-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApril_meta.py
139 lines (116 loc) · 4.5 KB
/
April_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from loguru import logger as logging
from pathlib import Path
import torch
import random
import numpy as np
import wandb
import sys
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
sys.path.append(curr_path) # add current terminal path to sys.path
# tensorboard --logdir
# tensorboard --logdir runs --host localhost --port 6006
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_env_file",
default="meta_scenarios/CVE-2021-3129-train-5.json",
help="training simulated scenario, i.e. single/env-CVE-2020-2555.json",
)
parser.add_argument(
"--eval_env_file",
default="meta_scenarios/CVE-2021-3129-eval.json",
help="evaluating simulated scenario, i.e. single/env-CVE-2020-2555.json",
)
parser.add_argument("--mode", default=1, help="running mode (only support Mode 1 and 4 in this project)")
parser.add_argument("--policy",
default="PPO",
help="RL training algorithms (only support PPO in this project)")
parser.add_argument("--meta_algo",
default="MAML",
help="Meta-RL training algorithm (only support MAML currently)")
parser.add_argument(
"--config_file",
default=None,
type=str,
help=
"config file for RL training algorithms or continual learning method",
)
parser.add_argument("--load_agent",
default="",
type=str,
help="load trained agent")
parser.add_argument("--save_model",
action="store_true",
default=False,
help="support PPO")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--note", type=str, default="", help="wandb note")
parser.add_argument("--gpu", type=str, default="0", help="gpu id")
args = parser.parse_args()
seed = args.seed
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# set seed
from util import UTIL, Configure, console
if int(args.mode) in [UTIL.Train_Simulate, UTIL.Eval_Simulate]:
from Bot import BOT
UTIL.set_logger()
UTIL.show_banner()
scenario_path = UTIL.project_path / "scenarios"
args.train_env_file = scenario_path / args.train_env_file
if args.eval_env_file:
args.eval_env_file = scenario_path / args.eval_env_file
else:
args.eval_env_file = None
set_seed(seed)
use_wandb = Configure.getBool(
"Train", "use_wandb") if not UTIL.isDebug else False
use_tensorboard = Configure.getBool("Train", "use_tensorboard")
Bot = BOT(**vars(args),
use_tensorboard=use_tensorboard,
use_wandb=use_wandb)
train_env = Bot.make_env(Bot.train_env_file)
eval_env = Bot.make_env(
Bot.eval_env_file) if Bot.eval_env_file else train_env
if use_wandb:
UTIL.set_wandb_url()
Bot.wandb_run = wandb.init(
project="April-GAP",
name=Bot.title,
notes=args.note,
tags=["your tag"],
job_type="formal",
group=
f"your group",
reinit=True,
allow_val_change=True,
config=Bot.running_config,
save_code=False,
)
if args.load_agent:
Bot.load(agent_name=args.load_agent)
if int(args.mode) == UTIL.Train_Simulate:
Bot.train(verbose=True, train_env=train_env, eval_env=eval_env)
elif int(args.mode) == UTIL.Eval_Simulate:
if not args.load_agent:
console.print(
f"Simulated Evaluation Mode (mode=4) requires loading an trained agent."
)
exit(0)
Bot.Eval_Simulate(env=eval_env, verbose=True, interactive=True)
else:
console.print(
f"Mode error: Only support [bold red]Simulated Training Mode (mode=1)[/] and [bold red]Simulated Evaluation Mode (mode=4)[/]"
)
exit(0)
logging.success("😉 Have a good day~")
if use_wandb:
wandb.finish()