-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.5.0-DEV-7206b56e94.log
133 lines (129 loc) · 9.21 KB
/
1.5.0-DEV-7206b56e94.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Julia Version 1.5.0-DEV.485
Commit 7206b56e94 (2020-03-18 17:25 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed MathProgBase ─ v0.7.8
Updating `~/.julia/environments/v1.5/Project.toml`
fdba3010 + MathProgBase v0.7.8
Updating `~/.julia/environments/v1.5/Manifest.toml`
fdba3010 + MathProgBase v0.7.8
8f399da3 + Libdl
37e2e46d + LinearAlgebra
9a3f8284 + Random
9e88b42a + Serialization
2f01184e + SparseArrays
Testing MathProgBase
#=#=# ########################## 36.1%################################################################### 94.3%######################################################################## 100.0%
Status `/tmp/jl_fzamiy/Project.toml`
e2685f51 ECOS v0.11.0
3c7084bd GLPKMathProgInterface v0.4.4
b6b21f68 Ipopt v0.6.1
fdba3010 MathProgBase v0.7.8
37e2e46d LinearAlgebra
2f01184e SparseArrays
8dfed614 Test
Status `/tmp/jl_fzamiy/Manifest.toml`
6e4b80f9 BenchmarkTools v0.5.0
b99e7846 BinaryProvider v0.5.8
523fee87 CodecBzip2 v0.6.0
944b1d66 CodecZlib v0.6.0
34da2185 Compat v2.2.0
e2685f51 ECOS v0.11.0
60bf3e95 GLPK v0.12.1
3c7084bd GLPKMathProgInterface v0.4.4
cd3eb016 HTTP v0.8.12
83e8ac13 IniFile v0.5.0
b6b21f68 Ipopt v0.6.1
682c06a0 JSON v0.21.0
7d188eb4 JSONSchema v0.2.0
b8f27783 MathOptInterface v0.9.12
fdba3010 MathProgBase v0.7.8
739be429 MbedTLS v1.0.1
c8ffd9c3 MbedTLS_jll v2.16.0+1
d8a4904e MutableArithmetics v0.2.7
bac558e1 OrderedCollections v1.1.0
69de0a69 Parsers v0.3.12
3bb67fe8 TranscodingStreams v0.9.5
2a0f44e3 Base64
ade2ca70 Dates
8bb1440f DelimitedFiles
8ba89e20 Distributed
b77e0a4c InteractiveUtils
76f85450 LibGit2
8f399da3 Libdl
37e2e46d LinearAlgebra
56ddb016 Logging
d6f4376e Markdown
a63ad114 Mmap
44cfe95a Pkg
de0858da Printf
3fa0cd96 REPL
9a3f8284 Random
ea8e919c SHA
9e88b42a Serialization
1a1011a3 SharedArrays
6462fe0b Sockets
2f01184e SparseArrays
10745b16 Statistics
8dfed614 Test
cf7118a7 UUIDs
4ec0a83e Unicode
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
┌ Warning: Element type Int64 does not have an infinite value. Note that this may artifically introduce ranged (two-sided) constraints. To avoid this, consider casting the problem data to Float64.
└ @ MathProgBase.HighLevelInterface ~/.julia/packages/MathProgBase/rr4Xh/src/HighLevelInterface/HighLevelInterface.jl:8
Test Summary: | Pass Total
Testing linprog and subfunctions with GLPKMathProgInterface.GLPKInterfaceLP.GLPKSolverLP(false, :Simplex, Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}()) | 26 26
Test Summary: | Pass Total
Testing mixintprog with GLPKMathProgInterface.GLPKInterfaceMIP.GLPKSolverMIP(false, Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}()) | 3 3
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
Test Summary: | Pass Total
Testing quadprog with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 9 9
Test Summary: | Pass Total
Testing QP duals with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 14 14
Test Summary: | Pass Total
Testing SOCP interface with ECOSSolver(Base.Iterators.Pairs{Symbol,Bool,Tuple{Symbol},NamedTuple{(:verbose,),Tuple{Bool}}}(:verbose => 0)) | 3 3
Test Summary: | Pass Total
Testing NLP with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 7 7
Test Summary: | Pass Total
Testing NLP without Hessian with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 7 7
Test Summary: | Pass Total
Testing convex NLP with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 4 4
Test Summary: | Pass Total
Testing NLP on the Rosenbrock function with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 5 5
Test Summary: | Pass Total
Testing linear problems through conic interface with ECOSSolver(Base.Iterators.Pairs{Symbol,Bool,Tuple{Symbol},NamedTuple{(:verbose,),Tuple{Bool}}}(:verbose => 0)) | 47 47
Test Summary: | Pass Total
Testing linear problems through conic interface with GLPKMathProgInterface.GLPKInterfaceLP.GLPKSolverLP(false, :Simplex, Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}()) | 47 47
Test Summary: | Pass Total
Testing LP interface with GLPKMathProgInterface.GLPKInterfaceLP.GLPKSolverLP(false, :Simplex, Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}()) | 85 85
Test Summary: | Pass Total
Testing LP interface extra with GLPKMathProgInterface.GLPKInterfaceLP.GLPKSolverLP(false, :Simplex, Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}()) | 38 38
Test Summary: | Pass Total
Testing LP interface with ECOSSolver(Base.Iterators.Pairs{Symbol,Bool,Tuple{Symbol},NamedTuple{(:verbose,),Tuple{Bool}}}(:verbose => 0)) | 76 76
Test Summary: | Pass Total
Testing LP interface with IpoptSolver(Tuple[(:print_level, 0), (:fixed_variable_treatment, "make_constraint")]) | 82 82
Testing MathProgBase tests passed