Commit(s): JuliaLang/julia@051468b24c79f014a60bff1d3ab96a1f78d73c84 vs JuliaLang/julia@fcd031b50cf40769b68c27248f61061ed7aaa139
Triggered By: link
Tag Predicate: "sparse"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["sparse", "constructors", "(\"Bidiagonal\", 100)"] |
1.21 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", "(\"Diagonal\", 100)"] |
1.13 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", "(\"Tridiagonal\", 100)"] |
0.93 (5%) ✅ | 1.00 (1%) |
["sparse", "sparse solves", "least squares (default), matrix rhs"] |
0.13 (5%) ✅ | 1.14 (1%) ❌ |
["sparse", "sparse solves", "least squares (default), vector rhs"] |
0.22 (5%) ✅ | 1.15 (1%) ❌ |
["sparse", "sparse solves", "least squares (qr), matrix rhs"] |
0.13 (5%) ✅ | 1.14 (1%) ❌ |
["sparse", "sparse solves", "least squares (qr), vector rhs"] |
0.22 (5%) ✅ | 1.15 (1%) ❌ |
Here's a list of all the benchmark groups executed by this job:
["broadcast", "sparse"]
["problem", "fem"]
["problem", "laplacian"]
["sparse", "arithmetic"]
["sparse", "constructors"]
["sparse", "index"]
["sparse", "matmul"]
["sparse", "sparse matvec"]
["sparse", "sparse solves"]
["sparse", "transpose"]
Julia Version 1.1.0-DEV.832
Commit 051468b (2018-12-06 22:31 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 14.04.5 LTS
uname: Linux 3.13.0-85-generic #129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3501 MHz 39501830 s 2415 s 7014062 s 2145790055 s 11 s
#2 3501 MHz 213282077 s 14 s 3832426 s 1980129421 s 17 s
#3 3501 MHz 30655075 s 3138 s 3589697 s 2162860000 s 26 s
#4 3501 MHz 29447906 s 11 s 2772502 s 2165912516 s 21 s
Memory: 31.383651733398438 GB (5126.7890625 MB free)
Uptime: 2.1990765e7 sec
Load Avg: 1.0693359375 1.04833984375 1.205078125
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, haswell)
Julia Version 1.1.0-DEV.830
Commit fcd031b (2018-12-06 21:57 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 14.04.5 LTS
uname: Linux 3.13.0-85-generic #129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3501 MHz 39608694 s 2415 s 7021445 s 2146010463 s 11 s
#2 3501 MHz 213553461 s 14 s 3839551 s 1980186334 s 17 s
#3 3501 MHz 30775979 s 3138 s 3596900 s 2163067113 s 26 s
#4 3501 MHz 29564203 s 11 s 2779272 s 2166124880 s 21 s
Memory: 31.383651733398438 GB (4256.3515625 MB free)
Uptime: 2.1994124e7 sec
Load Avg: 1.01513671875 1.04931640625 1.255859375
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, haswell)