Commits: JuliaLang/julia@267f487b5eabbd269c4441b2b31c355956024183 vs JuliaLang/julia@1eee6ef7c830751255ca99d2fe66fe2897a60bcf
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "Base.init_stdio(::Ptr{Cvoid})"] |
1.08 (5%) ❌ | 1.07 (1%) ❌ |
["inference", "abstract interpretation", "REPL.REPLCompletions.completions"] |
1.11 (5%) ❌ | 1.08 (1%) ❌ |
["inference", "abstract interpretation", "broadcasting"] |
1.05 (5%) | 1.02 (1%) ❌ |
["inference", "abstract interpretation", "many_global_refs"] |
1.00 (5%) | 1.01 (1%) ❌ |
["inference", "abstract interpretation", "many_opaque_closures"] |
1.06 (5%) ❌ | 1.03 (1%) ❌ |
["inference", "abstract interpretation", "println(::QuoteNode)"] |
1.06 (5%) ❌ | 1.05 (1%) ❌ |
["inference", "abstract interpretation", "rand(Float64)"] |
1.11 (5%) ❌ | 1.05 (1%) ❌ |
["inference", "abstract interpretation", "sin(42)"] |
1.05 (5%) ❌ | 1.01 (1%) |
["inference", "allinference", "Base.init_stdio(::Ptr{Cvoid})"] |
1.09 (5%) ❌ | 1.10 (1%) ❌ |
["inference", "allinference", "REPL.REPLCompletions.completions"] |
1.11 (5%) ❌ | 1.11 (1%) ❌ |
["inference", "allinference", "many_invoke_calls"] |
1.06 (5%) ❌ | 1.00 (1%) |
["inference", "allinference", "many_opaque_closures"] |
1.04 (5%) | 1.02 (1%) ❌ |
["inference", "allinference", "println(::QuoteNode)"] |
1.05 (5%) ❌ | 1.03 (1%) ❌ |
["inference", "allinference", "rand(Float64)"] |
1.09 (5%) ❌ | 1.05 (1%) ❌ |
["inference", "optimization", "println(::QuoteNode)"] |
1.06 (5%) ❌ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference", "allinference"]
["inference", "optimization"]
Julia Version 1.10.0-DEV.933
Commit 267f487b5e (2023-04-01 16:06 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 22.04.1 LTS
uname: Linux 5.15.0-58-generic #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3900 MHz 220746 s 23031 s 238357 s 49366684 s 0 s
#2 3900 MHz 2088750 s 17981 s 259493 s 47568726 s 0 s
#3 3520 MHz 220441 s 18108 s 215581 s 49405906 s 0 s
#4 3900 MHz 177558 s 15966 s 224479 s 49410851 s 0 s
Memory: 31.313323974609375 GB (21136.48828125 MB free)
Uptime: 5.00607969e6 sec
Load Avg: 1.16 1.11 1.17
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.10.0-DEV.931
Commit 1eee6ef7c8 (2023-04-01 03:25 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 22.04.1 LTS
uname: Linux 5.15.0-58-generic #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3900 MHz 221052 s 23031 s 238519 s 49379857 s 0 s
#2 3900 MHz 2101403 s 17981 s 259520 s 47569770 s 0 s
#3 3507 MHz 221247 s 18108 s 215608 s 49418762 s 0 s
#4 3900 MHz 177697 s 15966 s 224494 s 49424391 s 0 s
Memory: 31.313323974609375 GB (21129.46875 MB free)
Uptime: 5.00745234e6 sec
Load Avg: 1.0 1.01 1.05
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores