-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.6.0-DEV-3bfcb743c2.log
678 lines (565 loc) · 15 KB
/
1.6.0-DEV-3bfcb743c2.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
Julia Version 1.6.0-DEV.1185
Commit 3bfcb743c2 (2020-10-11 23:29 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-10.0.1 (ORCJIT, znver2)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
JULIA_MAX_NUM_PRECOMPILE_FILES = 9223372036854775807
Resolving package versions...
Installed ScikitLearnBase ─ v0.5.0
Installed DecisionTree ──── v0.10.10
Updating `~/.julia/environments/v1.6/Project.toml`
[7806a523] + DecisionTree v0.10.10
Updating `~/.julia/environments/v1.6/Manifest.toml`
[7806a523] + DecisionTree v0.10.10
[6e75b9c4] + ScikitLearnBase v0.5.0
[2a0f44e3] + Base64
[8bb1440f] + DelimitedFiles
[8ba89e20] + Distributed
[b77e0a4c] + InteractiveUtils
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[a63ad114] + Mmap
[9a3f8284] + Random
[9e88b42a] + Serialization
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[8dfed614] + Test
Testing DecisionTree
Status `/tmp/jl_TNQUsX/Project.toml`
[7806a523] DecisionTree v0.10.10
[6e75b9c4] ScikitLearnBase v0.5.0
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[37e2e46d] LinearAlgebra
[9a3f8284] Random
[10745b16] Statistics
[8dfed614] Test
Status `/tmp/jl_TNQUsX/Manifest.toml`
[7806a523] DecisionTree v0.10.10
[6e75b9c4] ScikitLearnBase v0.5.0
[2a0f44e3] Base64
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[b77e0a4c] InteractiveUtils
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[9a3f8284] Random
[9e88b42a] Serialization
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[8dfed614] Test
Testing Running tests...
Julia version: 1.6.0-DEV.1185
TEST: classification/random.jl
Feature 2, Threshold 0.6056544585515548
L-> Feature 5, Threshold 0.3519102249662106
L-> Feature 4, Threshold 0.3964305172913062
L-> 1 : 61/97
R-> 1 : 93/136
R-> Feature 4, Threshold 0.5443369813935621
L-> 0 : 116/195
R-> 1 : 123/168
R-> Feature 3, Threshold 0.40770541203275457
L-> Feature 5, Threshold 0.5034714805111138
L-> 0 : 71/88
R-> 0 : 50/82
R-> Feature 1, Threshold 0.5347975865461467
L-> 0 : 80/123
R-> 1 : 77/111
##### nfoldCV Classification Tree #####
Mean Accuracy: 0.7027027027027026
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
3 16 0 0
7 75 33 0
0 26 153 2
0 0 13 5
Accuracy: 0.7087087087087087
Kappa: 0.4713334097121067
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
13 12 0 0
11 93 52 0
0 17 115 3
0 0 11 6
Accuracy: 0.6816816816816816
Kappa: 0.4737454155112263
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
6 12 0 0
3 112 33 0
0 27 111 10
0 0 9 10
Accuracy: 0.7177177177177178
Kappa: 0.5210465916915309
Mean Accuracy: 0.7027027027027026
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
14 7 0 0
5 108 30 0
0 19 117 11
0 0 12 10
Accuracy: 0.7477477477477478
Kappa: 0.5855570207280756
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
8 10 1 0
4 100 35 0
0 25 129 3
0 0 14 4
Accuracy: 0.7237237237237237
Kappa: 0.5188088020481568
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
8 14 0 0
4 89 45 0
0 28 129 2
0 0 10 4
Accuracy: 0.6906906906906907
Kappa: 0.4573544069485974
Mean Accuracy: 0.7207207207207208
##### nfoldCV Classification Forest #####
Mean Accuracy: 0.7897897897897899
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
4 15 0 0
1 101 13 0
0 31 149 1
0 0 13 5
Accuracy: 0.7777777777777778
Kappa: 0.6032267413776446
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
2 23 0 0
0 130 26 0
0 18 117 0
0 0 8 9
Accuracy: 0.7747747747747747
Kappa: 0.6074656188605108
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
10 8 0 0
1 127 20 0
0 22 126 0
0 0 10 9
Accuracy: 0.8168168168168168
Kappa: 0.6835784161006917
Mean Accuracy: 0.7897897897897899
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
11 10 0 0
3 128 12 0
0 27 119 1
0 0 18 4
Accuracy: 0.7867867867867868
Kappa: 0.6361887762167818
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
5 14 0 0
1 127 11 0
0 27 129 1
0 0 12 6
Accuracy: 0.8018018018018018
Kappa: 0.6535241908785648
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
6 16 0 0
1 124 13 0
0 20 139 0
0 0 10 4
Accuracy: 0.8198198198198198
Kappa: 0.6820547095049408
Mean Accuracy: 0.8028028028028028
##### nfoldCV Adaboosted Stumps #####
Mean Accuracy: 0.7807807807807808
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 19 0 0
0 103 12 0
0 25 156 0
0 0 18 0
Accuracy: 0.7777777777777778
Kappa: 0.5914652342584303
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 25 0 0
0 138 18 0
0 17 118 0
0 0 17 0
Accuracy: 0.7687687687687688
Kappa: 0.587460179554011
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 18 0 0
2 127 19 0
0 10 138 0
0 0 19 0
Accuracy: 0.7957957957957958
Kappa: 0.6339772084377273
Mean Accuracy: 0.7807807807807808
Fold 1
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 21 0 0
0 131 12 0
0 24 121 2
0 0 22 0
Accuracy: 0.7567567567567568
Kappa: 0.5711219232970808
Fold 2
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 19 0 0
0 130 9 0
0 32 125 0
0 0 18 0
Accuracy: 0.7657657657657657
Kappa: 0.5801571137620016
Fold 3
Classes: [-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
0 22 0 0
1 126 11 0
1 11 147 0
0 0 14 0
Accuracy: 0.8198198198198198
Kappa: 0.6754122329623913
Mean Accuracy: 0.7807807807807808
==================================================
TEST: classification/low_precision.jl
##### nfoldCV Classification Tree #####
Fold 1
Classes: Int32[-2, -1, 0, 1, 2]
Matrix: 5×5 Matrix{Int64}:
0 0 0 0 0
1 31 4 0 0
0 9 93 14 0
0 0 18 125 8
0 0 0 10 20
Accuracy: 0.8078078078078078
Kappa: 0.7071320599148
Fold 2
Classes: Int32[-1, 0, 1, 2, 3]
Matrix: 5×5 Matrix{Int64}:
28 13 0 0 0
5 110 16 0 0
0 19 104 9 0
0 0 6 22 1
0 0 0 0 0
Accuracy: 0.7927927927927928
Kappa: 0.6869746468128006
Fold 3
Classes: Int32[-2, -1, 0, 1, 2, 3]
Matrix: 6×6 Matrix{Int64}:
0 1 0 0 0 0
0 24 7 0 0 0
0 15 97 20 0 0
0 0 13 114 12 0
0 0 0 12 17 0
0 0 0 0 1 0
Accuracy: 0.7567567567567568
Kappa: 0.6307142563765558
Mean Accuracy: 0.7857857857857858
##### nfoldCV Classification Forest #####
Fold 1
Classes: Int32[-2, -1, 0, 1, 2]
Matrix: 5×5 Matrix{Int64}:
0 1 0 0 0
0 17 15 0 0
0 0 111 12 0
0 0 23 122 2
0 0 0 12 18
Accuracy: 0.8048048048048048
Kappa: 0.6904496310279732
Fold 2
Classes: Int32[-1, 0, 1, 2, 3]
Matrix: 5×5 Matrix{Int64}:
14 25 0 0 0
0 112 9 0 0
0 12 131 1 0
0 0 9 19 0
0 0 0 1 0
Accuracy: 0.8288288288288288
Kappa: 0.7298847303258857
Fold 3
Classes: Int32[-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
24 12 0 0
0 120 16 0
0 22 107 2
0 0 14 16
Accuracy: 0.8018018018018018
Kappa: 0.6886704252486048
Mean Accuracy: 0.8118118118118117
##### nfoldCV Adaboosted Stumps #####
Fold 1
Classes: Int32[-2, -1, 0, 1, 2]
Matrix: 5×5 Matrix{Int64}:
0 0 1 0 0
0 0 37 0 0
0 0 107 25 0
0 0 16 118 0
0 0 0 29 0
Accuracy: 0.6756756756756757
Kappa: 0.4599107960774302
Fold 2
Classes: Int32[-1, 0, 1, 2, 3]
Matrix: 5×5 Matrix{Int64}:
0 34 0 0 0
6 93 12 7 0
3 23 112 5 0
0 0 37 0 0
0 0 1 0 0
Accuracy: 0.6156156156156156
Kappa: 0.38469533584513443
Fold 3
Classes: Int32[-1, 0, 1, 2]
Matrix: 4×4 Matrix{Int64}:
2 35 0 0
0 105 25 0
0 13 131 0
0 0 22 0
Accuracy: 0.7147147147147147
Kappa: 0.5154917066147979
Mean Accuracy: 0.6686686686686687
==================================================
TEST: classification/heterogeneous.jl
==================================================
TEST: classification/digits.jl
==================================================
TEST: classification/iris.jl
Feature 4, Threshold 0.8
L-> Iris-setosa : 50/50
R-> Feature 4, Threshold 1.75
L-> Feature 3, Threshold 4.95
L-> Feature 4, Threshold 1.65
L-> Iris-versicolor : 47/47
R-> Iris-virginica : 1/1
R-> Feature 4, Threshold 1.55
L-> Iris-virginica : 3/3
R-> Feature 3, Threshold 5.449999999999999
L-> Iris-versicolor : 2/2
R-> Iris-virginica : 1/1
R-> Feature 3, Threshold 4.85
L-> Feature 1, Threshold 5.95
L-> Iris-versicolor : 1/1
R-> Iris-virginica : 2/2
R-> Iris-virginica : 43/43
##### nfoldCV Classification Tree #####
Fold 1
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
18 0 0
0 14 2
0 2 14
Accuracy: 0.92
Kappa: 0.8798076923076925
Fold 2
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
17 0 0
0 16 1
0 1 15
Accuracy: 0.96
Kappa: 0.9399759903961584
Fold 3
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
15 0 0
0 13 4
0 1 17
Accuracy: 0.9
Kappa: 0.8493068113321279
Mean Accuracy: 0.9266666666666666
##### nfoldCV Classification Forest #####
Fold 1
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
18 0 0
0 15 0
0 1 16
Accuracy: 0.98
Kappa: 0.969951923076923
Fold 2
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
19 0 0
0 17 3
0 0 11
Accuracy: 0.94
Kappa: 0.9088145896656534
Fold 3
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
13 0 0
0 13 2
0 1 21
Accuracy: 0.94
Kappa: 0.9071207430340557
Mean Accuracy: 0.9533333333333333
##### nfoldCV Classification Adaboosted Stumps #####
Fold 1
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
16 0 0
0 16 1
0 2 15
Accuracy: 0.94
Kappa: 0.9099639855942376
Fold 2
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
16 0 0
0 15 1
0 4 14
Accuracy: 0.9
Kappa: 0.8502994011976049
Fold 3
Classes: ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
Matrix: 3×3 Matrix{Int64}:
18 0 0
0 16 1
0 0 15
Accuracy: 0.98
Kappa: 0.969951923076923
Mean Accuracy: 0.94
==================================================
TEST: classification/adult.jl
##### 3 foldCV Classification Tree #####
Mean Accuracy: 0.8100371633035413
##### 3 foldCV Classification Forest #####
Mean Accuracy: 0.8419177493166252
##### nfoldCV Classification Adaboosted Stumps #####
Mean Accuracy: 0.8284959611781688
==================================================
TEST: classification/scikitlearn.jl
==================================================
TEST: regression/random.jl
##### nfoldCV Classification Tree #####
Mean Coeff of Determination: 0.5676904920580951
Fold 1
Mean Squared Error: 5.689407921915025
Correlation Coeff: 0.7395986162539963
Coeff of Determination: 0.5438771418946755
Fold 2
Mean Squared Error: 5.023869280682269
Correlation Coeff: 0.7677944154482331
Coeff of Determination: 0.5876646490326851
Fold 3
Mean Squared Error: 5.646374048377334
Correlation Coeff: 0.759919107345477
Coeff of Determination: 0.5715296852469246
Mean Coeff of Determination: 0.5676904920580951
Fold 1
Mean Squared Error: 5.528766733711038
Correlation Coeff: 0.7598540921993293
Coeff of Determination: 0.5716608471842237
Fold 2
Mean Squared Error: 4.952438218963306
Correlation Coeff: 0.7856766543569426
Coeff of Determination: 0.6144365226758415
Fold 3
Mean Squared Error: 5.191203956222338
Correlation Coeff: 0.7580046391579504
Coeff of Determination: 0.5678992566551814
Mean Coeff of Determination: 0.5846655421717489
##### nfoldCV Regression Forest #####
Mean Coeff of Determination: 0.8192789898535802
Fold 1
Mean Squared Error: 2.498334463649964
Correlation Coeff: 0.9166212070868418
Coeff of Determination: 0.7997071977079315
Fold 2
Mean Squared Error: 2.1293679097107834
Correlation Coeff: 0.930621610093323
Coeff of Determination: 0.825231586385963
Fold 3
Mean Squared Error: 2.2020646857659383
Correlation Coeff: 0.9316915538169335
Coeff of Determination: 0.8328981854668459
Mean Coeff of Determination: 0.8192789898535802
Fold 1
Mean Squared Error: 2.3231593118366995
Correlation Coeff: 0.9256085351943343
Coeff of Determination: 0.820014093663836
Fold 2
Mean Squared Error: 2.149812034538508
Correlation Coeff: 0.9346840694210115
Coeff of Determination: 0.8326301173316802
Fold 3
Mean Squared Error: 2.132086553949197
Correlation Coeff: 0.9263883281253541
Coeff of Determination: 0.8225313063007916
Mean Coeff of Determination: 0.8250585057654359
==================================================
TEST: regression/low_precision.jl
##### nfoldCV Regression Tree #####
Fold 1
Mean Squared Error: 3.355703316064392
Correlation Coeff: 0.8663678103969371
Coeff of Determination: 0.7363436577666727
Fold 2
Mean Squared Error: 3.0957425850932085
Correlation Coeff: 0.8684074618564307
Coeff of Determination: 0.7468801179811493
Fold 3
Mean Squared Error: 3.0254345171080304
Correlation Coeff: 0.8786465388961409
Coeff of Determination: 0.7633923929053681
Mean Coeff of Determination: 0.74887205621773
##### nfoldCV Regression Forest #####
Fold 1
Mean Squared Error: 2.0134126115977136
Correlation Coeff: 0.9365495806493312
Coeff of Determination: 0.8349252243775604
Fold 2
Mean Squared Error: 2.5449452932505943
Correlation Coeff: 0.9207357540831301
Coeff of Determination: 0.8057017814523122
Fold 3
Mean Squared Error: 1.7914633978886536
Correlation Coeff: 0.9460405265149383
Coeff of Determination: 0.8563922362225096
Mean Coeff of Determination: 0.8323397473507942
==================================================
TEST: regression/digits.jl
##### 3 foldCV Regression Tree #####
Mean Coeff of Determination: 0.6599442626686971
##### 3 foldCV Regression Forest #####
Mean Coeff of Determination: 0.6228476422933977
==================================================
TEST: regression/scikitlearn.jl
==================================================
TEST: miscellaneous/convert.jl
==================================================
Test Summary: | Pass Total
Test Suites | 144 144
Testing DecisionTree tests passed