-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathsimulate_breach.py
85 lines (63 loc) · 3.08 KB
/
simulate_breach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
Control script to launch some attack that attempts to breach privacy federated learning in a given case
with the overall goal of recovering user data, e.g. image data, directly as much as possible.
"""
import torch
import hydra
from omegaconf import OmegaConf
import datetime
import time
import logging
import breaching
import os
os.environ["HYDRA_FULL_ERROR"] = "0"
log = logging.getLogger(__name__)
def main_process(process_idx, local_group_size, cfg):
"""This function controls the central routine."""
local_time = time.time()
setup = breaching.utils.system_startup(process_idx, local_group_size, cfg)
# Propose a model architecture:
# (Replace this line with your own model if you want)
model, loss_fn = breaching.cases.construct_model(cfg.case.model, cfg.case.data, cfg.case.server.pretrained)
# Instantiate server and vet model
# This is a no-op for an honest-but-curious server, but a malicious-model server can modify the model in this step.
server = breaching.cases.construct_server(model, loss_fn, cfg.case, setup)
model = server.vet_model(model)
# Instantiate user and attacker
user = breaching.cases.construct_user(model, loss_fn, cfg.case, setup)
attacker = breaching.attacks.prepare_attack(model, loss_fn, cfg.attack, setup)
# Summarize startup:
breaching.utils.overview(server, user, attacker)
# Simulate a simple FL protocol
shared_user_data, payloads, true_user_data = server.run_protocol(user)
# Run an attack using only payload information and shared data
reconstructed_user_data, stats = attacker.reconstruct(payloads, shared_user_data, server.secrets, dryrun=cfg.dryrun)
# How good is the reconstruction?
metrics = breaching.analysis.report(
reconstructed_user_data, true_user_data, payloads, model, cfg_case=cfg.case, setup=setup
)
# Save to summary:
breaching.utils.save_summary(cfg, metrics, stats, user.counted_queries, time.time() - local_time)
# Save to output folder:
breaching.utils.dump_metrics(cfg, metrics)
if cfg.save_reconstruction:
breaching.utils.save_reconstruction(reconstructed_user_data, payloads, true_user_data, cfg)
@hydra.main(config_path="breaching/config", config_name="cfg", version_base="1.1")
def main_launcher(cfg):
"""This is boiler-plate code for the launcher."""
log.info("--------------------------------------------------------------")
log.info("-----Launching federating learning breach experiment! --------")
launch_time = time.time()
if cfg.seed is None:
cfg.seed = torch.randint(0, 2**32 - 1, (1,)).item()
log.info(OmegaConf.to_yaml(cfg))
breaching.utils.initialize_multiprocess_log(cfg) # manually save log configuration
main_process(0, 1, cfg)
log.info("-------------------------------------------------------------")
log.info(
f"Finished computations {cfg.name} with total train time: "
f"{str(datetime.timedelta(seconds=time.time() - launch_time))}"
)
log.info("-----------------Job finished.-------------------------------")
if __name__ == "__main__":
main_launcher()