diff --git a/src/callbacks_step/save_solution.jl b/src/callbacks_step/save_solution.jl index 18fc6c9c..51d81194 100644 --- a/src/callbacks_step/save_solution.jl +++ b/src/callbacks_step/save_solution.jl @@ -2,13 +2,13 @@ # https://github.com/trixi-framework/Trixi.jl/blob/cd097fc9d1fe80fb4d7824968d54c99bf3bd5281/src/callbacks_step/save_solution.jl """ -SaveSolutionCallback(; interval::Integer=0, - dt=nothing, - save_initial_solution=true, - save_final_solution=true, - output_directory="out", - extra_functions=(), - keys=append!(["itp"], "value_" .* string.(eachindex(extra_functions)))) + SaveSolutionCallback(; interval::Integer=0, + dt=nothing, + save_initial_solution=true, + save_final_solution=true, + output_directory="out", + extra_functions=(), + keys=append!(["itp"], "value_" .* string.(eachindex(extra_functions)))) Save the current numerical solution in regular intervals in VTK format as a Paraview Collection (.pvd). Either pass `interval` to save every `interval` time steps diff --git a/src/equations.jl b/src/equations.jl index 76fb94e7..e8523d9a 100644 --- a/src/equations.jl +++ b/src/equations.jl @@ -44,7 +44,7 @@ end Libear second-order elliptic equation with matrix `A`, vector `b`, and scalar `c` and right-hand side `f`. The elliptic equation is defined as ```math - \mathcal{L}u = \sum_{i,j = 1}^d a_{ij}(x)\partial_{x_i,x_j}^2u + \sum_{i = 1}^db_i(x)\partial_{x_i}u + c(x)u = f, + \mathcal{L}u = -\sum_{i,j = 1}^d a_{ij}(x)\partial_{x_i,x_j}^2u + \sum_{i = 1}^db_i(x)\partial_{x_i}u + c(x)u = f, ``` where `A`, `b` and `c` are space-dependent functions returning a matrix, a vector, and a scalar, respectively. diff --git a/src/nodes.jl b/src/nodes.jl index 79daf0bb..6368d7e8 100644 --- a/src/nodes.jl +++ b/src/nodes.jl @@ -281,7 +281,7 @@ end If `n` is integer, create a [`NodeSet`](@ref) with `n` homogeneously distributed nodes in every dimension each of dimension `dim` inside a hypercube defined by the bounds `x_min` and `x_max`. If `n` is a `Tuple` of length `dim`, then use as many nodes in each dimension as described by `n`. The resulting `NodeSet` will have -``n^{\textrm{dim}}`` respectively ``\prod_{j = 1}n_j`` points. If the bounds are given as single values, +``n^{\textrm{dim}}`` respectively ``\prod_{j = 1}{\textrm{dim}}n_j`` points. If the bounds are given as single values, they are applied for each dimension. If they are `Tuple`s of size `dim`, the hypercube has the according bounds. If `dim` is not given explicitly, it is inferred by the lengths of `n`, `x_min` and `x_max` if possible. """