-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.4.0-DEV-81899bf99e.log
1150 lines (1015 loc) · 46.9 KB
/
1.4.0-DEV-81899bf99e.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Julia Version 1.4.0-DEV.634
Commit 81899bf99e (2019-12-18 10:13 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-8.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
Resolving package versions...
Installed Gettext_jll ─────────────── v0.20.1+0
Installed Glib_jll ────────────────── v2.59.0+1
Installed XML2_jll ────────────────── v2.9.9+0
Installed Xorg_libXau_jll ─────────── v1.0.9+0
Installed NLSolversBase ───────────── v7.5.0
Installed IndirectArrays ──────────── v0.5.1
Installed StatsBase ───────────────── v0.32.0
Installed Mamba ───────────────────── v0.12.2
Installed Pango_jll ───────────────── v1.42.4+7
Installed AxisAlgorithms ──────────── v1.0.0
Installed PDMats ──────────────────── v0.9.10
Installed Parameters ──────────────── v0.12.0
Installed FriBidi_jll ─────────────── v1.0.5+2
Installed OrderedCollections ──────── v1.1.0
Installed Xorg_libX11_jll ─────────── v1.6.8+0
Installed Xorg_xcb_proto_jll ──────── v1.13.0+0
Installed Graphics ────────────────── v1.0.1
Installed OpenSpecFun_jll ─────────── v0.5.3+1
Installed MKL_jll ─────────────────── v2019.0.117+0
Installed CommonSubexpressions ────── v0.2.0
Installed FFTW_jll ────────────────── v3.3.9+3
Installed LineSearches ────────────── v7.0.1
Installed Xorg_kbproto_jll ────────── v1.0.7+0
Installed Loess ───────────────────── v0.5.0
Installed Calculus ────────────────── v0.5.1
Installed SimpleTraits ────────────── v0.9.1
Installed Missings ────────────────── v0.4.3
Installed Rmath ───────────────────── v0.6.0
Installed AbstractFFTs ────────────── v0.5.0
Installed DiffResults ─────────────── v1.0.1
Installed ColorTypes ──────────────── v0.8.1
Installed Distances ───────────────── v0.8.2
Installed Gadfly ──────────────────── v1.0.1
Installed Interpolations ──────────── v0.12.5
Installed Optim ───────────────────── v0.19.7
Installed Media ───────────────────── v0.5.0
Installed Xorg_libpthread_stubs_jll ─ v0.1.0+0
Installed Hexagons ────────────────── v0.2.0
Installed PositiveFactorizations ──── v0.2.3
Installed Xorg_libxcb_jll ─────────── v1.13.0+0
Installed StatsFuns ───────────────── v0.9.3
Installed Xorg_xtrans_jll ─────────── v1.4.0+0
Installed Libuuid_jll ─────────────── v2.34.0+3
Installed Xorg_renderproto_jll ────── v0.11.1+0
Installed DocStringExtensions ─────── v0.8.1
Installed Libgcrypt_jll ───────────── v1.8.5+0
Installed ArnoldiMethod ───────────── v0.0.4
Installed QuadGK ──────────────────── v2.3.1
Installed FillArrays ──────────────── v0.8.2
Installed Reexport ────────────────── v0.2.0
Installed Parsers ─────────────────── v0.3.10
Installed FixedPointNumbers ───────── v0.6.1
Installed Xorg_xextproto_jll ──────── v7.3.0+0
Installed Libffi_jll ──────────────── v3.2.1+0
Installed LightGraphs ─────────────── v1.3.0
Installed MacroTools ──────────────── v0.5.3
Installed DataAPI ─────────────────── v1.1.0
Installed Pixman_jll ──────────────── v0.38.4+1
Installed Xorg_libXdmcp_jll ───────── v1.1.3+0
Installed Fontconfig_jll ──────────── v2.13.1+7
Installed HarfBuzz_jll ────────────── v2.6.1+4
Installed Ratios ──────────────────── v0.3.1
Installed BinaryProvider ──────────── v0.5.8
Installed Requires ────────────────── v0.5.2
Installed IntelOpenMP_jll ─────────── v2018.0.3+0
Installed Compose ─────────────────── v0.7.3
Installed Xorg_xproto_jll ─────────── v7.0.31+0
Installed Arpack_jll ──────────────── v3.5.0+2
Installed Xorg_libXext_jll ────────── v1.3.4+0
Installed Colors ──────────────────── v0.9.6
Installed FreeType2_jll ───────────── v2.10.1+1
Installed Contour ─────────────────── v0.5.1
Installed SortingAlgorithms ───────── v0.3.1
Installed PCRE_jll ────────────────── v8.42.0+1
Installed Showoff ─────────────────── v0.3.1
Installed Compat ──────────────────── v2.2.0
Installed ArrayInterface ──────────── v2.1.0
Installed DiffEqDiffTools ─────────── v1.6.0
Installed DataStructures ──────────── v0.17.6
Installed Distributions ───────────── v0.21.11
Installed CategoricalArrays ───────── v0.7.4
Installed Graphite2_jll ───────────── v1.3.13+1
Installed Xorg_inputproto_jll ─────── v2.3.2+0
Installed OpenBLAS_jll ────────────── v0.3.7+1
Installed Arpack ──────────────────── v0.4.0
Installed Xorg_libXrender_jll ─────── v0.9.10+0
Installed IterTools ───────────────── v1.3.0
Installed Cairo_jll ───────────────── v1.16.0+2
Installed Juno ────────────────────── v0.7.2
Installed Xorg_util_macros_jll ────── v1.19.2+0
Installed Bzip2_jll ───────────────── v1.0.6+1
Installed KernelDensity ───────────── v0.5.1
Installed SpecialFunctions ────────── v0.9.0
Installed XSLT_jll ────────────────── v1.1.33+0
Installed Zlib_jll ────────────────── v1.2.11+7
Installed WoodburyMatrices ────────── v0.4.1
Installed CoupledFields ───────────── v0.1.0
Installed Libiconv_jll ────────────── v1.16.0+0
Installed OffsetArrays ────────────── v0.11.4
Installed Libgpg_error_jll ────────── v1.36.0+0
Installed NaNMath ─────────────────── v0.3.3
Installed StaticArrays ────────────── v0.12.1
Installed X11_jll ─────────────────── v1.6.8+4
Installed Cairo ───────────────────── v1.0.1
Installed JSON ────────────────────── v0.21.0
Installed DiffRules ───────────────── v1.0.0
Installed FFTW ────────────────────── v1.2.0
Installed Expat_jll ───────────────── v2.2.7+0
Installed libpng_jll ──────────────── v1.6.37+2
Installed ForwardDiff ─────────────── v0.10.8
Installed Measures ────────────────── v0.3.1
Installed Inflate ─────────────────── v0.1.1
Installed LZO_jll ─────────────────── v2.10.0+0
Updating `~/.julia/environments/v1.4/Project.toml`
[5424a776] + Mamba v0.12.2
Updating `~/.julia/environments/v1.4/Manifest.toml`
[621f4979] + AbstractFFTs v0.5.0
[ec485272] + ArnoldiMethod v0.0.4
[7d9fca2a] + Arpack v0.4.0
[68821587] + Arpack_jll v3.5.0+2
[4fba245c] + ArrayInterface v2.1.0
[13072b0f] + AxisAlgorithms v1.0.0
[b99e7846] + BinaryProvider v0.5.8
[6e34b625] + Bzip2_jll v1.0.6+1
[159f3aea] + Cairo v1.0.1
[83423d85] + Cairo_jll v1.16.0+2
[49dc2e85] + Calculus v0.5.1
[324d7699] + CategoricalArrays v0.7.4
[3da002f7] + ColorTypes v0.8.1
[5ae59095] + Colors v0.9.6
[bbf7d656] + CommonSubexpressions v0.2.0
[34da2185] + Compat v2.2.0
[a81c6b42] + Compose v0.7.3
[d38c429a] + Contour v0.5.1
[7ad07ef1] + CoupledFields v0.1.0
[9a962f9c] + DataAPI v1.1.0
[864edb3b] + DataStructures v0.17.6
[01453d9d] + DiffEqDiffTools v1.6.0
[163ba53b] + DiffResults v1.0.1
[b552c78f] + DiffRules v1.0.0
[b4f34e82] + Distances v0.8.2
[31c24e10] + Distributions v0.21.11
[ffbed154] + DocStringExtensions v0.8.1
[2e619515] + Expat_jll v2.2.7+0
[7a1cc6ca] + FFTW v1.2.0
[f5851436] + FFTW_jll v3.3.9+3
[1a297f60] + FillArrays v0.8.2
[53c48c17] + FixedPointNumbers v0.6.1
[a3f928ae] + Fontconfig_jll v2.13.1+7
[f6369f11] + ForwardDiff v0.10.8
[d7e528f0] + FreeType2_jll v2.10.1+1
[559328eb] + FriBidi_jll v1.0.5+2
[c91e804a] + Gadfly v1.0.1
[78b55507] + Gettext_jll v0.20.1+0
[7746bdde] + Glib_jll v2.59.0+1
[a2bd30eb] + Graphics v1.0.1
[3b182d85] + Graphite2_jll v1.3.13+1
[2e76f6c2] + HarfBuzz_jll v2.6.1+4
[a1b4810d] + Hexagons v0.2.0
[9b13fd28] + IndirectArrays v0.5.1
[d25df0c9] + Inflate v0.1.1
[1d5cc7b8] + IntelOpenMP_jll v2018.0.3+0
[a98d9a8b] + Interpolations v0.12.5
[c8e1da08] + IterTools v1.3.0
[682c06a0] + JSON v0.21.0
[e5e0dc1b] + Juno v0.7.2
[5ab0869b] + KernelDensity v0.5.1
[dd4b983a] + LZO_jll v2.10.0+0
[e9f186c6] + Libffi_jll v3.2.1+0
[d4300ac3] + Libgcrypt_jll v1.8.5+0
[7add5ba3] + Libgpg_error_jll v1.36.0+0
[94ce4f54] + Libiconv_jll v1.16.0+0
[38a345b3] + Libuuid_jll v2.34.0+3
[093fc24a] + LightGraphs v1.3.0
[d3d80556] + LineSearches v7.0.1
[4345ca2d] + Loess v0.5.0
[856f044c] + MKL_jll v2019.0.117+0
[1914dd2f] + MacroTools v0.5.3
[5424a776] + Mamba v0.12.2
[442fdcdd] + Measures v0.3.1
[e89f7d12] + Media v0.5.0
[e1d29d7a] + Missings v0.4.3
[d41bc354] + NLSolversBase v7.5.0
[77ba4419] + NaNMath v0.3.3
[6fe1bfb0] + OffsetArrays v0.11.4
[4536629a] + OpenBLAS_jll v0.3.7+1
[efe28fd5] + OpenSpecFun_jll v0.5.3+1
[429524aa] + Optim v0.19.7
[bac558e1] + OrderedCollections v1.1.0
[2f80f16e] + PCRE_jll v8.42.0+1
[90014a1f] + PDMats v0.9.10
[36c8627f] + Pango_jll v1.42.4+7
[d96e819e] + Parameters v0.12.0
[69de0a69] + Parsers v0.3.10
[30392449] + Pixman_jll v0.38.4+1
[85a6dd25] + PositiveFactorizations v0.2.3
[1fd47b50] + QuadGK v2.3.1
[c84ed2f1] + Ratios v0.3.1
[189a3867] + Reexport v0.2.0
[ae029012] + Requires v0.5.2
[79098fc4] + Rmath v0.6.0
[992d4aef] + Showoff v0.3.1
[699a6c99] + SimpleTraits v0.9.1
[a2af1166] + SortingAlgorithms v0.3.1
[276daf66] + SpecialFunctions v0.9.0
[90137ffa] + StaticArrays v0.12.1
[2913bbd2] + StatsBase v0.32.0
[4c63d2b9] + StatsFuns v0.9.3
[efce3f68] + WoodburyMatrices v0.4.1
[546b0b6d] + X11_jll v1.6.8+4
[02c8fc9c] + XML2_jll v2.9.9+0
[aed1982a] + XSLT_jll v1.1.33+0
[84d6cd60] + Xorg_inputproto_jll v2.3.2+0
[060dd47b] + Xorg_kbproto_jll v1.0.7+0
[4f6342f7] + Xorg_libX11_jll v1.6.8+0
[0c0b7dd1] + Xorg_libXau_jll v1.0.9+0
[a3789734] + Xorg_libXdmcp_jll v1.1.3+0
[1082639a] + Xorg_libXext_jll v1.3.4+0
[ea2f1a96] + Xorg_libXrender_jll v0.9.10+0
[14d82f49] + Xorg_libpthread_stubs_jll v0.1.0+0
[c7cfdc94] + Xorg_libxcb_jll v1.13.0+0
[21e99dc2] + Xorg_renderproto_jll v0.11.1+0
[7c09cfe3] + Xorg_util_macros_jll v1.19.2+0
[c2e9c405] + Xorg_xcb_proto_jll v1.13.0+0
[d13bc2ba] + Xorg_xextproto_jll v7.3.0+0
[46797783] + Xorg_xproto_jll v7.0.31+0
[c5fb5394] + Xorg_xtrans_jll v1.4.0+0
[83775a58] + Zlib_jll v1.2.11+7
[b53b4c65] + libpng_jll v1.6.37+2
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8bb1440f] + DelimitedFiles
[8ba89e20] + Distributed
[9fa8497b] + Future
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[a63ad114] + Mmap
[44cfe95a] + Pkg
[de0858da] + Printf
[9abbd945] + Profile
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[1a1011a3] + SharedArrays
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[4607b0f0] + SuiteSparse
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
Building Rmath → `~/.julia/packages/Rmath/BoBag/deps/build.log`
Path `/home/pkgeval/.julia/packages/Rmath/BoBag` exists and looks like the correct package. Using existing path.
Updating `/tmp/jl_Kgmjy6/Project.toml`
[79098fc4] + Rmath v0.6.0 [`~/.julia/packages/Rmath/BoBag`]
Updating `/tmp/jl_Kgmjy6/Manifest.toml`
[79098fc4] ~ Rmath v0.6.0 ⇒ v0.6.0 [`~/.julia/packages/Rmath/BoBag`]
Building FFTW ─→ `~/.julia/packages/FFTW/qqcBj/deps/build.log`
Path `/home/pkgeval/.julia/packages/FFTW/qqcBj` exists and looks like the correct package. Using existing path.
Updating `/tmp/jl_hPHD3x/Project.toml`
[7a1cc6ca] + FFTW v1.2.0 [`~/.julia/packages/FFTW/qqcBj`]
Updating `/tmp/jl_hPHD3x/Manifest.toml`
[7a1cc6ca] ~ FFTW v1.2.0 ⇒ v1.2.0 [`~/.julia/packages/FFTW/qqcBj`]
Testing Mamba
Path `/home/pkgeval/.julia/packages/Mamba/Jotzr` exists and looks like the correct package. Using existing path.
Updating `/tmp/jl_yqx4B9/Project.toml`
[5424a776] + Mamba v0.12.2 [`~/.julia/packages/Mamba/Jotzr`]
Updating `/tmp/jl_yqx4B9/Manifest.toml`
[5424a776] ~ Mamba v0.12.2 ⇒ v0.12.2 [`~/.julia/packages/Mamba/Jotzr`]
Running sandbox
Status `/tmp/jl_yqx4B9/Project.toml`
[159f3aea] Cairo v1.0.1
[49dc2e85] Calculus v0.5.1
[a81c6b42] Compose v0.7.3
[31c24e10] Distributions v0.21.11
[c91e804a] Gadfly v1.0.1
[093fc24a] LightGraphs v1.3.0
[5424a776] Mamba v0.12.2 [`~/.julia/packages/Mamba/Jotzr`]
[90014a1f] PDMats v0.9.10
[189a3867] Reexport v0.2.0
[992d4aef] Showoff v0.3.1
[276daf66] SpecialFunctions v0.9.0
[2913bbd2] StatsBase v0.32.0
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[37e2e46d] LinearAlgebra
[de0858da] Printf
[9a3f8284] Random
[9e88b42a] Serialization
[2f01184e] SparseArrays
[10745b16] Statistics
Running tests:
>>> Testing ../doc/tutorial/line.jl
digraph MambaModel {
"beta" [shape="ellipse"];
"beta" -> "mu";
"y" [shape="ellipse", style="filled", fillcolor="gray85"];
"mu" [shape="diamond", style="filled", fillcolor="gray85"];
"mu" -> "y";
"s2" [shape="ellipse"];
"s2" -> "y";
"xmat" [shape="box", style="filled", fillcolor="gray85"];
"xmat" -> "mu";
}
MCMC Simulation of 10000 Iterations x 3 Chains...
Chain 1: 0% [1:36:35 of 1:36:41 remaining]
Chain 1: 10% [0:01:01 of 0:01:08 remaining]
Chain 1: 20% [0:00:30 of 0:00:37 remaining]
Chain 1: 30% [0:00:18 of 0:00:26 remaining]
Chain 1: 40% [0:00:13 of 0:00:22 remaining]
Chain 1: 50% [0:00:09 of 0:00:18 remaining]
Chain 1: 60% [0:00:07 of 0:00:16 remaining]
Chain 1: 70% [0:00:04 of 0:00:15 remaining]
Chain 1: 80% [0:00:03 of 0:00:14 remaining]
Chain 1: 90% [0:00:01 of 0:00:13 remaining]
Chain 1: 100% [0:00:00 of 0:00:12 remaining]
Chain 2: 0% [0:00:07 of 0:00:07 remaining]
Chain 2: 10% [0:00:07 of 0:00:08 remaining]
Chain 2: 20% [0:00:05 of 0:00:06 remaining]
Chain 2: 30% [0:00:04 of 0:00:06 remaining]
Chain 2: 40% [0:00:03 of 0:00:05 remaining]
Chain 2: 50% [0:00:02 of 0:00:05 remaining]
Chain 2: 60% [0:00:02 of 0:00:05 remaining]
Chain 2: 70% [0:00:01 of 0:00:04 remaining]
Chain 2: 80% [0:00:01 of 0:00:04 remaining]
Chain 2: 90% [0:00:00 of 0:00:04 remaining]
Chain 2: 100% [0:00:00 of 0:00:04 remaining]
Chain 3: 0% [0:00:05 of 0:00:05 remaining]
Chain 3: 10% [0:00:03 of 0:00:03 remaining]
Chain 3: 20% [0:00:02 of 0:00:03 remaining]
Chain 3: 30% [0:00:02 of 0:00:02 remaining]
Chain 3: 40% [0:00:01 of 0:00:02 remaining]
Chain 3: 50% [0:00:01 of 0:00:02 remaining]
Chain 3: 60% [0:00:01 of 0:00:02 remaining]
Chain 3: 70% [0:00:01 of 0:00:02 remaining]
Chain 3: 80% [0:00:00 of 0:00:02 remaining]
Chain 3: 90% [0:00:00 of 0:00:02 remaining]
Chain 3: 100% [0:00:00 of 0:00:02 remaining]
MCMC Simulation of 10000 Iterations x 3 Chains...
Chain 1: 0% [0:01:48 of 0:01:49 remaining]
Chain 1: 10% [0:00:09 of 0:00:10 remaining]
Chain 1: 20% [0:00:07 of 0:00:09 remaining]
Chain 1: 30% [0:00:06 of 0:00:09 remaining]
Chain 1: 40% [0:00:05 of 0:00:08 remaining]
Chain 1: 50% [0:00:04 of 0:00:08 remaining]
Chain 1: 60% [0:00:03 of 0:00:08 remaining]
Chain 1: 70% [0:00:02 of 0:00:08 remaining]
Chain 1: 80% [0:00:02 of 0:00:08 remaining]
Chain 1: 90% [0:00:01 of 0:00:08 remaining]
Chain 1: 100% [0:00:00 of 0:00:08 remaining]
Chain 2: 0% [0:00:12 of 0:00:12 remaining]
Chain 2: 10% [0:00:08 of 0:00:09 remaining]
Chain 2: 20% [0:00:07 of 0:00:09 remaining]
Chain 2: 30% [0:00:06 of 0:00:08 remaining]
Chain 2: 40% [0:00:05 of 0:00:08 remaining]
Chain 2: 50% [0:00:04 of 0:00:08 remaining]
Chain 2: 60% [0:00:03 of 0:00:08 remaining]
Chain 2: 70% [0:00:02 of 0:00:08 remaining]
Chain 2: 80% [0:00:01 of 0:00:07 remaining]
Chain 2: 90% [0:00:01 of 0:00:07 remaining]
Chain 2: 100% [0:00:00 of 0:00:07 remaining]
Chain 3: 0% [0:00:32 of 0:00:32 remaining]
Chain 3: 10% [0:00:10 of 0:00:11 remaining]
Chain 3: 20% [0:00:10 of 0:00:13 remaining]
Chain 3: 30% [0:00:09 of 0:00:12 remaining]
Chain 3: 40% [0:00:08 of 0:00:13 remaining]
Chain 3: 50% [0:00:07 of 0:00:13 remaining]
Chain 3: 60% [0:00:05 of 0:00:13 remaining]
Chain 3: 70% [0:00:04 of 0:00:12 remaining]
Chain 3: 80% [0:00:02 of 0:00:12 remaining]
Chain 3: 90% [0:00:01 of 0:00:12 remaining]
Chain 3: 100% [0:00:00 of 0:00:12 remaining]
MCMC Simulation of 10000 Iterations x 3 Chains...
Chain 1: 0% [1:52:52 of 1:52:59 remaining]
Chain 1: 10% [0:01:01 of 0:01:08 remaining]
Chain 1: 20% [0:00:27 of 0:00:34 remaining]
Chain 1: 30% [0:00:16 of 0:00:23 remaining]
Chain 1: 40% [0:00:10 of 0:00:17 remaining]
Chain 1: 50% [0:00:07 of 0:00:14 remaining]
Chain 1: 60% [0:00:05 of 0:00:12 remaining]
Chain 1: 70% [0:00:03 of 0:00:10 remaining]
Chain 1: 80% [0:00:02 of 0:00:09 remaining]
Chain 1: 90% [0:00:01 of 0:00:08 remaining]
Chain 1: 100% [0:00:00 of 0:00:07 remaining]
Chain 2: 0% [0:00:00 of 0:00:00 remaining]
Chain 2: 10% [0:00:00 of 0:00:00 remaining]
Chain 2: 20% [0:00:00 of 0:00:00 remaining]
Chain 2: 30% [0:00:00 of 0:00:00 remaining]
Chain 2: 40% [0:00:00 of 0:00:00 remaining]
Chain 2: 50% [0:00:00 of 0:00:00 remaining]
Chain 2: 60% [0:00:00 of 0:00:00 remaining]
Chain 2: 70% [0:00:00 of 0:00:00 remaining]
Chain 2: 80% [0:00:00 of 0:00:00 remaining]
Chain 2: 90% [0:00:00 of 0:00:00 remaining]
Chain 2: 100% [0:00:00 of 0:00:00 remaining]
Chain 3: 0% [0:00:00 of 0:00:00 remaining]
Chain 3: 10% [0:00:00 of 0:00:00 remaining]
Chain 3: 20% [0:00:00 of 0:00:00 remaining]
Chain 3: 30% [0:00:00 of 0:00:00 remaining]
Chain 3: 40% [0:00:00 of 0:00:00 remaining]
Chain 3: 50% [0:00:00 of 0:00:00 remaining]
Chain 3: 60% [0:00:00 of 0:00:00 remaining]
Chain 3: 70% [0:00:00 of 0:00:00 remaining]
Chain 3: 80% [0:00:00 of 0:00:00 remaining]
Chain 3: 90% [0:00:00 of 0:00:00 remaining]
Chain 3: 100% [0:00:00 of 0:00:00 remaining]
Iterations = 252:10000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 4875
Gelman, Rubin, and Brooks Diagnostic:
PSRF 97.5%
s2 1.004 1.007
beta[1] 1.008 1.009
beta[2] 1.006 1.007
Multivariate 1.002 NaN
Iterations = 252:10000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 4875
Geweke Diagnostic:
First Window Fraction = 0.1
Second Window Fraction = 0.5
Z-score p-value
s2 -0.385 0.7005
beta[1] -1.437 0.1506
beta[2] 1.610 0.1073
Z-score p-value
s2 0.324 0.7460
beta[1] 1.350 0.1769
beta[2] -1.493 0.1354
Z-score p-value
s2 -0.444 0.6568
beta[1] 1.274 0.2027
beta[2] -1.678 0.0934
Iterations = 252:10000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 4875
Heidelberger and Welch Diagnostic:
Target Halfwidth Ratio = 0.1
Alpha = 0.05
Burn-in Stationarity p-value Mean Halfwidth Test
s2 2199 1 0.6066 1.15095914 0.157759205 0
beta[1] 251 1 0.1365 0.57660673 0.066788841 0
beta[2] 251 1 0.0849 0.80598853 0.018926192 1
Burn-in Stationarity p-value Mean Halfwidth Test
s2 251 1 0.9163 1.1147664 0.166389252 0
beta[1] 251 1 0.5968 0.5815833 0.063650960 0
beta[2] 251 1 0.6460 0.8032482 0.018441451 1
Burn-in Stationarity p-value Mean Halfwidth Test
s2 2199 1 0.3622 1.24456315 0.42256102 0
beta[1] 251 1 0.5198 0.62267152 0.18692753 0
beta[2] 251 1 0.5275 0.79439123 0.04836314 1
Iterations = 252:10000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 4875
Raftery and Lewis Diagnostic:
Quantile (q) = 0.025
Accuracy (r) = 0.005
Probability (s) = 0.95
Thinning Burn-in Total Nmin Dependence Factor
s2 2 253 7.7470×10³ 3746 2.0680726
beta[1] 2 279 2.9951×10⁴ 3746 7.9954618
beta[2] 4 275 2.7147×10⁴ 3746 7.2469301
Thinning Burn-in Total Nmin Dependence Factor
s2 2 257 8.8310×10³ 3746 2.3574479
beta[1] 2 269 1.9007×10⁴ 3746 5.0739455
beta[2] 4 271 2.1147×10⁴ 3746 5.6452216
Thinning Burn-in Total Nmin Dependence Factor
s2 4 267 2.1151×10⁴ 3746 5.6462894
beta[1] 2 291 4.3767×10⁴ 3746 11.6836626
beta[2] 4 283 3.6335×10⁴ 3746 9.6996797
Iterations = 252:10000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 4875
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
s2 1.34195938 2.26493828 0.0187287345 0.120510626 353.23364
beta[1] 0.59362053 1.25656267 0.0103904945 0.033806208 1381.57793
beta[2] 0.80120933 0.37752149 0.0031217185 0.009392822 1615.44139
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
s2 0.17564293 0.388954662 0.6693062 1.32134292 7.3910865
beta[1] -1.99224168 0.054476417 0.6301930 1.18120389 2.9232332
beta[2] 0.10855704 0.623902978 0.7894798 0.96728754 1.5591833
95% Lower 95% Upper
s2 0.07408963 4.4775756
beta[1] -1.75439813 3.0814022
beta[2] 0.09541722 1.5365782
s2 beta[1] beta[2]
s2 1.00000000 -0.11862474 0.09980099
beta[1] -0.11862474 1.00000000 -0.90880284
beta[2] 0.09980099 -0.90880284 1.00000000
Lag 2 Lag 10 Lag 20 Lag 100
s2 0.91347560 0.723053227 0.560237056 0.0007369812
beta[1] 0.33112180 0.029039767 -0.053065190 -0.0374799587
beta[2] 0.28410422 0.005044630 -0.040224322 -0.0357209602
Lag 2 Lag 10 Lag 20 Lag 100
s2 0.75588882 0.349531641 0.1374682700 -0.006928787
beta[1] 0.35175047 0.057134410 0.0131967370 -0.020068916
beta[2] 0.32263276 0.035103726 0.0048650670 -0.026414706
Lag 2 Lag 10 Lag 20 Lag 100
s2 0.93638308 0.80613793 0.64147781 0.160410235
beta[1] 0.59582330 0.24698778 0.18212531 0.070951705
beta[2] 0.57681437 0.21401694 0.12886571 0.035605784
Change Rate
s2 1.000
beta[1] 0.591
beta[2] 0.591
Multivariate 1.000
MCMC Processing of 4875 Iterations x 3 Chains...
Chain 1: 0% [0:05:23 of 0:05:24 remaining]
Chain 1: 10% [0:00:06 of 0:00:07 remaining]
Chain 1: 20% [0:00:03 of 0:00:03 remaining]
Chain 1: 30% [0:00:02 of 0:00:02 remaining]
Chain 1: 40% [0:00:01 of 0:00:02 remaining]
Chain 1: 50% [0:00:01 of 0:00:01 remaining]
Chain 1: 60% [0:00:00 of 0:00:01 remaining]
Chain 1: 70% [0:00:00 of 0:00:01 remaining]
Chain 1: 80% [0:00:00 of 0:00:01 remaining]
Chain 1: 90% [0:00:00 of 0:00:01 remaining]
Chain 1: 100% [0:00:00 of 0:00:01 remaining]
Chain 2: 0% [0:05:52 of 0:05:53 remaining]
Chain 2: 10% [0:00:07 of 0:00:07 remaining]
Chain 2: 20% [0:00:03 of 0:00:04 remaining]
Chain 2: 30% [0:00:02 of 0:00:02 remaining]
Chain 2: 40% [0:00:01 of 0:00:02 remaining]
Chain 2: 50% [0:00:01 of 0:00:02 remaining]
Chain 2: 60% [0:00:01 of 0:00:01 remaining]
Chain 2: 70% [0:00:00 of 0:00:01 remaining]
Chain 2: 80% [0:00:00 of 0:00:01 remaining]
Chain 2: 90% [0:00:00 of 0:00:01 remaining]
Chain 2: 100% [0:00:00 of 0:00:01 remaining]
Chain 3: 0% [0:06:22 of 0:06:22 remaining]
Chain 3: 10% [0:00:07 of 0:00:08 remaining]
Chain 3: 20% [0:00:03 of 0:00:04 remaining]
Chain 3: 30% [0:00:02 of 0:00:03 remaining]
Chain 3: 40% [0:00:01 of 0:00:02 remaining]
Chain 3: 50% [0:00:01 of 0:00:02 remaining]
Chain 3: 60% [0:00:01 of 0:00:01 remaining]
Chain 3: 70% [0:00:00 of 0:00:01 remaining]
Chain 3: 80% [0:00:00 of 0:00:01 remaining]
Chain 3: 90% [0:00:00 of 0:00:01 remaining]
Chain 3: 100% [0:00:00 of 0:00:01 remaining]
DIC Effective Parameters
pD 13.765813 0.95672434
pV 24.441680 6.29465778
Iterations = 1000:5000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 2001
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
beta[1] 0.5270595 1.4699730 0.0189725278 0.0534293539 756.93554
beta[2] 0.8211748 0.4416773 0.0057006043 0.0143178787 951.59638
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
beta[1] -2.584665659 -0.0011594201 0.58367672 1.12380636 3.1966005
beta[2] 0.021264304 0.6337142186 0.81011045 0.97955732 1.6932279
MCMC Simulation of 5000 Iterations x 3 Chains...
Chain 1: 0% [0:00:09 of 0:00:09 remaining]
Chain 1: 10% [0:00:02 of 0:00:03 remaining]
Chain 1: 20% [0:00:02 of 0:00:03 remaining]
Chain 1: 30% [0:00:02 of 0:00:03 remaining]
Chain 1: 40% [0:00:02 of 0:00:03 remaining]
Chain 1: 50% [0:00:01 of 0:00:03 remaining]
Chain 1: 60% [0:00:01 of 0:00:03 remaining]
Chain 1: 70% [0:00:01 of 0:00:03 remaining]
Chain 1: 80% [0:00:01 of 0:00:03 remaining]
Chain 1: 90% [0:00:00 of 0:00:03 remaining]
Chain 1: 100% [0:00:00 of 0:00:03 remaining]
Chain 2: 0% [0:00:02 of 0:00:02 remaining]
Chain 2: 10% [0:00:02 of 0:00:02 remaining]
Chain 2: 20% [0:00:02 of 0:00:02 remaining]
Chain 2: 30% [0:00:01 of 0:00:02 remaining]
Chain 2: 40% [0:00:01 of 0:00:02 remaining]
Chain 2: 50% [0:00:01 of 0:00:02 remaining]
Chain 2: 60% [0:00:01 of 0:00:02 remaining]
Chain 2: 70% [0:00:01 of 0:00:02 remaining]
Chain 2: 80% [0:00:00 of 0:00:02 remaining]
Chain 2: 90% [0:00:00 of 0:00:02 remaining]
Chain 2: 100% [0:00:00 of 0:00:02 remaining]
Chain 3: 0% [0:00:01 of 0:00:01 remaining]
Chain 3: 10% [0:00:01 of 0:00:01 remaining]
Chain 3: 20% [0:00:01 of 0:00:01 remaining]
Chain 3: 30% [0:00:01 of 0:00:01 remaining]
Chain 3: 40% [0:00:01 of 0:00:01 remaining]
Chain 3: 50% [0:00:01 of 0:00:01 remaining]
Chain 3: 60% [0:00:00 of 0:00:01 remaining]
Chain 3: 70% [0:00:00 of 0:00:01 remaining]
Chain 3: 80% [0:00:00 of 0:00:01 remaining]
Chain 3: 90% [0:00:00 of 0:00:01 remaining]
Chain 3: 100% [0:00:00 of 0:00:01 remaining]
Iterations = 252:15000
Thinning interval = 2
Chains = 1,2,3
Samples per chain = 7375
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
s2 1.32157705 2.0986164 0.0141088440 0.0882947137 564.93273
beta[1] 0.60144995 1.2458026 0.0083754396 0.0257509052 2340.52616
beta[2] 0.80047181 0.3753913 0.0025237281 0.0072669582 2668.47456
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
s2 0.17796002 0.39611210 0.68250300 1.34503801 6.8621026
beta[1] -1.97959921 0.01509525 0.63810288 1.20952328 2.9326572
beta[2] 0.09143892 0.61617835 0.79653393 0.97466715 1.5670585
Object of type "Model"
-------------------------------------------------------------------------------
beta:
A monitored node of type "2-element ArrayStochastic{1}"
[1.1902678809862768, 2.04817970778924]
-------------------------------------------------------------------------------
y:
An unmonitored node of type "5-element ArrayStochastic{1}"
[1.0, 3.0, 3.0, 3.0, 5.0]
-------------------------------------------------------------------------------
mu:
An unmonitored node of type "5-element ArrayLogical{1}"
[3.2384475887755166, 5.286627296564756, 7.334807004353996, 9.382986712143236, 11.431166419932476]
-------------------------------------------------------------------------------
xmat:
[1.0 1.0; 1.0 2.0; 1.0 3.0; 1.0 4.0; 1.0 5.0]
-------------------------------------------------------------------------------
s2:
A monitored node of type "ScalarStochastic"
0.5089331579554403
>>> Testing ../doc/samplers/amm.jl
Iterations = 1:5000
Thinning interval = 1
Chains = 1
Samples per chain = 5000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
b0 0.64517314 1.24757447 0.017643367 0.077890318 256.54645
b1 0.77989321 0.39436878 0.005577217 0.027694002 202.78397
s2 1.46868477 2.71633428 0.038414768 0.178202069 232.34907
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
b0 -1.768364974 0.06974128 0.61720286 1.29023652 3.1789614
b1 0.010584061 0.57947874 0.78001712 0.97541858 1.5733141
s2 0.181878908 0.41367730 0.67597582 1.40504444 8.5217766
>>> Testing ../doc/samplers/amwg.jl
Iterations = 1:5000
Thinning interval = 1
Chains = 1
Samples per chain = 5000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
b0 0.5983881 1.5898262 0.0224835377 0.162560986 95.645964
b1 0.8006155 0.4358909 0.0061644284 0.042038394 107.513597
s2 2.2710644 9.1262030 0.1290640007 0.686946293 176.495925
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
b0 -2.17471713 0.03038741 0.67912808 1.30557650 3.3496859
b1 0.03755749 0.60096712 0.77599921 0.96011511 1.7513752
s2 0.16901125 0.39945048 0.70340929 1.47274298 13.3376638
>>> Testing ../doc/samplers/bhmc.jl
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.5425 0.49821539 0.0049821539 0.0043794170 10000.0000
gamma[2] 1.0000 0.00000000 0.0000000000 0.0000000000 NaN
gamma[3] 0.3125 0.46353558 0.0046353558 0.0052442850 7812.5639
gamma[4] 1.0000 0.00000000 0.0000000000 0.0000000000 NaN
gamma[5] 0.7132 0.45228997 0.0045228997 0.0056726884 6357.0562
gamma[6] 0.7342 0.44178035 0.0044178035 0.0055526497 6330.1242
gamma[7] 1.0000 0.00000000 0.0000000000 0.0000000000 NaN
gamma[8] 0.5202 0.49961677 0.0049961677 0.0030648875 10000.0000
gamma[9] 0.4972 0.50001716 0.0050001716 0.0063230858 6253.3346
gamma[10] 0.7768 0.41641218 0.0041641218 0.0044537579 8741.6542
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 1 1
gamma[4] 1 1 1 1 1
gamma[5] 0 0 1 1 1
gamma[6] 0 0 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 1 1
gamma[10] 0 1 1 1 1
>>> Testing ../doc/samplers/bia.jl
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.6803 0.466383599 0.00466383599 0.0130286824 1281.40243
gamma[2] 0.9996 0.019996999 0.00019996999 0.0004000000 2499.24992
gamma[3] 0.0012 0.034621956 0.00034621956 0.0009458041 1339.98766
gamma[4] 0.9973 0.051893924 0.00051893924 0.0027000000 369.40731
gamma[5] 0.9978 0.046854877 0.00046854877 0.0022000000 453.59081
gamma[6] 0.9997 0.017318776 0.00017318776 0.0003000000 3332.66660
gamma[7] 0.9982 0.042390325 0.00042390325 0.0018000000 554.61102
gamma[8] 0.6932 0.461188714 0.00461188714 0.0113109226 1662.49857
gamma[9] 0.0000 0.000000000 0.00000000000 0.0000000000 NaN
gamma[10] 0.9986 0.037392243 0.00037392243 0.0014000000 713.35705
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 0 0
gamma[4] 1 1 1 1 1
gamma[5] 1 1 1 1 1
gamma[6] 1 1 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 0 0
gamma[10] 1 1 1 1 1
>>> Testing ../doc/samplers/bmc3.jl
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.6650 0.472014067 0.00472014067 0.016079035 861.767169
gamma[2] 0.9994 0.024488772 0.00024488772 0.000600000 1665.833250
gamma[3] 0.0066 0.080975896 0.00080975896 0.004697345 297.171117
gamma[4] 1.0000 0.000000000 0.00000000000 0.000000000 NaN
gamma[5] 0.9551 0.207094855 0.00207094855 0.020172236 105.397559
gamma[6] 0.9984 0.039969986 0.00039969986 0.001600000 624.062406
gamma[7] 0.9997 0.017318776 0.00017318776 0.000300000 3332.666600
gamma[8] 0.6763 0.467910466 0.00467910466 0.017424385 721.125084
gamma[9] 0.0443 0.205771097 0.00205771097 0.019798610 108.018801
gamma[10] 0.9595 0.197138622 0.00197138622 0.019414862 103.103834
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 0 0
gamma[4] 1 1 1 1 1
gamma[5] 0 1 1 1 1
gamma[6] 1 1 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 0 1
gamma[10] 0 1 1 1 1
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.6735 0.468956013 0.00468956013 0.0147486517 1011.01961
gamma[2] 1.0000 0.000000000 0.00000000000 0.0000000000 NaN
gamma[3] 0.0037 0.060718026 0.00060718026 0.0037000000 269.29720
gamma[4] 0.9989 0.033149659 0.00033149659 0.0011000000 908.18173
gamma[5] 0.9959 0.063903039 0.00063903039 0.0041000000 242.92673
gamma[6] 0.9999 0.010000000 0.00010000000 0.0001000000 10000.00000
gamma[7] 0.9998 0.014141428 0.00014141428 0.0002000000 4999.49995
gamma[8] 0.7079 0.454750778 0.00454750778 0.0161778593 790.14136
gamma[9] 0.0029 0.053776195 0.00053776195 0.0029000000 343.86197
gamma[10] 0.9997 0.017318776 0.00017318776 0.0003000000 3332.66660
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 0 0
gamma[4] 1 1 1 1 1
gamma[5] 1 1 1 1 1
gamma[6] 1 1 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 0 0
gamma[10] 1 1 1 1 1
>>> Testing ../doc/samplers/bmg.jl
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.6815 0.465917866 0.00465917866 0.01827698 649.84515
gamma[2] 0.9986 0.037392243 0.00037392243 0.00140000 713.35705
gamma[3] 0.0000 0.000000000 0.00000000000 0.00000000 NaN
gamma[4] 1.0000 0.000000000 0.00000000000 0.00000000 NaN
gamma[5] 0.9965 0.059060129 0.00059060129 0.00350000 284.74276
gamma[6] 0.9993 0.026449574 0.00026449574 0.00070000 1427.71420
gamma[7] 0.9998 0.014141428 0.00014141428 0.00020000 4999.49995
gamma[8] 0.7064 0.455433620 0.00455433620 0.01727585 694.97853
gamma[9] 0.0010 0.031608542 0.00031608542 0.00100000 999.09991
gamma[10] 0.9997 0.017318776 0.00017318776 0.00030000 3332.66660
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 0 0
gamma[4] 1 1 1 1 1
gamma[5] 1 1 1 1 1
gamma[6] 1 1 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 0 0
gamma[10] 1 1 1 1 1
Iterations = 1:10000
Thinning interval = 1
Chains = 1
Samples per chain = 10000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
gamma[1] 0.6710 0.469873470 0.00469873470 0.020368574 532.15803
gamma[2] 0.9961 0.062331200 0.00062331200 0.003900000 255.43580
gamma[3] 0.0027 0.051893924 0.00051893924 0.002700000 369.40731
gamma[4] 0.9993 0.026449574 0.00026449574 0.000700000 1427.71420
gamma[5] 0.9955 0.066934281 0.00066934281 0.004500000 221.24435
gamma[6] 0.9935 0.080364145 0.00080364145 0.005362374 224.60040
gamma[7] 0.9981 0.043549738 0.00043549738 0.001900000 525.36833
gamma[8] 0.6999 0.458324117 0.00458324117 0.019149331 572.84644
gamma[9] 0.0000 0.000000000 0.00000000000 0.000000000 NaN
gamma[10] 0.9994 0.024488772 0.00024488772 0.000600000 1665.83325
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
gamma[1] 0 0 1 1 1
gamma[2] 1 1 1 1 1
gamma[3] 0 0 0 0 0
gamma[4] 1 1 1 1 1
gamma[5] 1 1 1 1 1
gamma[6] 1 1 1 1 1
gamma[7] 1 1 1 1 1
gamma[8] 0 0 1 1 1
gamma[9] 0 0 0 0 0
gamma[10] 1 1 1 1 1
>>> Testing ../doc/samplers/hmc.jl
Iterations = 1:5000
Thinning interval = 1
Chains = 1
Samples per chain = 5000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
b0 0.60451952 1.1284466 0.015958645 0.025607013 1941.9776
b1 0.79549121 0.3722029 0.005263744 0.008116710 2102.8071
s2 1.46471593 11.2410048 0.158971815 0.210699467 2846.3178
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
b0 -1.66151491 0.046178832 0.60566725 1.18702384 2.9084773
b1 0.09630599 0.619459897 0.79984555 0.97293797 1.4893501
s2 0.18534677 0.386599719 0.65481074 1.24535336 6.6215146
Iterations = 1:5000
Thinning interval = 1
Chains = 1
Samples per chain = 5000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
b0 0.6145662 1.23110198 0.0174104112 0.033448114 1354.70519
b1 0.7976376 0.37208436 0.0052620675 0.009495936 1535.34964
s2 1.9771656 10.01151208 0.1415841616 0.383226166 682.47861
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
b0 -1.711866552 -0.04800589 0.61048231 1.22779315 3.1735388
b1 0.046501768 0.61125795 0.79818096 0.98676983 1.4918121
s2 0.188950592 0.41020058 0.70824469 1.36110757 9.5760505
>>> Testing ../doc/samplers/mala.jl
Iterations = 1:5000
Thinning interval = 1
Chains = 1
Samples per chain = 5000
Empirical Posterior Estimates:
Mean SD Naive SE MCSE ESS
b0 0.34136194 1.21074246 0.017122484 0.151245628 64.08227
b1 0.85990983 0.36498865 0.005161719 0.042260334 74.59210
s2 1.48792963 2.39449162 0.033863225 0.233046432 105.57029
Quantiles:
2.5% 25.0% 50.0% 75.0% 97.5%
b0 -2.90386299 -0.19647056 0.45754183 0.97899976 2.4999647
b1 0.18044135 0.66474175 0.84853677 1.00663016 1.7405394
s2 0.21968329 0.48697728 0.74955479 1.36570643 7.8756131
Iterations = 1:5000
Thinning interval = 1
Chains = 1