Skip to content

Latest commit

 

History

History
334 lines (315 loc) · 20.7 KB

File metadata and controls

334 lines (315 loc) · 20.7 KB

Benchmark Report

Job Properties

Commit(s): JuliaLang/julia@e51a7075d74e86274d694b9b9f5e475b57c05439

Triggered By: link

Tag Predicate: ALL

Daily Job: 2018-12-17 vs 2018-12-16

Results

Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.

Below is a table of this job's results, obtained by running the benchmarks found in JuliaCI/BaseBenchmarks.jl. The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.

The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results that indicate possible regressions or improvements - are shown below (thus, an empty table means that all benchmark results remained invariant between builds).

ID time ratio memory ratio
["array", "any/all", "(\"all\", \"Array{Float32,1} generator\")"] 0.63 (5%) ✅ 1.00 (1%)
["array", "any/all", "(\"all\", \"Vector{Bool}\")"] 1.08 (5%) ❌ 1.00 (1%)
["array", "any/all", "(\"any\", \"UnitRange{Int64}\")"] 0.67 (5%) ✅ 1.00 (1%)
["array", "cat", "(\"catnd\", 5)"] 0.93 (5%) ✅ 1.00 (1%)
["array", "cat", "(\"vcat\", 5)"] 0.89 (5%) ✅ 1.00 (1%)
["array", "equality", "(\"==\", \"Array{Int64,1}\")"] 1.16 (5%) ❌ 1.00 (1%)
["array", "equality", "(\"==\", \"BitArray\")"] 0.88 (5%) ✅ 1.00 (1%)
["array", "equality", "(\"isequal\", \"Array{Int64,1} isequal UnitRange{Int64}\")"] 0.94 (5%) ✅ 1.00 (1%)
["array", "growth", "(\"append!\", 256)"] 0.86 (5%) ✅ 1.00 (1%)
["array", "growth", "(\"prerend!\", 2048)"] 0.94 (5%) ✅ 1.00 (1%)
["array", "growth", "(\"prerend!\", 256)"] 0.85 (5%) ✅ 1.00 (1%)
["array", "growth", "(\"push_single!\", 2048)"] 0.94 (5%) ✅ 1.00 (1%)
["array", "growth", "(\"push_single!\", 8)"] 0.95 (5%) ✅ 1.00 (1%)
["array", "reductions", "(\"BaseBenchmarks.ArrayBenchmarks.perf_mapreduce\", \"Int64\")"] 1.08 (5%) ❌ 1.00 (1%)
["array", "setindex!", "(\"setindex!\", 1)"] 1.25 (5%) ❌ 1.00 (1%)
["array", "setindex!", "(\"setindex!\", 3)"] 1.19 (5%) ❌ 1.00 (1%)
["array", "subarray", "(\"lucompletepivCopy!\", 1000)"] 0.94 (5%) ✅ 1.00 (1%)
["array", "subarray", "(\"lucompletepivCopy!\", 250)"] 0.94 (5%) ✅ 1.00 (1%)
["array", "subarray", "(\"lucompletepivSub!\", 1000)"] 0.94 (5%) ✅ 1.00 (1%)
["broadcast", "mix_scalar_tuple", "(10, \"tup_tup\")"] 1.05 (5%) ❌ 1.00 (1%)
["broadcast", "mix_scalar_tuple", "(3, \"scal_tup_x3\")"] 1.14 (5%) ❌ 1.00 (1%)
["broadcast", "mix_scalar_tuple", "(5, \"scal_tup_x3\")"] 1.20 (5%) ❌ 1.00 (1%)
["collection", "set operations", "(\"empty\", \"Int\", \"<\", \"BitSet\")"] 1.50 (25%) ❌ 1.00 (1%)
["dates", "parse", "(\"DateTime\", \"DateFormat\")"] 0.95 (5%) ✅ 1.00 (1%)
["dates", "parse", "(\"DateTime\", \"RFC1123Format\", \"Lowercase\")"] 1.06 (5%) ❌ 1.00 (1%)
["dates", "parse", "(\"DateTime\", \"RFC1123Format\", \"Titlecase\")"] 1.05 (5%) ❌ 1.00 (1%)
["dates", "parse", "(\"Date\", \"DateFormat\")"] 0.94 (5%) ✅ 1.00 (1%)
["dates", "string", "Date"] 0.94 (5%) ✅ 1.00 (1%)
["find", "findall", "(\"Array{Bool,1}\", \"10-90\")"] 1.09 (5%) ❌ 1.00 (1%)
["find", "findnext", "(\"ispos\", \"Array{Float64,1}\")"] 1.07 (5%) ❌ 1.00 (1%)
["find", "findprev", "(\"ispos\", \"Array{Float64,1}\")"] 1.09 (5%) ❌ 1.00 (1%)
["find", "findprev", "(\"ispos\", \"Array{Int64,1}\")"] 1.12 (5%) ❌ 1.00 (1%)
["io", "array_limit", "(\"display\", \"Array{Float64,2}(10000, 10000)\")"] 1.13 (5%) ❌ 1.04 (1%) ❌
["io", "serialization", "(\"deserialize\", \"Matrix{Float64}\")"] 0.95 (5%) ✅ 1.00 (1%)
["misc", "bitshift", "(\"Int\", \"Int\")"] 1.07 (5%) ❌ 1.00 (1%)
["misc", "bitshift", "(\"Int\", \"UInt\")"] 1.07 (5%) ❌ 1.00 (1%)
["misc", "bitshift", "(\"UInt32\", \"UInt32\")"] 1.07 (5%) ❌ 1.00 (1%)
["misc", "bitshift", "(\"UInt\", \"UInt\")"] 1.07 (5%) ❌ 1.00 (1%)
["misc", "iterators", "zip(1:1, 1:1, 1:1, 1:1)"] 0.88 (5%) ✅ 1.00 (1%)
["problem", "go", "go_game"] 0.94 (5%) ✅ 1.00 (1%)
["problem", "grigoriadis khachiyan", "grigoriadis_khachiyan"] 0.90 (5%) ✅ 1.00 (1%)
["problem", "json", "parse_json"] 1.06 (5%) ❌ 1.00 (1%)
["problem", "laplacian", "laplace_iter_sub"] 0.91 (5%) ✅ 1.00 (1%)
["problem", "laplacian", "laplace_iter_vec"] 0.90 (5%) ✅ 1.00 (1%)
["problem", "ziggurat", "ziggurat"] 0.89 (5%) ✅ 1.00 (1%)
["random", "collections", "(\"rand\", \"ImplicitRNG\", \"'a':'z'\")"] 1.70 (25%) ❌ 1.00 (1%)
["random", "collections", "(\"rand\", \"ImplicitRNG\", \"small Dict\")"] 1.52 (25%) ❌ 1.00 (1%)
["random", "collections", "(\"rand\", \"MersenneTwister\", \"'a':'z'\")"] 1.59 (25%) ❌ 1.00 (1%)
["random", "ranges", "(\"rand\", \"MersenneTwister\", \"BigInt\", \"RangeGenerator(1:2^10000)\")"] 0.72 (25%) ✅ 1.00 (1%)
["random", "types", "(\"rand\", \"MersenneTwister\", \"Bool\")"] 1.36 (25%) ❌ 1.00 (1%)
["random", "types", "(\"rand\", \"MersenneTwister\", \"Float64\")"] 1.27 (25%) ❌ 1.00 (1%)
["random", "types", "(\"rand\", \"MersenneTwister\", \"ImplicitFloat64\")"] 1.36 (25%) ❌ 1.00 (1%)
["random", "types", "(\"rand\", \"MersenneTwister\", \"UInt16\")"] 1.29 (25%) ❌ 1.00 (1%)
["random", "types", "(\"rand\", \"MersenneTwister\", \"UInt32\")"] 1.29 (25%) ❌ 1.00 (1%)
["random", "types", "(\"randn\", \"MersenneTwister\", \"ImplicitFloat64\")"] 1.28 (25%) ❌ 1.00 (1%)
["scalar", "acos", "(\"abs(x) < 0.5\", \"positive argument\", \"Float64\")"] 1.09 (5%) ❌ 1.00 (1%)
["scalar", "acos", "(\"small\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "acos", "(\"small\", \"positive argument\", \"Float64\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "acosh", "(\"2 <= abs(x) < 2^28\", \"positive argument\", \"Float32\")"] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "acosh", "(\"very large\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "asin", "(\"0.5 <= abs(x) < 0.975\", \"negative argument\", \"Float64\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "asin", "(\"small\", \"negative argument\", \"Float64\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "asin", "(\"small\", \"positive argument\", \"Float64\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "atan", "(\"0 <= abs(x) < 7/16\", \"positive argument\", \"Float32\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan", "(\"19/16 <= abs(x) < 39/16\", \"positive argument\", \"Float64\")"] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "atan", "(\"7/16 <= abs(x) < 11/16\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atan", "(\"zero\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atan2", "(\"abs(y/x) high\", \"y negative\", \"x positive\", \"Float64\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "atan2", "(\"abs(y/x) high\", \"y positive\", \"x positive\", \"Float64\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "atan2", "(\"abs(y/x) safe (small)\", \"y negative\", \"x negative\", \"Float32\")"] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "atan2", "(\"abs(y/x) safe (small)\", \"y positive\", \"x negative\", \"Float32\")"] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "atan2", "(\"abs(y/x) small\", \"y positive\", \"x positive\", \"Float64\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan2", "(\"x one\", \"Float32\")"] 1.45 (5%) ❌ 1.00 (1%)
["scalar", "atanh", "(\"0.5 <= abs(x) < 1\", \"negative argument\", \"Float64\")"] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"0.5 <= abs(x) < 1\", \"positive argument\", \"Float32\")"] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"0.5 <= abs(x) < 1\", \"positive argument\", \"Float64\")"] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"2^-28 <= abs(x) < 0.5\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"very small\", \"negative argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"very small\", \"negative argument\", \"Float64\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atanh", "(\"very small\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "cos", "(\"argument reduction (paynehanek) abs(x) > 2.0^20*π/2\", \"positive argument\", \"Float64\", \"sin_kernel\")"] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "cos", "(\"no reduction\", \"positive argument\", \"Float32\", \"cos_kernel\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "cosh", "(\"9f0 <= abs(x) < 88.72283f0\", \"negative argument\", \"Float32\")"] 0.85 (5%) ✅ 1.00 (1%)
["scalar", "cosh", "(\"9f0 <= abs(x) < 88.72283f0\", \"positive argument\", \"Float32\")"] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "cosh", "(\"very large\", \"negative argument\", \"Float32\")"] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "exp2", "(\"2pow35\", \"negative argument\", \"Float32\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "exp2", "(\"2pow35\", \"negative argument\", \"Float64\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "expm1", "(\"large\", \"positive argument\", \"Float32\")"] 1.29 (5%) ❌ 1.00 (1%)
["scalar", "expm1", "(\"medium\", \"positive argument\", \"Float64\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "expm1", "(\"one\", \"Float64\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "expm1", "(\"small\", \"positive argument\", \"Float64\")"] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "mod2pi", "(\"argument reduction (easy) abs(x) < 5π/4\", \"positive argument\", \"Float64\")"] 1.50 (5%) ❌ 1.00 (1%)
["scalar", "sin", "(\"no reduction\", \"positive argument\", \"Float32\", \"sin_kernel\")"] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "tan", "(\"medium\", \"negative argument\", \"Float32\")"] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "tan", "(\"medium\", \"positive argument\", \"Float64\")"] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "tan", "(\"small\", \"negative argument\", \"Float32\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "tan", "(\"small\", \"positive argument\", \"Float32\")"] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "tan", "(\"zero\", \"Float64\")"] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "tanh", "(\"very small\", \"positive argument\", \"Float64\")"] 0.83 (5%) ✅ 1.00 (1%)
["shootout", "binary_trees"] 1.11 (5%) ❌ 1.00 (1%)
["sparse", "constructors", "(\"Bidiagonal\", 100)"] 1.08 (5%) ❌ 1.00 (1%)
["sparse", "constructors", "(\"Diagonal\", 100)"] 1.13 (5%) ❌ 1.00 (1%)
["sparse", "index", "(\"spmat\", \"row\", \"array\", 1000)"] 0.65 (30%) ✅ 1.00 (1%)
["sparse", "index", "(\"spmat\", \"row\", \"logical\", 1000)"] 0.50 (30%) ✅ 1.00 (1%)
["sparse", "sparse matvec", "adjoint"] 0.94 (5%) ✅ 1.00 (1%)
["sparse", "sparse matvec", "non-adjoint"] 0.93 (5%) ✅ 1.00 (1%)
["string", "replace"] 1.08 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", "(\"matmat\", (8, 8), (8, 8))"] 0.93 (5%) ✅ 1.00 (1%)
["tuple", "reduction", "(\"sum\", (16, 16))"] 1.23 (5%) ❌ 1.00 (1%)
["tuple", "reduction", "(\"sum\", (16,))"] 1.19 (5%) ❌ 1.00 (1%)
["tuple", "reduction", "(\"sum\", (4, 4))"] 0.84 (5%) ✅ 1.00 (1%)
["tuple", "reduction", "(\"sum\", (4,))"] 1.11 (5%) ❌ 1.00 (1%)
["tuple", "reduction", "(\"sum\", (8, 8))"] 0.78 (5%) ✅ 1.00 (1%)
["tuple", "reduction", "(\"sumabs\", (8,))"] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", "(\"map\", abs, Bool, false)"] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", "(\"map\", abs, Float64, true)"] 1.13 (5%) ❌ 1.00 (1%)
["union", "array", "(\"map\", abs, Int8, false)"] 0.92 (5%) ✅ 1.00 (1%)
["union", "array", "(\"map\", abs, Int8, true)"] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", "(\"map\", identity, Bool, true)"] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", "(\"map\", identity, Int64, true)"] 1.15 (5%) ❌ 1.00 (1%)
["union", "array", "(\"map\", identity, Int8, false)"] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_countequals\", \"Float32\")"] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_countequals\", \"Float64\")"] 0.93 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_countequals\", \"Int64\")"] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_simplecopy\", BigFloat, false)"] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_simplecopy\", Bool, true)"] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_simplecopy\", Float64, true)"] 0.92 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_sum2\", Bool, true)"] 1.27 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum2\", Float32, true)"] 1.14 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum2\", Float64, true)"] 1.22 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum2\", Int8, false)"] 1.23 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum2\", Int8, true)"] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Bool, false)"] 0.90 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Bool, true)"] 1.12 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Complex{Float64}, true)"] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Float32, true)"] 1.08 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Float64, true)"] 0.81 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_sum3\", Int8, true)"] 0.70 (5%) ✅ 1.00 (1%)
["union", "array", "(\"perf_sum\", Bool, true)"] 1.30 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum\", Complex{Float64}, true)"] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum\", Float32, true)"] 1.22 (5%) ❌ 1.00 (1%)
["union", "array", "(\"perf_sum\", Float64, true)"] 1.22 (5%) ❌ 1.00 (1%)
["union", "array", "(\"skipmissing\", collect, Union{Missing, Bool}, true)"] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", "(\"skipmissing\", sum, Union{Missing, Complex{Float64}}, true)"] 1.12 (5%) ❌ 1.00 (1%)
["union", "array", "(\"skipmissing\", sum, Union{Missing, Float32}, true)"] 0.87 (5%) ✅ 1.00 (1%)
["union", "array", "(\"skipmissing\", sum, Union{Missing, Float64}, true)"] 0.79 (5%) ✅ 1.00 (1%)
["union", "array", "(\"sort\", Union{Missing, BigFloat}, true)"] 1.05 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["array", "accumulate"]
  • ["array", "any/all"]
  • ["array", "bool"]
  • ["array", "cat"]
  • ["array", "comprehension"]
  • ["array", "convert"]
  • ["array", "equality"]
  • ["array", "growth"]
  • ["array", "index"]
  • ["array", "reductions"]
  • ["array", "reverse"]
  • ["array", "setindex!"]
  • ["array", "subarray"]
  • ["broadcast"]
  • ["broadcast", "dotop"]
  • ["broadcast", "fusion"]
  • ["broadcast", "mix_scalar_tuple"]
  • ["broadcast", "sparse"]
  • ["broadcast", "typeargs"]
  • ["collection", "deletion"]
  • ["collection", "initialization"]
  • ["collection", "iteration"]
  • ["collection", "optimizations"]
  • ["collection", "queries & updates"]
  • ["collection", "set operations"]
  • ["dates", "accessor"]
  • ["dates", "arithmetic"]
  • ["dates", "construction"]
  • ["dates", "conversion"]
  • ["dates", "parse"]
  • ["dates", "query"]
  • ["dates", "string"]
  • ["find", "findall"]
  • ["find", "findnext"]
  • ["find", "findprev"]
  • ["io", "array_limit"]
  • ["io", "read"]
  • ["io", "serialization"]
  • ["io"]
  • ["linalg", "arithmetic"]
  • ["linalg", "blas"]
  • ["linalg", "factorization"]
  • ["linalg"]
  • ["micro"]
  • ["misc"]
  • ["misc", "23042"]
  • ["misc", "afoldl"]
  • ["misc", "allocation elision view"]
  • ["misc", "bitshift"]
  • ["misc", "issue 12165"]
  • ["misc", "iterators"]
  • ["misc", "julia"]
  • ["misc", "parse"]
  • ["misc", "repeat"]
  • ["misc", "splatting"]
  • ["parallel", "remotecall"]
  • ["problem", "chaosgame"]
  • ["problem", "fem"]
  • ["problem", "go"]
  • ["problem", "grigoriadis khachiyan"]
  • ["problem", "imdb"]
  • ["problem", "json"]
  • ["problem", "laplacian"]
  • ["problem", "monte carlo"]
  • ["problem", "raytrace"]
  • ["problem", "seismic"]
  • ["problem", "simplex"]
  • ["problem", "spellcheck"]
  • ["problem", "stockcorr"]
  • ["problem", "ziggurat"]
  • ["random", "collections"]
  • ["random", "randstring"]
  • ["random", "ranges"]
  • ["random", "sequences"]
  • ["random", "types"]
  • ["scalar", "acos"]
  • ["scalar", "acosh"]
  • ["scalar", "arithmetic"]
  • ["scalar", "asin"]
  • ["scalar", "asinh"]
  • ["scalar", "atan"]
  • ["scalar", "atan2"]
  • ["scalar", "atanh"]
  • ["scalar", "cbrt"]
  • ["scalar", "cos"]
  • ["scalar", "cosh"]
  • ["scalar", "exp2"]
  • ["scalar", "expm1"]
  • ["scalar", "fastmath"]
  • ["scalar", "floatexp"]
  • ["scalar", "intfuncs"]
  • ["scalar", "iteration"]
  • ["scalar", "mod2pi"]
  • ["scalar", "predicate"]
  • ["scalar", "rem_pio2"]
  • ["scalar", "sin"]
  • ["scalar", "sincos"]
  • ["scalar", "sinh"]
  • ["scalar", "tan"]
  • ["scalar", "tanh"]
  • ["shootout"]
  • ["simd"]
  • ["sort", "insertionsort"]
  • ["sort", "issorted"]
  • ["sort", "mergesort"]
  • ["sort", "quicksort"]
  • ["sparse", "arithmetic"]
  • ["sparse", "constructors"]
  • ["sparse", "index"]
  • ["sparse", "matmul"]
  • ["sparse", "sparse matvec"]
  • ["sparse", "sparse solves"]
  • ["sparse", "transpose"]
  • ["string", "findfirst"]
  • ["string"]
  • ["string", "readuntil"]
  • ["string", "repeat"]
  • ["tuple", "index"]
  • ["tuple", "linear algebra"]
  • ["tuple", "misc"]
  • ["tuple", "reduction"]
  • ["union", "array"]

Version Info

Primary Build

Julia Version 1.2.0-DEV.19
Commit e51a707 (2018-12-17 02:09 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 14.04.5 LTS
  uname: Linux 3.13.0-85-generic #129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016 x86_64 x86_64
  CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz: 
              speed         user         nice          sys         idle          irq
       #1  3501 MHz   66989833 s       5010 s    7387746 s  2206521795 s         22 s
       #2  3501 MHz  376528494 s        203 s    6133898 s  1902070026 s         18 s
       #3  3501 MHz   50983426 s       3218 s    4306277 s  2229364596 s         26 s
       #4  3501 MHz   47572649 s          0 s    5507782 s  2231085321 s         16 s
       
  Memory: 31.383651733398438 GB (5242.95703125 MB free)
  Uptime: 2.2866191e7 sec
  Load Avg:  1.0830078125  1.03125  1.05078125
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-6.0.1 (ORCJIT, haswell)