!g-F65SP1s6_hZ4;k;L3`F{kvz38e|gs~NA~spgQYZqSn8LTDeOsbFI9Xw#Y+Ts z$>9PRA|U;0w2<&M0%Qr%&Tx4P$T-toRt-J7l2kH;TM&Qf>MRP7OH3u%XqVo6dL*d) z6a|dnDi8Ng_ru6UW=ea$$>=x>Mh2y@%NQ_=weA8Tw1riAyAf z=qIw*kTfM6Dax_9KEo&T3YyoohUJ6A(jvRz#$mDd1a)|4k6N%wv7VsET;av(2@SRBUy z*C4v#CMa#K^kri0OqJ@tZWP=|z3yTmIIVz(1C~ zPB`9Z0R{j>lSvqBBS10Nl{BuT+1(g_w}YrI(?Q+A&IFI(=Br-@${eJ{Dfxbf#bNDQ z;-sg)K=lN5M^U!tBat4-eJAiU&rD_(y4@+&x3 z(nGuyoK!Lr>{m*l0W791wF%u zb>vqQ7akasLBj4{C#f01KV{FjFz~m@^8Q zT{fmNn+gpnNG)+<*m~d{eWod4Ewgx1lV)1)u>SJX;^fsG0DZ zK(S*UD2z`FB{}D-gkWRDxy}V&lC6Sc$`mAj+$!c!3R*-V>^3k5D-0L-d;fmLhQ(x6 zyteAV9V%=*Yo@` zP#jLrJM&?P?fxqxPZ$Sc6{ji@hBRxOQHk2~Jo{oKdvZUAV?BF2F9@1bu%MNXas zPpjN=;Qa9J?pJ58Lhap0jD_S+e<`v(`EOp^QFP-C7l?JFY_wv^L zmfa%}-E+o;aEH-1eQ}nsxw24hRk0WKx9-t~3SoteRr4&qn==>}Dh#Yw*&E6u#`Qom=_2nR+ZvcDOY0 zQyt*T9r+H&{kGrMS@l+Wer6|V7JN?h6)fgI;-9)~Z@X;$;yAdG#s%r~#i9G3V0e_+ zRN@-d`Jxpc-qtX1lugz`u${+=3;ISk8`3xWYJY0=;yl=0xijz;No1Yi8(+|WBR zm_L3~@i0}35%^{NL3_P-VSZ-mR+EC_O#27fboXs-W&Kqpe^W<>@J7{u>;3sezq50{ zP+sGN>r&HIuMif;0%0Xn3bAp;I8i6TBEMDbMYwL`d!^HncO)HVn@hjT8olu~t-1_48JtB`iWjO8Iy#wP z_RE5iXiIf+%0;#Sx`;YS2~!`%d;Z4)gNKAI<8yGp5ZwhBKqk<(c|J-@}C5@GZJk>3fZAC5yz@8?jhXD=vH0ow=Il zWD1ZU(x()*_7t57CZvVjA^;O@XWA)?M;AEF)=);vhrPd)wrvl~$Nv4F(E4vL;LjXm z{iM~l-ciH?G0@E?u2fr9s`gyJz_>puvZSSnfLPKQJ(ZnG*!PF)CaDu`%SjAl<-0kr z+|M+lignLX5;~vDS*?k0Qsoz))`40J3j!#YTS6=VTLDl1(wk|E-8s8~zVd5n4%hqF znVhzHK1CkHagzIMn+1s}uvaMa_boz0>IOb-Om zG*sK5Kw&OkLgSn9r;{}axm8XH-4X1*%<%7;8kCtu?+&^GibTuc$^>RhZRm|k0yjrE z3%lj#?x(yT%C(Q)vIqdHBj$<|uKG7^&LiF(;svwB2kfxNozcvIo z3t?*gp7|+qQ2~**^qvd?(U27!XH(O#7lw*^H?5!8{u~p>`Rg|EQ48M=eZ+G;p5Zg) zyq1-lF`SOT*Nvc;$&3qwFdMF!RsTqMRXz18y7zv}&*1r@Kc$|Gu`wxu?|Vi`w)o8D zy|`Ou0D~&i@q5%~aqMq7leLQ2H@Al`=wQu-OR6kAh`?s{aTg`G!gbmTTSFn1-mt)p z9gTJh7nLQ7AGGvj?YSI>rDAN!`IFN(NL0#k0H;5+#ARbIFdbL&%F$hBhz;R&QnOV8 z4Ul#;FD$47haY2Zpe7k^I#$f8eI=Hfo%19PsLZ9$+WQE~w`-swbQcptZZ=^{5>dGf zNKeZJE$hl0#LX>>GLe>6ThWtS$HSVq^&nXu7 zWuK+@2+tVGx1v-Tvfgq;I~f+MjkqPntoYRKmx`bi%QLtA~7FT1jvSnUAE^0brXD9Xs^;fkRMcIfcglp2f5)if~}_$`MwCoDRG})K%AL zNHZMQONmyT2D{b$i0YRPTUD0S_sF>@`JRr=jJt;ESk8^Ccg}7Y#ES6vT|J($Ng4rK znHU1T1+6{)z#ve=RT_}BejrtGnwJtwbCNnKvcjz;ahy+%n% z3$>?WX}x?=Y$iG4!s1!B?3;vxv+S;6Grt~ z@&|Vo4GU|PMJjm(8-JX_)xKKIew@T&F7AMeMGhD`O=8M}@@6bL?41i+@Il&n(8-xQ(5MudsQ`rmyP6cF+2o1EbdM0_CMrBuOQGIApEyRy&=*m zV&jd>24cp~hjgkAP!JnU(4LstC`Qs_L6Wv}2Y2I{C zs?>PQSS-L^T3adYQ105=ae zXmh&g`8t`5P9EdN){m;xZmriNvd{ zi)1BzgkrV2xQ4E5amob)VVYV5i3pkLU2*5_zy+Qx1ItHj0~zL7H-aSZ6wT_g?tF5f zYWda(6bNLv4#iocJ9{WcZb!57E)Mf zb3r8IQW)D)V$u>gXsUiM?1)b6h^rwT-LJ^>a-^!PLZQ!n4qoX~ZWNnLxg+zRM~02{ zh*^(LJ?dbjCnm_J3K}Rll0U^iCXSxdm9l$x_oha@_WSbDH}|Qsyte?z;y+u@n}L`H z=z^(^v*a;?)~46(?U?BIMRli@Jn>u+=Z75J+|Mr$1^=bk*Hz;BS8^|K_L4s`WolLU zKMo>+WZZlI$A{rRRiMzmW|hAb1M)z5_?QRmvn-A*DDM5Q*xl21p)dHBkIh2F$57u! z%r#gxnn$W%-hq*jS67=5@K3Mkhx30#iiqIz$7Zl{#VA#-p+bj~_{ytq7i~k|dn6n% zvVovWzsriru?HP3c-S^!MEY&t;P$&$|5SLqZI%|-bXmTy6FSH%&_2910 z0lyII8gVb?j7!y?OHp(v&z;fLg$Ab96*_x4`(B^7u+mV{>uYr301w9sTi{$&m|%*7 zauza8i$U)C@SVFGJH96xiVRrv0CBe;I~A-Xh(IjIv8zgWTf=;Y<*3w z^c5!~AKlOLu|Rk_OEEFhx!ze6GayP3DB}#s@ff7&x7g=y)9D;d0qpVr%XT~NMG&yo|)r+$KW%`XQ+MUzD z^e+F)o^~ABO1R5l9v$%q8TDYT2FUjuEfwd~@jkbd`^Iky?m2pu05N|B__sfJ!6N!9ov~-qf;I%?Y#;^nqjUH?i+| zv3(}!gb3augNrTUh=+!soVEMYEm3z&Tk?`Y#m^^;JPecctaGlY8+ru~c#71AhE0CVbkR6APswJMGZ zB{3>_v4QQ#HGI!w#YwQ$e)~G|4IZ^`yby>DE#XMYm_@K8;hO= z1*4yUl$%?Q?+09-DCng6O96UwAu?au2bg?|s7b<#J7#g2PsXJejQp><-gyh`)qPBo zi^`0eQDWb-R1Ec1i$m{Jb-Xz1^!YwMRmPdN?nfPhrYwcoYfn(w?|9$W%k_SQKng}4 zwv`d>jYbJc9*&|=^6^;hQP)cnZziH+Kzt%o?A4lCZAGYQ-08jY!N%>%hR&Dklm2}V z5Pr`N4>*NG#gQ!4b^<4|Z(uJB0K@sL&9}c4a=MuLf zR|9D)eh?%&F?9E5-!+;GY%-kL`?%6}{H5TPuxSR}R1$zd!N3_G-C2&lARVoppl10H z8FVO0Vy{b68-7i6Mpef{XE~dR1@9uh*uPGEjOpUN3NeW0HkCWKbd7Dp`cV{Ww|E8SF}JooOF_qZOYRouQa7%uW$DMwD%rRO|5IUFer#p z1!;nS(mT>Sh)NRy>7A&6Gy&~q}v z-1B|kf5(5vy<_~}7=*R5Mgmz`YrXHY=A6%*12lZ&Mkyz_gGuoqc1rY4ljZ&*V$P*4=IlMYl}%xmOlifzO?0BoeFY>rFOT4t8~pwr6nfy&gF%zx@r} zv(^_MV1yd!GL3mCX2OZ4&HdC_{2%`;M)uolwjMVnLKm$4DmD@=!Q{uE9F8ci+RhKyca16h~ zpj;NgnaZ5JOeQF`G9yS??z*!Bm{qSdE4wc-w@La~Ay~o$U$jAAly4cj$MV9(_=h;h zY3A ztIq(9RbYeuX!=<-B_XJ4#&>V^9`n%M&rpVO%z_&_KxB#^;a2Ss%p}O~Dd5Vh9N#}= zfl+^vvk4&$5VrZc*yn4-oQfa!Q#AQg5+MXf&=a|zXtH$cu+XuM5Ct#auXEh?2h^1L zUX^kMz?pW#bS-H?PENYs@$)&<7bo!frzg$Rr)OT;$$qK}pkQSPCB{s3@;HO&QOec2 z#l?p^;f~kY@OUpJDbJ^^oSX+11bR`vypMBAvEEizZ z*V%4bKv#abVycU?NtgDQ5nr5Dx(!)#_=?Lsl?g5`mt@D?vfLs=tneOR{2%8l9L2}7#-B#yv z@*yN-cNCK6p};a#Ca0P;vt7q^AJm@sRo>`Lzuxb8IW%s_>w9Hub)UUed8u8uu6I=6 zj|B!k&gz9s=~daK#mD97h-^f0>U$)E>NlmkD9(sL)C zo^TB`2&Kq28pPo~*u`aVzorwET^aaKv8n$9~1b@}j)Wrpfo`h80$1YZ(LdYr)o}aRrsv z+H}X-Zewl7f@C*$?H!9HBJ&&`!!3qn2OY`37zalUYbkno?QW-?FGj7!%sYEMk?T;V z)~D77oe`@8p_ZG#ARum591Um))fKlF6puK6KT-bEPPtK{;xT1v{FSBZ{Esgxf`*%D zV~Zb;!!4BqNxxT#&_422cwloceB!2qB4g0N5-C;(k-k9p6hII(nlqGw_b(p)Tz*?taKi(CI8Y7u!_v9}Op(I-U$ zG8wacx6UGf5k2w4^enT)DqNqO?mJ;v3@?~*BrD$HQZlwpGm9)+{m5Y@E7~ut`xw%- z_A%zU!G2WRjl^D@6w142pDuuA8mpXZy2+3k4Mx=3u{YHw?@@kjunQQwQ{2ggW2=#o z5Rp1Jjl#o>D~2ct*1)h-OLPkK+c*(a-RHcmQPT|>i-SS`?0Iv`>bcyCbrl#doI0FU zh4>jdhT%wn2(i?ij}bzxBRHWsO=b%Ya{&*7?dFX)KJ*K8OC-pAVEU{JUx-?l4r=T_ z=ZwNbRm3db9u*AmO6!YKe08R9&(wSa$SY0@O?opwD=IiQVqWhPJ0JMeRbO}XBm-RP3=0=R%6 z5|ibn3%aBIOU}68)e^S=I)NYM0;natafzxH7I?ppjK4m7jrx|(3Rq5_iGeRmEK4l^ zV$b$Z=|pk>P&Y(!OutjOTf{9Vi}bfEHwTmDEjyaH?|!yYL@^wjF5_f3y-fQ$M(B-~ zEW2!3PM#iebeB`UOc7tYMdd^9`6LxV)D09L0fs0o2$JclX6Xa=@o5 z8mSu5q7Y;(9+5pQpyIQHD}JN6{3I5z|14i@07rn(oKtebE8=H{UC(IgoZ`>CnwU+v zX4Kcx_V@+{!R|6MMkm%lAy0a_-~4%iZ}jMpW$9rGPhep#U{X)v4RrVExJ<0#IPmSi zsv_B~)sOfJD^~bj8?M&E6nEL~_m%UiV3L>Xs-jM&P2+Zky?R_;=c})}>_zkqK?<+r zqxawU#RiDGe!VQ6lZ&ZR7xiU`kR`f_D*&?>~-Y`o{`h2uQzg` zjw)>24jda-+nk*w~90X>^W5``Mc+AN*UDEyif-J4Una;y@b@K!t zBD}Qt-X)3v#btk%aAv_q*vq7utva}K6)fbgqyNSaiZ7RwCZ?=-n^B1?g+N(fvZC5m zaRtAL&sCy8LAt}2N_^z9N~2<`7W`U~x*)Xe>b9=Lms6KQ4Z;`>GrRha5WgQ`)T*n{pRl&EN2rg>``DPfm9b>w4!Ui$)`+b*0r` ztuks(d(^51)tbY!H-gH#n}y=F85TDE*Q1O-GrAknrzTf;6>?XG9j@X*wX&T~nK79`v

IcZmN@>rz>i~0Cr7waHy5m3)BPo{#2~4`z8(|vQXIhESS^AvbSK?BXw!*aBO;Z zdZN{su%yiJxNn_7x%kd+cz#p%JAi`rab6&yrPnp$7>8$|mw9T~9BB@W@qUlK=Vj)- z%O;Pt!z9+F75AiZMI;DKV)>2jMj_nHfoE^<69gc5pZp9EG1Iur!a5aDzMraL;xf?o ziY%yiKO-nl@23BT9to?}dbm(F{Q2JTeDGtIFSdu}w%xKd6>y=B)0Owra?-{2PJ5$+ z1Y3%19DcHwOVg{a%sH0A7aDeT3aqdeK173))12}2@rKx-eJ;Vy+mb=)=hD_UXrCMn z^UZD#)c($5vFtJ;hWKxe`aJ5IPHV|27ZhAI^QqpieS5-ITlMaC0lixhdm`bvlbY*}VZ-)|4Gq4$N06l= z?tJL>!WzdWcPGeCmIomfwJYq>&#-$h7ef71yDhBr z&~+^e-N&n-qYE#{P)8J(j76V9TRFxQ#Ppg2++jsmovz`%J2_$B>ufWmE85Y&J9GrF|1$5|7J4&uk`wB<(9@GyPN zAjZc0zM3`0m*ZkRM?85DvUVT4J-fXY4-C%w<6qGQAs(WovvcN{u&H&WRue7*VUzg< zQ|FHdLHcuda=7BiEX2KEzS=4G2eoHh1Cs}^0;Io>u(x1lYQ4FeZ3Cyh=zfz*`N3yW z*GI(4#G$d&y!fNscV0qt7Z!SxlY^tUbMI$IasS?x{kKO&x}5!T1^E`3CiHT$6~^fF zxIuG;BiBYCPO(KpC`9(q*8fOl*P^qb42o>({5S7QhfgC&hC!SpG| zf0G7ZSkEW;TxkNn*Z@5gU1*J2hPMt{{{08jLMx`)P7S_g<5W2hj3UEuWE} zb)ksy>cvg*rQ44mbA;)W$K@Xcgb@YH$9e>DU<6RG?k0h$Xvy~;gZJFNl0-AAWo5FG zKVl1AUJaypWWeZo3;K`(AM1wkMqkxR1GA(RVBnM4XJrxzLkQ0 zy23=GWX^r=xo>guF>9lVu-e4VR5LTfdC%Ie?78uWMm*Yk4{o<#Rp^X#TUwy@ZORPH z!J18bYR5N)cQRHGENuEY#fL+T!*!c|20>CyYD%G2Ufss*Ywa&x+xz6`IgOYci>{Ek33v*u<~1hdqDqZEXEIvIs_Az>fv-ADZNo`&l*$jsJ9t{Ts% zsHXhzD!ES-%8s`1?j4CW0#URmeZ>epn!xhpZTSt=PGw2tA^q!uJBO#PL?06J4(}cC z7Lp2wapm)UfweJU4baTh%knHeZDgqM@S}Y^M^$5);b`~x-7A#?(KM}vv6@Z&KSQ`* zv4zB-jpS?qnG%w@Vuc0pwo@d>3YTJ{)nJ|iR2PpLC(u+Ka^J@Qfk~$dij^_sE>Z;# z{hbig#v0&)miUaY3*cH_BAd0`^3y-hFDqGE(D2OZSOXgDmJ_a!#!3WC4w6;IDT%L} zR_ul#Z`42u6jCw?QJ4D>9=lIYb<(^2VzzB=*EZAU>>NC9&S3XUo{Z>imo6+1BE-6n z%Sj?YSIq!$42VT`XbQ_I+YrVC2MWT?221)mHJ7%dAmvnK9bGcCr@AU<=|17iTQg!rhKCcC~S36aarIJA1jSXag8$0 zpIdw5(s}9XpYy6dRIPgm&ezyV6CBf|{@EQO3-t(byxuty8pMKP&haOlocc_f>EC`m z)KcBjQ0;IeCG27Jmw;j^CSIVPgq(2%i2%`dU;zFZx97(DYq+21z`s=R|DXf@z(xP_ zG`{~awvdai&~<%kV- zS{BmIst#S3UL3J9#a~n7(NY^F(!=@A9O))mx7z;N%3l09lx8XXM+q>glC(<8)|_Kc z&4d~bU8OBZwOFNE4U9{81R(;M`<@eBC~z!LaxYK`-Sp8m3d0TS>Q~*7(^5EcyLa}n zW4Q!R+1V%!(}lRRUpBb1A9~*8W7QKs)J3phRs0T1_a=@JuH02ow5f~XTOlkjDXI?% z@Xu$tfoX$_vZn=3eC_gxKFzO54^30R1`J{!cot?di?afX+-ZYJaM~eAEcRYhvNW%8 z@~ac@E6WT>;+ceJrtoNL_ag127}cBUl!`k}m$Sl2E*)z&*j#L==(Tv!5@Bj*VHSX9cmMx;^ZtY^nI$$30k4y0@*ODkq2X)t%}Rudhr-C z|G3H=d**vEK`|%qr*#wjf~nRg)515{J_ZtJlKDV(Af!!g(MatGNsT5Dl|$76+o^DK z%l6rgN$|4xzW88Rz%id8&b~h&%fTKyaqBFDCY6I%tXWC%%f3!UVmgRTw5yFCwf|nM z;YgcgBgNF<{o^V#_`^z-8(VL3ijKEUJ#;KorG77^|Ng)?)BC5{=>+<+=bSj?U$)?R z{=HIXk;PK8%z&wm18-|l3AlIr*@2Wrd;Edk>o#ZRwup+1Wu2^`QD#-Cnlg%I z$8vMuc^!9AZ+gz!INcoA-Pe*MgeCt1FmC;gu`l+Y-yf;5p}=0r9S1h}YUv@>?BwKW zzd^uiZFN9tUiwxMCo^Q;*GoEssYiH6=Ddh@p(c}`yNqr&0TB1mI-@L~a7_y#l12P#D5e^PoLhHW45CBzNXbkRr{t1 z2BOs#bzt!txCKm~ag~I#i&(qd4W-A!yMK*OUQW{`e>-8zPqgD&0a*SAT%a)i6zrQI zKLGXO2%dEF!&~+)gTkA8;ohO;a%>!5$^(>M_??bs$I(va*sb>OHrBn{u5IN3zZ$tV z=M&#~p4u({N@@){b=Qft-P25#{(}moJN9XN>Whi^CuakLHxC))0BN77+eSGOGLqac zga%oUaY-9s<4-|>VFXQ`I!Ty1br*x- zlo`-+J_yD(hfHMYDa`A+oheO5B)|&}zgxxn(7;q5ug&2Y5AA-ImE|k|-#a!@_MAKW znjUiV*tfC9c>6c4_iEEj4+ucuwu;aBjUqy z-8sy3+&t&a;UeBLr$-LQKV85B}t){?q=3E_7Nj?)NZ{`$^BA{{Uk zZXt8epD#u8CGmfaPsdw<6c*@)KGA|jKOV1mQl&-pv|iblIerCbxH)C1DbGU9S;EAc zSx9>jCgOpzJJX!LdtWSbSxwYq11gd}t_62}0ZKe!j2;@+tH6aW%gGrR_x8<70=jmK?4~8SBvLzGjt>c#z-za|r*iVZ zuOAgzI?zcl(+9e_-nl}_P)agNn;iN22#8FM;#*U^i5v5FqaeU2KE(7LZk;pzYz{>F z3lWP?PJWMaCw|17S&Y*mXQ$fJH5%v}P%p1+u|R{m7s*jeQK?91C?M7FKpk$$)JN~^ zW;KTGo&K1;qfXP$toxd9iA{DSS^P z;?J=|?wDKEuInzSqumFL&>MfX(`wZISAoTYKVTn1n(qPHA$|3hOkvZAlWM1&1r7h} z&SmB$Kx%zqVUq6`0P{(gFsW5joYG9!vnlLc|5fvXxna$%W3-O zDH9$^xV&<9W=|N+7W$N_Ul_XbY%atJ`BtGayG5ugQxel?Ymb&~PiYEEM#fY7P;Jd` zp2w9c^e_$O4Q0=(t_!qS-@dsIO4gU4+dFVa zk@}aSBM#?u7rKKuzxvAy7t~i04+HI84WYBGrPEz#XZ$}`-wKQwDAw{r*Gs@lbwC!< zuj_dA%KEs8DnLh8_8VT%9G3e}Pp&NZ+U|0pQnpuEI)_v{&t+x>t74gkGsFjC_#*&G zWd~2Il6kzPPlei_-uCMgzSr`;h~nN_dE{P`x2rGQE%%W>HiG0)(8y_4#;MeY&GMDp zOE(nNZ^mPoY_VpjYE1Q$nrS&6KYpwQqA?a1>G8ee>Dw2(t1F-K%yTH-_!|(RQ$C~p z5lq7+dCCHrC0A1Yd30Lln4Zjr(3{2Gwh+!-4q2>1n&|)d2K#Zh_1Invnnr6c#KYmz z>i0#I*w>I12r6vYr(QB1-dq|cH@binlo%1A=Pc5@AlCtXn&~&QR9J3Jopj&+dbcou z#vcfHShAoE(<|(}7$!tMq}HK_@l>SvzkY;OuAnMdFNK3JcaEz?cDwN-f)baTdoeFk0+uf_h^FE@;E=P%!l6#X!7UD_O&-qWh ztG<`*AJoBc$Nqg?klO|E*n3t;&nici#>J|KW^arPdEfZQ#PJOW32ZLjo(dAgipv~l zTg-s+%koC`>1Kl99(QPEh|^6za?MD$ z_mw1=9&#ReSkBgIs_?OJ6W$l<*(x}WThf@~xa1$O{ z4nb2Gh5uj`(Cu8@4N|#4r^Gho5U<=asc#1G85ixd4LBxTxa$M5}xQ3U{|?gIF)s|PnCGv{*lRZo-}?r|*n|97>zj&a&%;dnUjm>eB}m z569NN!Nk(#<*nIvQ0%s+P7~z*elU#PIdt&+A*RGnXvAe=`rlvp?;8JuOPH{Ux8R@q zqx#R)2ZX->yHf^x1vcv@xMS$_?@<%D6@P<@|8Hg~8ohrGZaM#4{ogYs{$KIW@PC1X zt5Si{aw72*n8BF=y#oK-#n7%H^p^=Aul}#z5}TlZj@!T#uUKfRjuP!IOrYx9F+QUQ z53VXq;BQa-52bVC-;~aZe^)x^J1{tiz4)LyE6h?r_uM!--DeL3PNI=K(7_K3$=7rQcj*QIRcO}sZ+JYZ5UfM|pFfU% zl6xlQWoCd`wl?i@gg+ShZ^dstTs{K<#5`pI|Wkh*IUy`0WEN&%$ErXf%l zi0QqbMCDh2>*xwMu8rE7)2(V9U&H-qR!#K~$xJAiijcw z0$^Y{{tYi_a0Dm*;7)Jsg$$;-osK~=I*19=rQ$-TsL&XV>l)bsU#!#LqhRHJN8pgm-1iqNcJ6Fowg3q4_hP2}san=T} z`)lzRzLArwi*JBX6Ob$54Zq*;25i=WNS7QO10cG-qyU{gZ2?LheY_?}n4+ByM_f^M zz++Uw+$&gYT#>zJ&d>?XC$*hauYszwC#0v$ zek90|7w4Q>sNa1?RPZlQ=^BoU|VG4 z0`9uF3A9)B%Aoto;3ZfKP0f&8p1L*zAF?8OM8G=p-DE{rowrfM*+o>EQQ1F_8h?Ee zAM>Kn$C-j=E0Y6FAX5>6wRb^{$x{kg{GVT+```CE3bnr6M7#7*a9NZe7)r~$eJb# z=E-x!OOjjfe#5)^ZUjr*=BZ~KAP00V59%l>pqdI(aW^y-Wy`}`wpz4U=}*drh@=I_ z)nPz3ERoo>r|rZk19x_7b^jk=%pXg>KczHfDmFlsp8e~l2jqX}3a<_-$T?Mk!*OhK zU>l!lEz;lc7UGuGotMs~45zz|^G2PImLg8ndTI>sZ}GO;z*g_7AJ4p5*_cEE){X_; zic}cU_B8U;Ec@>-COyS69Z%!EXLDWC#Nna!q>+duA=v$Jtmkh6|KN82SNmb=uKWh zG(TKuFs}kdM-EGd9>&RCBKa~4b^7d6YhU<6(Dxm;SKk6Yu`JmQuy~gHuj~Typq-ja zjvC`UGvht7?&|K(c56@R&v4A8VB&+S9o1=jmAujgm_=?)!kO6Et`$Hq>6P$$HyPTW zYU|_d^9@jYwRwZ+93+rw;EzF6jSAEN!W=WT^;iVikFA^{Cz#58=`)AE7;)$=pYeSS zRA|PRG_7>x4U;=hggph)$i}||JSjhn{uu@Pw~^b_0c0rWc*XFp$9Y3NMws@nGepqwz+ZKBik=9g;v2jfUha z{iGlspdybl-&+JzBqnfibQOCPM3ofBu5I&34pgi`)1qZ!xw_Jr!wd3L^X)%8dL1q+ zvF;A`ja-Xw{8{L8(OI;jNDQ)L1#u!DQ_T*`bhy12)1`PSMYNf=VOJjAJl{Djcc_Ja zoXLy2mVsh2`WA|( zJk3Q3i| z@9kRlp(Q(5P~Teac_Z@LB;20#^XsngGLb)cG0%c)eTk*Vm;f!ks;#xHlT;^LIGY4* z9<|sj!Fabx*x1a{tdcOhA=3Jx z>eG@dyx|dYObA7qP4G-62Wm0BXohg6?$ofK^=_}iGu1)N%R27jn6+zPEJ`02b=nv4 z&7(l{SoQ{t-s=E&RC;$)T*7Nt>M5fti7Z>flKYFg(u_XJQZL`Nw{v)X9LdB1N2A8O zXC%z>CNm|PCAfy84J}{RO$+~-0cNjDc%bLl;wloZPV_1F+DqvX@#EH^8oHG6*@eed zT{2>BY@}hj_m$2=EMMgKhyq0{Y+r#UKm~Of*B~b>(;Cqhp=LRB@cg6t>P^wxeW$*q z-;B3>y&MW+!sTU#aSpjgK`mqIvzvPgRm_TlMW1X0Gl_$S^Eh0%ZYaR#QZ!4-0@ubl ziGYR+79dIX(S@{+G*-Mo;WM}#{^+Z*Sz_X?{1?7T?E}TVdlciXsgK9`kI0xu9>ZWZ zwJ|pctY%e20!K`dSfTvQ^Mcs*hVh-O+EFYc(TT)o0?PN1&h%GhS>vuv&a$xV8f6*L z+~{M8sraO9D$vm3Vwb;%b8BnWe>w6nPx|?N{rgnj2~kOl(}_=(Je&$tdF}!Sd{jyc zgwzh*lQTkSq|3`_^Xb=kKw+HwH1nzfwi{~jz)w?(T`cq_+osG}CCLYDE|^d1l*{cu z3Wj5T!)xYuqv&h}+HHEh+%QDl%v|-g1NJx}*w2JHCbq`J*Y5Zmk~HAbG7B-fnpVM! zJ2PQL@RCjF$fHust>-8Vleqn8>3Pe6Wq)RKMzkbOVZ<`l#FFNlg=m+bQ&cFkMUC$q z%=NYuR=v!0xFxArqE0M}j=^5OGm5)3_Tk?ZGsLM&+ogbg6aeO1JJcKe>TUZk5e$D! z=l`=M@1I7K$v;sZczgp;2gS2{mYl%+EOf~q)@s;Na*_i`YiW=!7j6J`|K0BDq}|`! z^!~VT{OeY@RThYb+|RE_waLC>YF!xh z1i5&KNQw3(Z22hOsm}gW%hV($_NSV5;85ZbYjaxE)D*lIE(`Ee%fU1^?&uU6C^G@h zI=rUagQ)Qi1ka1rJp_IJuH!6+zweh%*vGCu#h)Tdc+_j^YZrFk0O#?yRpLYKC+(rAb7l;Os10>fMco25*=Vj8mcLV`*5&@=kp41%dHy10 z+xSzRo&9&=*uPm`0chv%y4vTb+Lt$q7yjIH0JO0E<@|D-bo|RX_*UNVzi?vwdcsif zUS^4bnYPl5LdtP07+D;Z*#cuP17J&Pf0;#=IcIFBd*G4;2(L&<>xVv&ld+&G6=cC< zP2jZ!TR>MmT|5S`cz~hqt(E#q#sZwh6d0@d->>;U_x-S}fMb^Eux!gi{yo4Q`VQvg z{8eoJ{LhSanF(H(vFVXEM1l% zKp|>xDT@lLU(WD(>aldw{*=LHIrK#Bd74D*NgX-)l$3ml?$iSR?u(j;N;Nj)iF#eU z_K~#*%z)?Af1e8fms|!k$oN<=ot$hT#-Y#f5@H?Y1UAI|_-24M$ni~Od6nsu8+xXi zN*c};pUR|G9)hFg>T@}l)W$XgQzs^E7pu8E#M0x9W16Ua^oA4FTPz;U!qXXF6PW1; z{_=beB#6|KS|^e-JO9I_OGnO-GjG7+3oQoj?8X51c`5+-nCc0r)Nfgq{O*zP z->>>V^-cKbvoPQUHCN{Luc=-rsChcdvrg-!31Oa;T`6mUY2R^bcD^A%8p5Qq=ohu2 zhf=8}X5lYgk6~%Rt)w9--1l?ufHIh&JTuBv)k$*T;vA3nV;>+&G*Xa1De7XbYb1o;Hv#z5V>8Z z?6jB}=!zpV2drkcY*qbLs#bl>_mndJfssn@8vmp)e7q6*@(MuC3Av4Zrbtq=K%@#2 zcM{SXFR$>FwRmI+(TZKQyQ@YL2oaSc=pTJfCE{E0yb7be9IJ>}*zcTk5>fiPWjJj( zT{uk+Gr!F7hOj3jw&uF+Xe54tEYDXcSRgk3y~0hbSA9#X3!@LLk8)Z#5H=@I`Y62~&@z_Z0;*i`vb@4Z$-IL1{++gKO7L;MeS~#-d`&>k<3#=)Txe z4AgjfHxK2NUT8Kqugc6ny0A#WNgYW|dEj}sk}JVc2+0yH293!S!PqV{W(ajlSkg}& z$Et0eq{V(YcLy<=5v9?ac}@8YW^|L^h_TJ{2X=0>4Ew@+rJ>B&QL@Q{K_BKD8&(&k z&aOQ7*e}THq*>*)2@K zfOnQQsD-jNRjEcmA{00#_vCIb0|{`Mi8+{8OT$g+reyY{DJM@TTV@|qY4Yex-y!QJ z9P)SBSw{dVa@y@ihL-GA%`kzz+UUUrI<=POi>K#WpV_VwmL@p6e10=j@9wlnrzl`F zsR;1%p?>+0EaMu}cuw&H2E(UAoYyIxEM{06wwDOE6nNv2Nno1V?V(5A z5K=kDT%|mRn~Q^VGy5tj)1n~N+Axbfe2y9Gi1y8omg`8!>~y;VKROS{ZQ1i=q1l8_ z6_C=N>e(x>wp5z1g?jZ8cWz1D#;VJ2fhch!Aabmp*sU$-TzXi>wZuYSnVxPi{KVDP z+9+4T8E??K{)hK{E+T6DpP4)jXs=e+3u(-$4mzcT%8?=e^JP|c_T!YQdCffYf$_%c z?ELhUHFaYfWbWYG*c(W0K>4YJ8AHb7+2eQs;SsVrg&vCFZ>nyN8;4I?u6B{KG%wPB z@3G-EyUOIax!}^Fa0gA$M9>ubRuL7ml%JQ+|J2IZRxLMDiw^H?LId1qbJILN3Tz7v z&lEym%PQXj&*`X^iD{Q^)}_^;j2+4tLLa$bxo<)~`OMFm`0A^-Qt|PM4C5;ZuIREB z78j(2$l2>%9Zz+!{<38?LBZ#tt5M6bdGFn;uaK*V$mk%1h)e=xFo(rh0gQKGV3wWV z$U8d21gU&U7MlsSmIK-~f{O{+oQzol;TS4%zBz!FBHOU!1|<8To|htwLtHv_jvDDk z^s13z#OPqD4VCN5F_h*&VpGs9A0x!V3bbB%|ZwG`}%rC+h_%S;sYu} z@%e7y7pD(O73E*!T0q`JCI6^VGrV&MEEvF zh%t|pP&Q@9so}e(*K3)c>>DRIOLY35&4 z3au83%P7*cYYI(4F1>1`{B~$HC`knQ9QMZU>d)Ws?qGs0`dF@N_o{zwMaRc*p@LH7 z!sP8t`w?^&^0xlpbBqXcU%AMYU%lVXA`s}heECGcs?(IS;##)n^@^Hp$E0SSZ}WWJ zrR;oI*>}UTuNvZS;f5h(0XjwV4!62WHY=ClN-v6L?M+Kh4AYWpc&fO|StEm+iUUHj z<_^~H80DJ4O*c5A!u8UQA>c=!)){RdDh{y~faA*_}qQpN*J zx?c;uiJ8_wgHPh4TAXcC7-h|rWaZB7Iexf7*h{Zm?;`B|$*n{ay4?J#7UkUui5Iq5 z1i&p9fWKhwdr`JfJ0E+}Y*y0z$)?6`@b$sUV~b+C)%(H1L;mrh&{v@FOp=MO69JMX znBk%4Z8C3bw5gW@KmN2QjcsEQwc-<&*1hlMZVK0K2Zj3yMO&dglk>CM;3t7vBU*{i zl8?4!XX}0IZ_d#kjH@hS-@Ubnz)Qnh!Lq$5w}aHW#J~*EDMe*-7CxfdZFRwi18O_Z zmMnyl>0|Ys&J+%9;@unv6>ec1jWJvmK9W698XWVSc9Bo2Xt&(hn-_ySDKjq3AES=!ad+%YH(TvhlM8D@LI; z6inNG0+4r}@su;0?sGC4qV_1W8!4mxBF#I7A9Lofzo8~YN1ZG7LCCSvXsUtXISaaP z=Ju(qr`phOP5x%h(kID6)P;`(4L+-_-t=YSZOcFvbjX0Zw)ev%nqEU^{PJ2STMzo* z?8{HXANd}r3v<9#1-l!i`%kXC6{%T@kns+c6JH(@eKszBFzT9Shr^K$w>m5-0BB)h3$t&ENvM-N<=oS?sZKRY>E9u>sXNoS62rNa)O)?+ zTg^6!6Q6b+jQ>Mk>lYpZUUgX=YTlU47JPG>f_Ck2FH0d1eV2XVXSNCJsTVM_XUR1i zp11KSyi$5vYLoV?n(xrEs_wZ47~H*%l-&5vrP9Hs}~k#A)M=uXlx;uTwl3|bjTvmDn#P%IBYlf{Gv z8JfcoZtK(8!*dsLC)nqhriiEy9O|tg2qNf025e~uz)hvAznH4~H7>laSC&ip^gQ<6 z;l~);sAXG>{E7rjT-NUB;)TF;&nG!k2vo~sts(Ts``_^VUppNfmos)MR)@!VXgaE+ zQVPC0NH%H3BYUUA>LsIXE(lV#J*I_|VUzU&!%vF7&o - + - + @@ -24,7 +24,7 @@

Skip to content

Contribute to YAXArrays.jl

Pull requests and bug reports are always welcome at the YAXArrays.jl GitHub repository.

Contribute to Documentation

Contributing with examples can be done by first creating a new file example here

new file

  • your_new_file.md at docs/src/UserGuide/

Once this is done you need to add a new entry here at the appropriate level.

add entry to docs

Your new entry should look like:

  • { text: 'Your title example', link: '/UserGuide/your_new_file.md' }

Build docs locally

If you want to take a look at the docs locally before doing a PR follow the next steps:

Install the dependencies in your system, locate yourself at the docs level folder, then do

sh
npm i

Then simply go to your docs env and activate it, i.e.

sh
docs> julia
 julia> ]
 pkg> activate .

Next, run the scripts. Generate files and build docs by running:

sh
include("make.jl")

Now go to your terminal in the same path docs> and run:

sh
npm run docs:dev

This should ouput http://localhost:5173/YAXArrays.jl/, copy/paste this into your browser and you are all set.

- + \ No newline at end of file diff --git a/previews/PR484/development/contributors.html b/previews/PR484/development/contributors.html index 241cd79a..107a1be5 100644 --- a/previews/PR484/development/contributors.html +++ b/previews/PR484/development/contributors.html @@ -9,11 +9,11 @@ - + - + - + @@ -22,7 +22,7 @@
Skip to content

Contributors

Current core contributors

They have taking the lead for the ongoing organizational maintenance and technical direction of , and .

Fabian Gans

Fabian Gans

Geoscientific Programmer

Felix Cremer

Felix Cremer

PhD Candidate in Remote Sensing

Rafael Schouten

Rafael Schouten

Spatial/ecological modelling

Lazaro Alonso

Lazaro Alonso

Scientist. Data Visualization

Our valuable contributors

We appreciate all contributions from the Julia community so that this ecosystem can thrive.

- + \ No newline at end of file diff --git a/previews/PR484/get_started.html b/previews/PR484/get_started.html index ae0bcf8b..cc90e229 100644 --- a/previews/PR484/get_started.html +++ b/previews/PR484/get_started.html @@ -9,9 +9,9 @@ - + - + @@ -74,7 +74,7 @@ 0.683599 0.598769 0.0571978 0.155874 0.623962 0.959705 0.957463 0.179919 0.551487 0.783779 0.828388 0.303359 0.542756 0.903079 0.487093 0.78064 0.191898 0.908084 0.60764 0.833498 0.198806

Updates

TIP

The Julia Compiler is always improving. As such, we recommend using the latest stable version of Julia.

You may check the installed version with:

julia
pkg> st YAXArrays

INFO

With YAXArrays.jl 0.5 we switched the underlying data type to be a subtype of the DimensionalData.jl types. Therefore the indexing with named dimensions changed to the DimensionalData syntax. See the DimensionalData.jl docs.

- + \ No newline at end of file diff --git a/previews/PR484/hashmap.json b/previews/PR484/hashmap.json index a713dc5b..25e66677 100644 --- a/previews/PR484/hashmap.json +++ b/previews/PR484/hashmap.json @@ -1 +1 @@ -{"api.md":"Zzab-IU-","development_contribute.md":"CFy6iNrK","development_contributors.md":"DJXEd1h6","get_started.md":"cJZwONQZ","index.md":"B4oX8vNy","tutorials_mean_seasonal_cycle.md":"B0rxzeNg","tutorials_other_tutorials.md":"kzMCtd7p","tutorials_plottingmaps.md":"DbY5YmNa","userguide_cache.md":"Dc-u-UL-","userguide_chunk.md":"hPUMiuZk","userguide_combine.md":"CqnxMZAf","userguide_compute.md":"kYurzz3U","userguide_convert.md":"BFfPgk0e","userguide_create.md":"DvvqXcmD","userguide_faq.md":"eNSC1gSe","userguide_group.md":"B-xPhNup","userguide_read.md":"Brdgq0A_","userguide_select.md":"DmCtYRzB","userguide_types.md":"DCOz8RpY","userguide_write.md":"nvwrVFgh"} +{"api.md":"ukfTGbuM","development_contribute.md":"CFy6iNrK","development_contributors.md":"I99J6XWx","get_started.md":"cJZwONQZ","index.md":"DL_Vo461","tutorials_mean_seasonal_cycle.md":"DnUGdDLG","tutorials_other_tutorials.md":"kzMCtd7p","tutorials_plottingmaps.md":"PQqZL_Fc","userguide_cache.md":"Dc-u-UL-","userguide_chunk.md":"hPUMiuZk","userguide_combine.md":"CqnxMZAf","userguide_compute.md":"CqQWkPRZ","userguide_convert.md":"BFfPgk0e","userguide_create.md":"DvvqXcmD","userguide_faq.md":"DAAqaRXV","userguide_group.md":"CcxfbNV7","userguide_read.md":"CrtAcGas","userguide_select.md":"DmCtYRzB","userguide_types.md":"DCOz8RpY","userguide_write.md":"BVly3P0r"} diff --git a/previews/PR484/index.html b/previews/PR484/index.html index 12de5521..d09e98df 100644 --- a/previews/PR484/index.html +++ b/previews/PR484/index.html @@ -9,11 +9,11 @@ - + - + - + @@ -25,12 +25,12 @@ julia> Pkg.add("YAXArrays.jl") # or julia> ] # ']' should be pressed -pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
+pkg> add YAXArrays

If you want to use the latest unreleased version, you can run the following command:

julia
pkg> add YAXArrays#master

Want interoperability?

Install the following package(s) for:

julia
using Pkg
 Pkg.add("ArchGDAL")
julia
using Pkg
 Pkg.add("NetCDF")
julia
using Pkg
 Pkg.add("Zarr")
julia
using Pkg
 Pkg.add(["GLMakie", "GeoMakie", "AlgebraOfGraphics", "DimensionalData"])
- + \ No newline at end of file diff --git a/previews/PR484/tutorials/mean_seasonal_cycle.html b/previews/PR484/tutorials/mean_seasonal_cycle.html index 18619ec6..691152e5 100644 --- a/previews/PR484/tutorials/mean_seasonal_cycle.html +++ b/previews/PR484/tutorials/mean_seasonal_cycle.html @@ -9,11 +9,11 @@ - + - + - + @@ -32,7 +32,7 @@ ) ax.xticklabelrotation = π / 4 ax.xticklabelalign = (:right, :center) -fig

Define the cube

julia
julia> using YAXArrays, DimensionalData
+fig

Define the cube

julia
julia> using YAXArrays, DimensionalData
 
 julia> using YAXArrays: YAXArrays as YAX
 
@@ -93,8 +93,8 @@
 ax.xticklabelrotation = π / 4
 ax.xticklabelalign = (:right, :center)
 fig
-current_figure()

- +current_figure()

+ \ No newline at end of file diff --git a/previews/PR484/tutorials/other_tutorials.html b/previews/PR484/tutorials/other_tutorials.html index b1cbde96..b06366f0 100644 --- a/previews/PR484/tutorials/other_tutorials.html +++ b/previews/PR484/tutorials/other_tutorials.html @@ -9,9 +9,9 @@ - + - + @@ -22,7 +22,7 @@
Skip to content

Other tutorials

If you are interested in learning how to work with YAXArrays for different use cases you can follow along one of the following tutorials.

  • Currently the overview tutorial is located at ESDLTutorials Repository

  • You can find further tutorial videos at the EO College. Beware that the syntax in the video tutorials might be slightly changed.

  • the other tutorials are still work in progress.

General overview of the functionality of YAXArrays

This tutorial provides a broad overview about the features of YAXArrays.

Table-style iteration over YAXArrays

Work in progress

Sometimes you want to combine the data that is represented in the data cube with other datasets, which are best described as a data frame. In this tutorial you will learn how to use the Tables.jl interface to iterate over the data in the YAXArray.

Combining multiple tiff files into a zarr based datacube

- + \ No newline at end of file diff --git a/previews/PR484/tutorials/plottingmaps.html b/previews/PR484/tutorials/plottingmaps.html index 50a0d057..8c221daf 100644 --- a/previews/PR484/tutorials/plottingmaps.html +++ b/previews/PR484/tutorials/plottingmaps.html @@ -9,11 +9,11 @@ - + - + - + @@ -107,10 +107,31 @@ figure=(; size=(900,600)))

most Makie plot functions should work. See lines for example

julia
plt = data(dim_data[lon=50..100]) * mapping(:lat, :value => "tas"; color=:value => "tas")
 draw(plt * visual(Lines); figure=(; size=(650,400)))

or faceting them

julia
plt = data(dim_data[lon=50..59]) * mapping(:lat, :value => "tas"; color=:value => "tas",
     layout = :lon => nonnumeric)
-draw(plt * visual(Lines); figure=(; size=(650,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
+draw(plt * visual(Lines); figure=(; size=(650,400)))

Time series

For this, let's load a little bit more of time steps

julia
dim_series = c[time=DateTime("2015-01-01") .. DateTime("2015-01-04"), lon = 150 .. 157, lat = 0..1] |> readcubedata
┌ 8×1×24 YAXArray{Float32, 3} ┐
+├─────────────────────────────┴────────────────────────────────────────── dims ┐
+  ↓ lon  Sampled{Float64} 150.0:0.9375:156.5625 ForwardOrdered Regular Points,
+  → lat  Sampled{Float64} [0.4675308904227747] ForwardOrdered Irregular Points,
+  ↗ time Sampled{DateTime} [2015-01-01T03:00:00, …, 2015-01-04T00:00:00] ForwardOrdered Irregular Points
+├──────────────────────────────────────────────────────────────────── metadata ┤
+  Dict{String, Any} with 10 entries:
+  "units"         => "K"
+  "history"       => "2019-07-21T06:26:13Z altered by CMOR: Treated scalar dime…
+  "name"          => "tas"
+  "cell_methods"  => "area: mean time: point"
+  "cell_measures" => "area: areacella"
+  "long_name"     => "Near-Surface Air Temperature"
+  "coordinates"   => "height"
+  "standard_name" => "air_temperature"
+  "_FillValue"    => 1.0f20
+  "comment"       => "near-surface (usually, 2 meter) air temperature"
+├──────────────────────────────────────────────────────────── loaded in memory ┤
+  data size: 768.0 bytes
+└──────────────────────────────────────────────────────────────────────────────┘

and plot

julia
plt = data(dim_series) * mapping(:time, :value => "tas"; color=:lon => nonnumeric)
+draw(plt * visual(ScatterLines), scales(Color = (; palette = :tableau_colorblind));
+    figure=(; size=(800,400)))

Analysis

Basic statistical analysis can also be done, for example:

julia
specs = data(dim_data[lat=50..55]) * mapping(:lon, :value => "tas"; color=:lat => nonnumeric)
 specs *= (smooth() + visual(Scatter))
-draw(specs;  figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

- +draw(specs; figure=(; size=(700,400)))

For more, visit AlgebraOfGraphics.jl.

+ \ No newline at end of file