-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtablestats.jl
332 lines (309 loc) · 11 KB
/
tablestats.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import OnlineStats: OnlineStat, Extrema, fit!, value, HistogramStat, Ash
#import ...Cubes.Axes: CategoricalAxis, RangeAxis
import IterTools
using WeightedOnlineStats
using Distributed: nworkers
using ParallelUtilities: pmapreduce
import ProgressMeter: next!, Progress, ProgressUnknown
import WeightedOnlineStats: WeightedOnlineStat
abstract type TableAggregator end
struct OnlineAggregator{O,S} <: TableAggregator
o::O
end
function OnlineAggregator(O::OnlineStat, s::Symbol)
OnlineAggregator{typeof(O),s}(copy(O))
end
cubeeltype(t::OnlineAggregator) = Float64
function Base.merge!(t1::OnlineAggregator,t2::OnlineAggregator)
merge!(t1.o,t2.o)
t1
end
function fitrow!(o::OnlineAggregator{T,S}, r) where {T<:OnlineStat,S}
v = getproperty(r, S)
!ismissing(v) && fit!(o.o, v)
end
value(o::OnlineAggregator) = value(o.o)
struct WeightOnlineAggregator{O,S,W} <: TableAggregator
o::O
w::W
end
function WeightOnlineAggregator(O::WeightedOnlineStat, s::Symbol, w)
WeightOnlineAggregator{typeof(O),s,typeof(w)}(copy(O), w)
end
cubeeltype(t::WeightOnlineAggregator{T}) where {T} = cubeeltype(T)
value(o::WeightOnlineAggregator) = value(o.o)
function fitrow!(o::WeightOnlineAggregator{T,S}, r) where {T<:OnlineStat,S}
v = getproperty(r, S)
w = o.w(r)
if !checkmiss(v) && !ismissing(w)
fit!(o.o, v, w)
end
end
function Base.merge!(t1::WeightOnlineAggregator, t2::WeightOnlineAggregator)
merge!(t1.o,t2.o)
t1
end
checkmiss(v) = ismissing(v)
checkmiss(v::AbstractVector) = any(ismissing, v)
struct GroupedOnlineAggregator{O,S,BY,W,C} <: TableAggregator
d::O
w::W
by::BY
cloneobj::C
end
value(o::GroupedOnlineAggregator) = Dict(zip(keys(o.d), map(value, (values(o.d)))))
struct SymType{S} end
SymType(s::Symbol) = SymType{s}()
(f::SymType{S})(x) where {S} = getproperty(x, S)
getbytypes(et, by) =
Tuple{map(i -> Base.nonmissingtype(Base.return_types(i, Tuple{et})[1]), by)...}
cubeeltype(t::GroupedOnlineAggregator{T}) where {T} = cubeeltype(T)
cubeeltype(t::Type{<:Dict{<:Any,T}}) where {T} = cubeeltype(T)
cubeeltype(t::Type{<:WeightedOnlineStat{T}}) where {T} = T
cubeeltype(t::Type{<:OnlineStat{<:Number}}) = Float64
cubeeltype(t::Type{<:WeightedCovMatrix{T}}) where {T} = T
cubeeltype(t::Type{<:Extrema{T}}) where {T} = T
function GroupedOnlineAggregator(O::OnlineStat, s::Symbol, by, w, iter)
ost = typeof(O)
et = eltype(iter)
bytypes =
Tuple{map(i -> Base.nonmissingtype(Base.return_types(i, Tuple{et})[1]), by)...}
d = Dict{bytypes,ost}()
GroupedOnlineAggregator{typeof(d),s,typeof(by),typeof(w),ost}(d, w, by, O)
end
dicteltype(::Type{<:Dict{K,V}}) where {K,V} = V
dictktype(::Type{<:Dict{K,V}}) where {K,V} = K
function fitrow!(o::GroupedOnlineAggregator{T,S,BY,W}, r) where {T,S,BY,W}
v = getproperty(r, S)
if !ismissing(v)
w = o.w(r)
if w===nothing
bykey = map(i->i(r),o.by)
if !any(ismissing,bykey)
if haskey(o.d,bykey)
fit!(o.d[bykey],v)
else
o.d[bykey] = copy(o.cloneobj)
fit!(o.d[bykey],v)
end
end
else
if !ismissing(w)
bykey = map(i -> i(r), o.by)
if !any(ismissing, bykey)
if haskey(o.d, bykey)
fit!(o.d[bykey], v, w)
else
o.d[bykey] = copy(o.cloneobj)
fit!(o.d[bykey], v, w)
end
end
end
end
end
end
function Base.merge!(t1::GroupedOnlineAggregator, t2::GroupedOnlineAggregator)
merge!(merge!,t1.d,t2.d)
t1
end
export TableAggregator, fittable, cubefittable
function TableAggregator(iter, O, fitsym; by = (), weight = nothing)
!isa(by, Tuple) && (by = (by,))
if !isempty(by)
weight === nothing && (weight = (i -> nothing))
by = map(i -> isa(i, Symbol) ? (SymType(i)) : i, by)
GroupedOnlineAggregator(O, fitsym, by, weight, iter)
else
if weight === nothing
OnlineAggregator(O, fitsym)
else
WeightOnlineAggregator(O, fitsym, weight)
end
end
end
function tooutaxis(
::SymType{s},
iter::CubeIterator,
k,
ibc,
) where {s}
ichosen = findfirst(i -> i === s, iter.schema.names)
if ichosen <= length(iter.dc.incubes)
bycube = iter.dc.incubes[ichosen].cube
if haskey(bycube.properties, "labels")
idict = bycube.properties["labels"]
axname = get(bycube.properties, "name", "Label")
outAxis = DD.rebuild(DD.name2dim(Symbol(axname)), collect(String, values(idict)))
convertdict = Dict(k => i for (i, k) in enumerate(keys(idict)))
else
sort!(k)
outAxis = DD.rebuild(DD.name2dim(Symbol(s)), k)
convertdict = Dict(k => i for (i, k) in enumerate(k))
end
else
iax = findAxis(string(s), iter.dc.LoopAxes)
outAxis = iter.dc.LoopAxes[iax]
convertdict = Dict(k => i for (i, k) in enumerate(DD.LookupArrays.val(outAxis)))
end
outAxis, convertdict
end
function tooutaxis(f, iter::CubeIterator, k, ibc)
sort!(k)
outAxis = DD.rebuild(DD.name2dim(Symbol("Category$(ibc)")), k)
convertdict = Dict(k => i for (i, k) in enumerate(k))
outAxis, convertdict
end
varsym(::WeightOnlineAggregator{<:Any,S}) where {S} = S
varsym(::OnlineAggregator{<:Any,S}) where {S} = S
varsym(::GroupedOnlineAggregator{<:Any,S}) where {S} = S
#axt(::CategoricalAxis) = CategoricalAxis
#axt(::RangeAxis) = RangeAxis
getStatType(::WeightOnlineAggregator{T}) where {T} = T
getStatType(::OnlineAggregator{T}) where {T} = T
getStatType(t::GroupedOnlineAggregator{T}) where {T} = getStatType(T)
getStatType(t::Type{<:Dict{<:Any,T}}) where {T} = T
getStatOutAxes(tab, agg) = getStatOutAxes(tab, agg, getStatType(agg))
getStatOutAxes(tab, agg, ::Type{<:OnlineStat}) = ()
function getStatOutAxes(tab, agg, ::Type{<:Extrema})
(DD.rebuild(DD.name2dim(:Extrema), ["min", "max"]),)
end
function getStatOutAxes(tab, agg, ::Type{<:WeightedCovMatrix})
varn = tab.schema.names
s = varsym(agg)
icube = findfirst(isequal(s), varn)
ax = tab.dc.incubes[icube].axesSmall[1]
oldname = DD.name(ax)
coname = string("Co", oldname)
v = ax.val
a1 = DD.Dim{oldname}(copy(v))
a2 = DD.Dim{Symbol(coname)}(copy(v))
(a1, a2)
end
function getStatOutAxes(tab,agg,::Type{<:Union{Ash,HistogramStat, WeightedAdaptiveHist}})
nbin = getnbins(agg)
a1 = DD.rebuild(DD.name2dim(Symbol("Bin")), 1:nbin)
a2 = DD.rebuild(DD.name2dim(Symbol("Hist")), ["MidPoints", "Frequency"])
(a1, a2)
end
function getByAxes(iter, agg::GroupedOnlineAggregator)
by = agg.by
ntuple(length(by)) do ibc
bc = agg.by[ibc]
tooutaxis(bc, iter, unique(map(i -> i[ibc], collect(keys(agg.d)))), ibc)
end
end
getByAxes(iter, agg) = ()
function tooutcube(agg, iter, post)
outaxby = getByAxes(iter, agg)
axby = map(i -> i[1], outaxby)
convdictall = map(i -> i[2], outaxby)
outaxstat = getStatOutAxes(iter, agg)
outax = (outaxstat..., axby...)
snew = map(length, outax)
aout = fill!(zeros(Union{cubeeltype(agg),Missing}, snew), missing)
filloutar(aout, convdictall, agg, map(i -> 1:length(i), outaxstat), post)
YAXArray(outax, aout)
end
function filloutar(aout, convdictall, agg::GroupedOnlineAggregator, s, post)
for (k, v) in agg.d
i = CartesianIndices((
s...,
map(
(i, d) -> d[convert(keytype(d), i)]:d[convert(keytype(d), i)],
k,
convdictall,
)...,
))
aout[i.indices...] .= post(v)
end
end
function filloutar(aout, convdictall, agg, g, post)
copyto!(aout, post(agg.o))
end
"""
fittable(tab,o,fitsym;by=(),weight=nothing)
Loops through an iterable table `tab` and thereby fitting an OnlineStat `o` with the values
specified through `fitsym`. Optionally one can specify a field (or tuple) to group by.
Any groupby specifier can either be a symbol denoting the entry to group by or an anynymous
function calculating the group from a table row.
For example the following would caluclate a weighted mean over a cube weighted by grid cell
area and grouped by country and month:
````julia
fittable(iter,WeightedMean,:tair,weight=(i->abs(cosd(i.lat))),by=(i->month(i.time),:country))
````
"""
function fittable(tab::CubeIterator, o, fitsym; by = (), weight = nothing, showprog = false)
func = nworkers() > 1 ? pmapreduce : mapreduce
func(merge!,tab) do t
agg = TableAggregator(t, o, fitsym, by = by, weight = weight)
foreach(i -> fitrow!(agg, i), Tables.rows(t))
GC.gc()
agg
end
end
fittable(tab::CubeIterator, o::Type{<:OnlineStat}, fitsym; kwargs...) =
fittable(tab, o(), fitsym; kwargs...)
getmeter(tab) = getmeter(Base.IteratorSize(tab), tab)
getmeter(::Union{Base.HasLength,Base.HasShape}, tab) = Progress(length(tab))
getmeter(::Base.SizeUnknown, tab) = ProgressUnknown("Rows processed: ")
@noinline function runfitrows_progress(agg, tab)
p = getmeter(tab)
every = 0
for row in tab
fitrow!(agg, row)
every += 1
if every == 100
next!(p, step = 100)
every = 0
end
end
end
struct collectedValue{V,S,SY}
value::V
laststruct::S
end
function Base.getproperty(s::collectedValue{<:Any,<:Any,SY}, sy::Symbol) where {SY}
if sy == SY
getfield(s, :value)
else
getproperty(getfield(s, :laststruct), sy)
end
end
function collectval(row::Union{Tuple,Vector}, ::Val{SY}) where {SY}
nvars = length(row)
v = ntuple(i -> getfield(row[i], SY), nvars) |> collect
val = collectedValue{typeof(v),typeof(row[end]),SY}(v, row[end])
end
getpostfunction(s::OnlineStat) = getpostfunction(typeof(s))
getpostfunction(::Type{<:OnlineStat}) = value
function getpostfunction(hist::Union{Ash, HistogramStat, WeightedAdaptiveHist})
nb = getnbins(hist)
i->begin
r = hcat(value(i)...)
if size(r,1)<nb
r = vcat(r,zeros(eltype(r),nb-size(r,1),2))
end
r
end
end
getnbins(f::GroupedOnlineAggregator) = getnbins(f.cloneobj)
getnbins(f::TableAggregator) = getnbins(f.o)
getnbins(histogram::HistogramStat) = histogram.k
getnbins(whist::WeightedAdaptiveHist) = whist.alg.b
getnbins(a::Ash) = length(a.density)
fitfun(o) = fitfun(typeof(o))
fitfun(::Type{<:Any}) = fittable
"""
cubefittable(tab,o,fitsym;post=getpostfunction(o),kwargs...)
Executes [`fittable`](@ref) on the [`CubeTable`](@ref) `tab` with the
(Weighted-)OnlineStat `o`, looping through the values specified by `fitsym`.
Finally, writes the results from the `TableAggregator` to an output data cube.
"""
function cubefittable(tab, o, fitsym; post = getpostfunction(o), kwargs...)
agg = fitfun(o)(tab, o, fitsym; showprog = true, kwargs...)
tooutcube(agg, tab, post)
end
function tupleeltypebyname(::Type{NamedTuple{names,tt}}, s::Symbol) where {names,tt}
i = findfirst(isequal(s), names)
fieldtype(tt, i)
end