-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_agent.py
200 lines (157 loc) · 7.66 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import shutil
import os
import sys
import time
import tensorflow as tf
import numpy as np
from model_file import RNN_Model
from prepare_data import load_data
from aux_code.ops import (get_minibatches_indices, pad_seqs,
print_metrics,
get_max_length, calculate_metrics, create_conf_dict,
save_config_dict, get_validset_feeds)
from aux_code.tf_ops import create_scalar_summaries, create_sess
class TrainAgent(object):
def __init__(self, args):
# Create the config dictionary
self.config = create_conf_dict(args)
self.logdir = os.path.join(args.logdir,args.name)
if os.path.exists(self.logdir):
shutil.rmtree(self.logdir)
self.h_dim = list(map(int, args.layers.split(',')))
# Create the save path
self.save_path = 'models/' + args.name + '/'
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
self.mse = False
if args.data == 'add':
self.mse = True
self.output_format = 'last'
if args.data == 'copy':
self.output_format = 'all'
self.log_test = False
if args.log_test or args.data == 'copy' or args.data == 'add':
self.log_test = True
if args.cell == 'janet':
args.chrono = True
def train(self, data_path, max_gradient_norm, weight_decay, test_agent,
args):
data_list = load_data(data_path, seq_len=args.T)
x_train, y_train, x_valid, y_valid, x_test, y_test = data_list
max_len = get_max_length(x_train + x_valid)
# Create the model
model = RNN_Model(x_train[0].shape[-1], y_train.shape[-1],
h_dim=self.h_dim,
max_sequence_length=max_len,
max_gradient_norm=max_gradient_norm,
opt_method=args.optimizer,
weight_decay=weight_decay,
cell_type=args.cell,
chrono=args.chrono,
mse=self.mse,
)
model.build(self.output_format)
saver = tf.train.Saver()
# Prepare validation and test data
v_input_feed, v_output_feed = get_validset_feeds(
model, x_valid, y_valid, self.h_dim)
t_input_feed, t_output_feed = get_validset_feeds(
model, x_test, y_test, self.h_dim)
train_tags = ['Train Loss', 'Train Acc', 'Train F1']
metric_tags = train_tags + ['Valid Loss', 'Valid Acc', 'Valid F1']
if self.log_test:
metric_tags += ['Test Loss', 'Test Acc', 'Test F1']
with create_sess() as sess:
sess.run([tf.global_variables_initializer(),
tf.local_variables_initializer()])
best_loss = 1e8
best_epoch = 0
tb_writer = tf.summary.FileWriter(self.logdir, sess.graph)
print("Training model ...")
tb_step = 0
for e in range(args.epochs):
minibatch_indices = get_minibatches_indices(
len(x_train), args.batch_size)
eval_metrics = np.zeros(len(metric_tags))
# Time each epoch
start_time = time.time()
# Loop over minibatches
for b_num, b_indices in enumerate(minibatch_indices):
print('\rProcessing batch {}/{}'.format(
b_num, len(minibatch_indices)), end='', flush=True)
x = [x_train[i] for i in b_indices]
y = y_train[b_indices]
x, seq_lengths = pad_seqs(x)
input_feed = {model.x: x,
model.y: y,
model.seq_lens: seq_lengths,
model.training: True,
model.keep_prob: args.keep_prob,
}
_, loss, output_probs = sess.run(
[model.train_opt, model.loss_nowd,
model.output_probs],
input_feed)
if np.isnan(loss):
print('!'*70)
print('Nan loss value')
sys.exit()
# Update the training loss
eval_metrics[0] += loss / float(len(minibatch_indices))
if b_num % args.log_every == 0:
summary = create_scalar_summaries(
['high_res_train_loss'],
[loss],
)
tb_writer.add_summary(summary, tb_step)
tb_writer.flush()
tb_step += 1
# Update the remaining metrics
eval_metrics[1:3] += calculate_metrics(
y, np.argmax(output_probs, axis=1)) / \
float(len(minibatch_indices))
if 'mnist' in args.data:
# Compute validation loss and accuracy
eval_metrics[len(train_tags)], output_probs = sess.run(
v_output_feed, v_input_feed)
eval_metrics[len(train_tags)+1:2*len(train_tags)] += \
calculate_metrics(y_valid,
np.argmax(output_probs, axis=1))
epoch_duration = time.time() - start_time
if self.log_test:
# Compute test dataset metrics
eval_metrics[2*len(train_tags)], output_probs =\
sess.run(t_output_feed, t_input_feed)
eval_metrics[2*len(train_tags)+1:] += calculate_metrics(
y_test, np.argmax(output_probs, axis=1))
# Log the metrics on tensorboard
summary = create_scalar_summaries(
metric_tags + ['Epoch_duration'],
np.concatenate((eval_metrics, [epoch_duration])))
tb_writer.add_summary(summary, e)
# Save model if it yields the best validation loss
if best_loss >= eval_metrics[len(train_tags)]:
best_loss = eval_metrics[len(train_tags)]
best_epoch = e
saver.save(sess, self.save_path + 'model')
# Save the config to json
save_config_dict(self.config, self.save_path,
tags=['best_epoch',
'max_sequence_length'] +
metric_tags,
values=[best_epoch, max_len] +
list(eval_metrics))
print()
print(args.name + ": Epoch {}/{} | best epoch: {}"
" | epoch duration: {:.1f}".format(
e, args.epochs, best_epoch, epoch_duration))
print_metrics(metric_tags, eval_metrics)
else:
save_config_dict(self.config, self.save_path,
tags=['placeholder'],
values=[0],
)
print()
print(args.name + ": Epoch {}/{}".format(e, args.epochs))
if 'mnist' in args.data:
test_agent.test(x_test, y_test, self.save_path, self.config)