-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.6.0-DEV-22b5d93b2b.log
550 lines (549 loc) · 25.3 KB
/
1.6.0-DEV-22b5d93b2b.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
Julia Version 1.6.0-DEV.1069
Commit 22b5d93b2b (2020-09-28 17:33 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-10.0.1 (ORCJIT, skylake-avx512)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed CompilerSupportLibraries_jll ─ v0.3.3+0
Installed SpecialFunctions ───────────── v0.10.3
Installed OpenSpecFun_jll ────────────── v0.5.3+3
Installed FastGaussQuadrature ────────── v0.4.3
Installed FunctionIntegrator ─────────── v0.5.1
Updating `~/.julia/environments/v1.6/Project.toml`
[7685536e] + FunctionIntegrator v0.5.1
Updating `~/.julia/environments/v1.6/Manifest.toml`
[e66e0078] + CompilerSupportLibraries_jll v0.3.3+0
[442a2c76] + FastGaussQuadrature v0.4.3
[7685536e] + FunctionIntegrator v0.5.1
[efe28fd5] + OpenSpecFun_jll v0.5.3+3
[276daf66] + SpecialFunctions v0.10.3
[56f22d72] + Artifacts
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8ba89e20] + Distributed
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[44cfe95a] + Pkg
[de0858da] + Printf
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[6462fe0b] + Sockets
[fa267f1f] + TOML
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
Testing FunctionIntegrator
Status `/tmp/jl_dLhTDz/Project.toml`
[442a2c76] FastGaussQuadrature v0.4.3
[7685536e] FunctionIntegrator v0.5.1
[276daf66] SpecialFunctions v0.10.3
[8dfed614] Test
Status `/tmp/jl_dLhTDz/Manifest.toml`
[e66e0078] CompilerSupportLibraries_jll v0.3.3+0
[442a2c76] FastGaussQuadrature v0.4.3
[7685536e] FunctionIntegrator v0.5.1
[efe28fd5] OpenSpecFun_jll v0.5.3+3
[276daf66] SpecialFunctions v0.10.3
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[b77e0a4c] InteractiveUtils
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[44cfe95a] Pkg
[de0858da] Printf
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[6462fe0b] Sockets
[fa267f1f] TOML
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
Testing Running tests...
Performing the Airy Ai(x) test, where Ai(x) is integrated on the semi-infinite domain, or an approximation of it, namely [0,100] and the result is compared to the analytical result 1/3.
Running: adaptive_simpsons_rule
0.828828 seconds (1.38 M allocations: 73.593 MiB, 1.84% gc time)
Running: chebyshev_quadrature with k=1
1.724372 seconds (2.20 M allocations: 126.767 MiB, 6.56% gc time)
Running: chebyshev_quadrature with k=2
0.269998 seconds (409.38 k allocations: 23.552 MiB, 8.17% gc time)
Running: chebyshev_quadrature with k=3
0.353393 seconds (473.74 k allocations: 26.610 MiB)
Running: chebyshev_quadrature with k=4
0.395544 seconds (418.55 k allocations: 23.257 MiB, 24.45% gc time)
Running: jacobi_quadrature with α=β=1
35.718805 seconds (36.51 M allocations: 3.006 GiB, 9.46% gc time)
Running: laguerre_quadrature with k=1
2.439677 seconds (3.17 M allocations: 177.050 MiB, 2.95% gc time)
Running: legendre_quadrature
0.186651 seconds (205.96 k allocations: 11.881 MiB)
Running: lobatto_quadrature
0.338681 seconds (329.96 k allocations: 19.942 MiB, 6.25% gc time)
Running: radau_quadrature
0.357519 seconds (447.77 k allocations: 27.343 MiB, 6.04% gc time)
Running: rectangle_rule_left. Only a rough approximation can be practically achieved using this function.
58.602477 seconds (100.02 M allocations: 1.491 GiB, 0.25% gc time)
Running: rectangle_rule_midpoint.
0.081324 seconds (172.46 k allocations: 3.827 MiB)
Running: rectangle_rule_right. Only a rough approximation can be practically achieved using this function.
57.261331 seconds (100.02 M allocations: 1.491 GiB, 0.23% gc time)
Running: rombergs_method
0.562160 seconds (723.03 k allocations: 41.737 MiB, 5.24% gc time)
Running: simpsons_rule
0.030917 seconds (45.77 k allocations: 2.043 MiB)
Running: simpsons38_rule
0.121260 seconds (108.42 k allocations: 5.746 MiB, 17.08% gc time)
Running: trapezoidal_rule
0.243106 seconds (1.51 M allocations: 25.667 MiB)
Test Summary: | Pass Total
Airy Ai(x) | 17 17
Performing the besselj test, where BesselJ_1(2) is approximated and the result is compared to the value obtained from SpecialFunctions' besselj function.
Running: adaptive_simpsons_rule with ε=1e-7
0.081157 seconds (30.98 k allocations: 1.865 MiB)
Running: chebyshev_quadrature with k=1
0.426293 seconds (290.69 k allocations: 15.380 MiB)
Running: chebyshev_quadrature with k=2
0.172428 seconds (93.80 k allocations: 2.675 MiB)
Running: chebyshev_quadrature with k=3
0.194129 seconds (82.06 k allocations: 2.476 MiB)
Running: chebyshev_quadrature with k=4
0.164473 seconds (64.67 k allocations: 2.122 MiB)
Running: jacobi_quadrature with α=β=1
2.527323 seconds (503.77 k allocations: 161.801 MiB, 8.98% gc time)
Running: legendre_quadrature
0.170393 seconds (41.01 k allocations: 2.358 MiB)
Running: lobatto_quadrature
0.021755 seconds (15.45 k allocations: 982.591 KiB)
Running: radau_quadrature
0.021610 seconds (15.55 k allocations: 989.009 KiB)
Running: rectangle_rule_left
26.177178 seconds (471.41 M allocations: 7.025 GiB, 2.44% gc time)
Running: rectangle_rule_midpoint
0.000028 seconds (45 allocations: 1.047 KiB)
Running: rectangle_rule_right
25.515753 seconds (476.96 M allocations: 7.107 GiB, 2.50% gc time)
Running: rombergs_method
0.295143 seconds (326.44 k allocations: 18.522 MiB)
Running: simpsons_rule
0.000017 seconds (85 allocations: 1.672 KiB)
Running: simpsons38_rule
0.055929 seconds (18.91 k allocations: 1.146 MiB)
Running: trapezoidal_rule
0.047879 seconds (17.40 k allocations: 1.054 MiB)
Test Summary: | Pass Total
besselj | 16 16
Integrating cos^2(x)/(1+cot(x)) from 0 to pi/2 and comparing the results to the analytical result 0.25.
Running: adaptive_simpsons_rule with ε=1e-7
0.019818 seconds (1.99 k allocations: 53.594 KiB)
Running: chebyshev_quadrature with k=1
0.093690 seconds (2.46 k allocations: 116.359 KiB)
Running: chebyshev_quadrature with k=2
0.094752 seconds (2.71 k allocations: 124.266 KiB)
Running: chebyshev_quadrature with k=3
0.084825 seconds (2.31 k allocations: 109.297 KiB)
Running: chebyshev_quadrature with k=4
0.079260 seconds (2.31 k allocations: 109.297 KiB)
Running: jacobi_quadrature with α=β=1
0.293038 seconds (364.11 k allocations: 19.003 MiB, 9.75% gc time)
Running: legendre_quadrature
0.077224 seconds (1.28 k allocations: 65.891 KiB)
Running: lobatto_quadrature
0.000116 seconds (67 allocations: 2.844 KiB)
Running: radau_quadrature
0.000090 seconds (73 allocations: 3.109 KiB)
Running: rectangle_rule_left
0.000481 seconds (9 allocations: 496 bytes)
Running: rectangle_rule_midpoint
0.000325 seconds (9 allocations: 496 bytes)
Running: rectangle_rule_right
0.000456 seconds (9 allocations: 496 bytes)
Running: rombergs_method
0.079327 seconds (1.04 k allocations: 56.531 KiB)
Running: simpsons_rule
0.000039 seconds (323 allocations: 5.391 KiB)
Running: simpsons38_rule
0.025545 seconds (923 allocations: 39.281 KiB)
Running: trapezoidal_rule
0.023007 seconds (44.33 k allocations: 704.859 KiB)
Test Summary: | Pass Total
coscotint | 16 16
Integrating cosine from 0 to pi/2 and comparing the result to the analytical result of 1.
Running: adaptive_simpsons_rule
0.058003 seconds (72.31 k allocations: 4.214 MiB)
Running: chebyshev_quadrature with k=1
0.190065 seconds (230.61 k allocations: 12.966 MiB)
Running: chebyshev_quadrature with k=2
0.244853 seconds (283.16 k allocations: 15.880 MiB, 12.67% gc time)
Running: chebyshev_quadrature with k=3
0.187806 seconds (234.76 k allocations: 13.135 MiB)
Running: chebyshev_quadrature with k=4
0.183372 seconds (234.76 k allocations: 13.072 MiB)
Running: jacobi_quadrature with α=β=1
2.533458 seconds (447.18 k allocations: 163.211 MiB, 4.16% gc time)
Running: legendre_quadrature
0.152469 seconds (185.44 k allocations: 10.708 MiB)
Running: lobatto_quadrature
0.198617 seconds (196.76 k allocations: 11.419 MiB, 9.99% gc time)
Running: radau_quadrature
0.142483 seconds (196.76 k allocations: 11.418 MiB)
Running: rectangle_rule_left
0.730150 seconds (18.82 k allocations: 1.147 MiB)
Running: rectangle_rule_midpoint
0.017912 seconds (24.66 k allocations: 1.555 MiB)
Running: rectangle_rule_right
1.060976 seconds (17.39 k allocations: 1.065 MiB)
Running: rombergs_method
0.103093 seconds (134.26 k allocations: 7.763 MiB)
Running: simpsons_rule
0.024256 seconds (27.53 k allocations: 1.729 MiB)
Running: simpsons38_rule
0.029138 seconds (42.37 k allocations: 2.678 MiB)
Running: trapezoidal_rule
0.016396 seconds (44.10 k allocations: 1.772 MiB)
Test Summary: | Pass Total
Cosine | 16 16
Integrating e^(-x^2)/(1+x^2) on the infinite domain [-inf, inf], or failing that on [-100,100], and comparing it to the analytical result exp(1)*pi*erfc(1)
Running: adaptive_simpsons_rule with ε=1e-7
0.028202 seconds (99.53 k allocations: 2.980 MiB)
Running: chebyshev_quadrature with k=1
0.149760 seconds (237.19 k allocations: 13.054 MiB, 10.74% gc time)
Running: chebyshev_quadrature with k=2
0.141403 seconds (290.20 k allocations: 15.879 MiB)
Running: chebyshev_quadrature with k=3
0.145608 seconds (241.33 k allocations: 13.116 MiB)
Running: chebyshev_quadrature with k=4
0.193452 seconds (241.33 k allocations: 13.120 MiB, 10.56% gc time)
Running: hermite_quadrature with k=2
11.993013 seconds (20.09 M allocations: 1.055 GiB, 10.36% gc time)
Running: jacobi_quadrature with α=β=1
0.356914 seconds (456.35 k allocations: 49.411 MiB, 7.89% gc time)
Running: laguerre_quadrature with k=1 and multiplying the result by 2 (as Laguerre is only on the semi-infinite domain)
0.235197 seconds (276.26 k allocations: 15.253 MiB, 16.09% gc time)
Running: legendre_quadrature
0.130836 seconds (191.98 k allocations: 11.043 MiB)
Running: lobatto_quadrature
0.252095 seconds (217.42 k allocations: 37.197 MiB, 10.01% gc time)
Running: radau_quadrature
0.233780 seconds (214.00 k allocations: 29.916 MiB)
Running: rectangle_rule_left
0.026336 seconds (21.73 k allocations: 1.293 MiB)
Running: rectangle_rule_midpoint
0.025256 seconds (26.47 k allocations: 1.642 MiB)
Running: rectangle_rule_right
0.027270 seconds (18.50 k allocations: 1.117 MiB)
Running: rombergs_method
0.114152 seconds (136.74 k allocations: 7.870 MiB)
Running: simpsons_rule
0.034287 seconds (39.37 k allocations: 2.060 MiB)
Running: simpsons38_rule
0.060783 seconds (57.34 k allocations: 3.063 MiB, 37.82% gc time)
Running: trapezoidal_rule
0.027708 seconds (30.13 k allocations: 1.697 MiB)
Test Summary: | Pass Total
expnx2datan | 18 18
Integrate exp(-x^2) from minus infinity to positive infinity and comparing the result to the analytical solution, sqrt(pi)
Running: adaptive_simpsons_rule with ε=1e-7
0.037914 seconds (59.91 k allocations: 2.280 MiB)
Running: chebyshev_quadrature with k=1
0.188932 seconds (232.72 k allocations: 12.825 MiB)
Running: chebyshev_quadrature with k=2
0.216671 seconds (285.38 k allocations: 15.643 MiB)
Running: chebyshev_quadrature with k=3
0.215333 seconds (236.87 k allocations: 12.928 MiB, 13.04% gc time)
Running: chebyshev_quadrature with k=4
0.187738 seconds (236.87 k allocations: 12.929 MiB)
Running: hermite_quadrature with k=2
0.145856 seconds (170.78 k allocations: 9.789 MiB)
Running: jacobi_quadrature with α=β=1
7.956026 seconds (449.62 k allocations: 1.175 GiB, 9.50% gc time)
Running: laguerre_quadrature (results multiplied by 2, as laguerre only integrates over the semi-infinite domain)
0.198089 seconds (271.55 k allocations: 15.066 MiB, 11.36% gc time)
Running: legendre_quadrature
0.152640 seconds (187.55 k allocations: 10.814 MiB)
Running: lobatto_quadrature
0.192681 seconds (208.18 k allocations: 22.926 MiB)
Running: radau_quadrature
0.190128 seconds (207.34 k allocations: 20.868 MiB)
Running: rectangle_rule_left
0.041519 seconds (19.52 k allocations: 1.188 MiB, 41.66% gc time)
Running: rectangle_rule_midpoint
0.025021 seconds (25.36 k allocations: 1.591 MiB)
Running: rectangle_rule_right
0.024113 seconds (17.36 k allocations: 1.062 MiB)
Running: rombergs_method
0.113110 seconds (132.58 k allocations: 7.622 MiB)
Running: simpsons_rule
0.028017 seconds (31.90 k allocations: 1.855 MiB)
Running: simpsons38_rule
0.031833 seconds (48.15 k allocations: 2.821 MiB)
Running: trapezoidal_rule
0.024564 seconds (25.04 k allocations: 1.535 MiB)
Test Summary: | Pass Total
Gaussian | 18 18
Integrating 1/x from 1 to e and comparing the result to the analytical solution, 1.
Running: adaptive_simpsons_rule with ε=1e-7
0.029019 seconds (30.87 k allocations: 1.874 MiB)
Running: chebyshev_quadrature with k=1
0.179958 seconds (231.10 k allocations: 13.042 MiB)
Running: chebyshev_quadrature with k=2
0.210504 seconds (283.67 k allocations: 16.064 MiB)
Running: chebyshev_quadrature with k=3
0.222824 seconds (235.25 k allocations: 13.146 MiB)
Running: chebyshev_quadrature with k=4
0.199736 seconds (235.25 k allocations: 12.971 MiB, 11.78% gc time)
Running: jacobi_quadrature with α=β=1
2.290595 seconds (447.72 k allocations: 194.255 MiB, 4.42% gc time)
Running: legendre_quadrature
0.184505 seconds (185.93 k allocations: 10.745 MiB)
Running: lobatto_quadrature
0.174999 seconds (197.26 k allocations: 11.451 MiB)
Running: radau_quadrature
0.179848 seconds (197.26 k allocations: 11.449 MiB)
Running: rectangle_rule_left
0.342184 seconds (19.34 k allocations: 1.173 MiB)
Running: rectangle_rule_midpoint
0.022335 seconds (25.01 k allocations: 1.573 MiB)
Running: rectangle_rule_right
0.144447 seconds (17.73 k allocations: 1.081 MiB)
Running: rombergs_method
0.113772 seconds (145.02 k allocations: 8.483 MiB)
Running: simpsons_rule
0.028551 seconds (28.22 k allocations: 1.758 MiB)
Running: simpsons38_rule
0.030425 seconds (43.08 k allocations: 2.708 MiB)
Running: trapezoidal_rule
0.022703 seconds (45.03 k allocations: 1.805 MiB)
Test Summary: | Pass Total
1/x | 16 16
Integrating log(x)/x from 1 to e and comparing the result to the analytical solution of 0.5.
Running: adaptive_simpsons_rule with ε=1e-7
0.031153 seconds (31.64 k allocations: 1.826 MiB)
Running: chebyshev_quadrature with k=1
0.238958 seconds (231.69 k allocations: 12.988 MiB, 13.76% gc time)
Running: chebyshev_quadrature with k=2
0.247025 seconds (284.30 k allocations: 15.895 MiB)
Running: chebyshev_quadrature with k=3
0.204981 seconds (235.84 k allocations: 13.065 MiB)
Running: chebyshev_quadrature with k=4
0.190328 seconds (235.84 k allocations: 13.144 MiB)
Running: jacobi_quadrature with α=β=1
2.429021 seconds (448.43 k allocations: 148.940 MiB, 5.21% gc time)
Running: legendre_quadrature
0.177335 seconds (186.52 k allocations: 10.758 MiB, 8.33% gc time)
Running: lobatto_quadrature
0.183607 seconds (197.86 k allocations: 11.464 MiB)
Running: radau_quadrature
0.162203 seconds (197.85 k allocations: 11.474 MiB)
Running: rectangle_rule_left
0.939710 seconds (19.59 k allocations: 1.186 MiB)
Running: rectangle_rule_midpoint
0.024914 seconds (25.00 k allocations: 1.574 MiB)
Running: rectangle_rule_right
1.194148 seconds (17.69 k allocations: 1.078 MiB)
Running: rombergs_method
0.163321 seconds (135.49 k allocations: 7.815 MiB)
Running: simpsons_rule
0.058067 seconds (28.92 k allocations: 1.785 MiB)
Running: simpsons38_rule
0.027883 seconds (43.78 k allocations: 2.734 MiB)
Running: trapezoidal_rule
0.022477 seconds (57.27 k allocations: 2.006 MiB)
Test Summary: | Pass Total
log(x)/x | 16 16
Approximating the modified bessel function I_1(1) and comparing it to the result obtained by SpecialFunctions.
Running: adaptive_simpsons_rule with ε=1e-7
0.149516 seconds (145.08 k allocations: 8.694 MiB)
Running: chebyshev_quadrature with k=1
0.147612 seconds (69.93 k allocations: 2.205 MiB)
Running: chebyshev_quadrature with k=2
0.153638 seconds (105.09 k allocations: 2.868 MiB)
Running: chebyshev_quadrature with k=3
0.168573 seconds (92.57 k allocations: 2.654 MiB)
Running: chebyshev_quadrature with k=4
0.240358 seconds (72.10 k allocations: 2.248 MiB)
Running: jacobi_quadrature with α=β=1
1.766219 seconds (480.31 k allocations: 167.755 MiB, 10.19% gc time)
Running: legendre_quadrature
0.120673 seconds (18.73 k allocations: 1.094 MiB)
Running: lobatto_quadrature
0.000090 seconds (150 allocations: 4.328 KiB)
Running: radau_quadrature
0.000051 seconds (150 allocations: 4.406 KiB)
Running: rectangle_rule_left
48.700211 seconds (590.00 M allocations: 8.792 GiB, 7.40% gc time)
Running: rectangle_rule_midpoint
0.000074 seconds (40 allocations: 992 bytes)
Running: rectangle_rule_right
41.883880 seconds (592.75 M allocations: 8.833 GiB, 7.56% gc time)
Running: rombergs_method
0.134118 seconds (20.51 k allocations: 1.165 MiB)
Running: simpsons_rule
0.000066 seconds (93 allocations: 1.797 KiB)
Running: simpsons38_rule
0.019745 seconds (463 allocations: 22.578 KiB)
Running: trapezoidal_rule
0.020454 seconds (179 allocations: 8.766 KiB)
Test Summary: | Pass Total
modbessel0 | 16 16
Integrating 1/sqrt(-19.6 sin(x)) from -pi to 0 and comparing the result to the analytical solution of ellipk(1/2)/sqrt(2.45) The integrand has singularities at x = -pi and x=0, so for some of these functions the integration domain has to be itself approximated.
Running: adaptive_simpsons_rule on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
54.895336 seconds (629.32 M allocations: 9.387 GiB, 6.60% gc time)
Running: chebyshev_quadrature with k=1
0.507801 seconds (413.82 k allocations: 22.937 MiB)
Running: chebyshev_quadrature with k=2
26.139692 seconds (468.46 k allocations: 4.040 GiB, 2.34% gc time)
Running: chebyshev_quadrature with k=3
12.134681 seconds (249.12 k allocations: 1.642 GiB, 2.17% gc time)
Running: chebyshev_quadrature with k=4
17.981786 seconds (249.12 k allocations: 2.260 GiB, 1.00% gc time)
Running: jacobi_quadrature with α=β=1. The N value required to get an accurate result is too high to be practical, so only a rough approximation can be arrived at.
60.953208 seconds (484.40 k allocations: 13.254 GiB, 3.85% gc time)
Running: legendre_quadrature.
13.905775 seconds (223.11 k allocations: 1.976 GiB, 1.62% gc time)
The following integration functions have to use an approximated domain due to the endpoint singularities.
Running: lobatto_quadrature on [-pi+1e-6, -1e-6]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
58.685877 seconds (8.23 M allocations: 13.383 GiB, 4.41% gc time)
Running: radau_quadrature on [-pi+1e-6, -1e-6]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
48.136947 seconds (7.23 M allocations: 13.369 GiB, 4.55% gc time)
Running: rectangle_rule_left on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
18.875498 seconds (22.24 k allocations: 1.347 MiB)
Running: rectangle_rule_midpoint on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
19.651948 seconds (30.44 k allocations: 1.884 MiB)
Running: rectangle_rule_right on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
19.696241 seconds (22.45 k allocations: 1.357 MiB)
Running: rombergs_method on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
3.974161 seconds (438.01 k allocations: 152.660 MiB)
Running: simpsons_rule on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
53.575567 seconds (600.04 M allocations: 8.943 GiB, 5.86% gc time)
Running: simpsons38_rule on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
47.483406 seconds (600.05 M allocations: 8.943 GiB, 6.10% gc time)
Running: trapezoidal_rule on [-pi+1e-8, -1e-8]. Only a rough approximation can be realistically achieved with this function, due to the singularities.
53.293127 seconds (600.03 M allocations: 8.943 GiB, 5.70% gc time)
Test Summary: | Pass Total
Simppen | 16 16
Integrating sin(x^2)e^(-x)/x from 0 to infinity, with the approximated domain of integration of 0 to 100. The removable singularity at x=0 in the integrand has been removed.
Running: adaptive_simpsons_rule with ε=1e-8
0.060268 seconds (180.45 k allocations: 4.405 MiB)
Running: chebyshev_quadrature with k=1
0.214315 seconds (247.70 k allocations: 13.449 MiB)
Running: chebyshev_quadrature with k=2
0.213063 seconds (272.34 k allocations: 14.523 MiB)
Running: chebyshev_quadrature with k=3
0.189943 seconds (220.25 k allocations: 11.630 MiB)
Running: chebyshev_quadrature with k=4
0.184119 seconds (220.25 k allocations: 11.626 MiB)
Running: jacobi_quadrature with α=β=1
0.368252 seconds (389.30 k allocations: 34.988 MiB)
Running: laguerre_quadrature with k=2
0.196291 seconds (180.53 k allocations: 10.477 MiB)
Running: legendre_quadrature
0.131890 seconds (145.98 k allocations: 8.082 MiB)
Running: lobatto_quadrature
0.034187 seconds (10.55 k allocations: 15.097 MiB)
Running: radau_quadrature
0.033241 seconds (9.33 k allocations: 13.171 MiB)
Running: rectangle_rule_left
0.054918 seconds (18.87 k allocations: 1.122 MiB)
Running: rectangle_rule_midpoint
0.042071 seconds (25.47 k allocations: 1.576 MiB)
Running: rectangle_rule_right
0.051551 seconds (17.48 k allocations: 1.049 MiB)
Running: rombergs_method
0.230337 seconds (171.79 k allocations: 9.840 MiB)
Running: simpsons_rule
0.001852 seconds (24.72 k allocations: 386.656 KiB)
Running: simpsons38_rule
0.046323 seconds (78.86 k allocations: 3.384 MiB)
Running: trapezoidal_rule
0.163427 seconds (2.39 M allocations: 37.691 MiB)
Test Summary: | Pass Total
sinexpox | 17 17
Integrating sin(x)/x from 0 to 100 and comparing it to the exact result.
Running: adaptive_simpsons_rule with ε=1e-8
0.002039 seconds (30.71 k allocations: 480.250 KiB)
Running: chebyshev_quadrature with k=1
0.141904 seconds (2.46 k allocations: 1.691 MiB)
Running: chebyshev_quadrature with k=2
0.159155 seconds (2.71 k allocations: 2.355 MiB)
Running: chebyshev_quadrature with k=3
0.142225 seconds (2.31 k allocations: 2.028 MiB)
Running: chebyshev_quadrature with k=4
0.135028 seconds (2.31 k allocations: 1.469 MiB)
Running: jacobi_quadrature with α=β=1
7.813308 seconds (366.38 k allocations: 904.821 MiB, 2.41% gc time)
Running: legendre_quadrature
0.076233 seconds (1.27 k allocations: 68.203 KiB)
Running: lobatto_quadrature
0.000220 seconds (253 allocations: 9.188 KiB)
Running: radau_quadrature
0.000229 seconds (224 allocations: 8.859 KiB)
Running: rectangle_rule_left; only a rough approximation can be practically achieved using this function
3.759277 seconds (11 allocations: 528 bytes)
Running: rectangle_rule_midpoint
0.000507 seconds (9 allocations: 496 bytes)
Running: rectangle_rule_right; only a rough approximation can be practically achieved using this function
4.057952 seconds (11 allocations: 528 bytes)
Running: rombergs_method
0.077049 seconds (997 allocations: 56.672 KiB)
Running: simpsons_rule
0.000048 seconds (9 allocations: 496 bytes)
Running: simpsons38_rule
0.000048 seconds (9 allocations: 496 bytes)
Running: trapezoidal_rule
0.000825 seconds (9 allocations: 496 bytes)
Test Summary: | Pass Total
sinxx | 16 16
Integrating (x^3+1)/(x^4 (x+1)(x^2+1)) from 1 to e and comparing the result to the analytical solution of log(sqrt(2)*exp(1)/(sqrt(exp(2)+1)))+1/2*(exp(-2)-1)+1/3*(1-exp(-3))
Running: adaptive_simpsons_rule with ε=1e-8
0.000472 seconds (6.34 k allocations: 99.453 KiB)
Running: chebyshev_quadrature with k=1
0.120360 seconds (2.53 k allocations: 579.203 KiB)
Running: chebyshev_quadrature with k=2
0.123098 seconds (2.79 k allocations: 780.188 KiB)
Running: chebyshev_quadrature with k=3
0.125310 seconds (2.39 k allocations: 661.047 KiB)
Running: chebyshev_quadrature with k=4
0.123891 seconds (2.39 k allocations: 491.547 KiB)
Running: jacobi_quadrature with α=β=1
3.372981 seconds (372.95 k allocations: 253.064 MiB)
Running: legendre_quadrature
0.074008 seconds (1.32 k allocations: 67.859 KiB)
Running: lobatto_quadrature
0.000079 seconds (91 allocations: 3.656 KiB)
Running: radau_quadrature
0.000041 seconds (83 allocations: 3.484 KiB)
Running: rectangle_rule_left; only a rough approximation can be practically achieved using this function.
1.851642 seconds (11 allocations: 528 bytes)
Running: rectangle_rule_midpoint
0.000174 seconds (9 allocations: 496 bytes)
Running: rectangle_rule_right; only a rough approximation can be practically achieved using this function.
2.127242 seconds (11 allocations: 528 bytes)
Running: rombergs_method
0.099936 seconds (1.21 k allocations: 64.938 KiB)
Running: simpsons_rule
0.000038 seconds (9 allocations: 496 bytes)
Running: simpsons38_rule
0.000024 seconds (9 allocations: 496 bytes)
Running: trapezoidal_rule
0.000405 seconds (9 allocations: 496 bytes)
Test Summary: | Pass Total
partfrac | 16 16
Testing FunctionIntegrator tests passed