-
Notifications
You must be signed in to change notification settings - Fork 5
/
validate.py
297 lines (236 loc) · 12.2 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import argparse
import os
import numpy as np
import time
import torch
from json import JSONEncoder
from contextlib import suppress
from collections import OrderedDict
import utils
from timm.models import create_model
from timm.utils import accuracy, AverageMeter
from datasets import build_dataset
import models_act
try:
import ujson as json
except ImportError:
try:
import simplejson as json
except ImportError:
import json
class NumpyArrayEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return JSONEncoder.default(self, obj)
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('--data', metavar="DIR", type=str, help='dataset path')
parser.add_argument('--dataset', '-d', metavar='NAME', default='imagenet', choices=['imagenet', 'nabirds', "coco", "nuswide"], type=str, help='Dataset to evaluate on')
parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-j', '--num_workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=64, type=int, metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--use_amp', action='store_true', help="")
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--viz_mode', action='store_true', help="")
def validate(args, _logger):
amp_autocast = suppress # do nothing
if args.use_amp:
amp_autocast = torch.cuda.amp.autocast
_logger.info('Validating in mixed precision with native PyTorch AMP.')
assert args.checkpoint != "", "Empty checkpoint path, not usable"
assert os.path.isdir(args.checkpoint), "Checkpoint path is not dir, not usable: {}".format(args.checkpoint)
assert os.path.isfile(os.path.join(args.checkpoint, "best_checkpoint.pth")), "Checkpoint path does not have a 'best_checkpoint.pth' file"
device = torch.device(args.device)
torch.backends.cudnn.benchmark = True
# Setting for posterity
args.color_jitter = 0
args.aa = ""
args.train_interpolation = "bicubic"
args.reprob = 0
args.remode = ""
args.recount = 0
dataset_val, args.num_classes = build_dataset(args.data, args.dataset, "val", args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
checkpoint = torch.load(os.path.join(args.checkpoint, "best_checkpoint.pth"), map_location='cpu')
model_args = checkpoint["args"]
_logger.info(f"Creating model: {model_args.model}")
model = create_model(
model_args.model,
pretrained=False,
num_classes=args.num_classes,
img_size=model_args.input_size,
args = model_args
)
model.viz_mode = args.viz_mode
if checkpoint["ema_best"]:
model.load_state_dict(checkpoint['model_ema'])
else:
model.load_state_dict(checkpoint['model'])
_logger.info("counting parameters")
param_count = sum([m.numel() for m in model.parameters()])
_logger.info("logging")
_logger.info('Model %s created, param count: %d' % (model_args.model, param_count))
_logger.info("moving to device")
model.to(device)
model.eval()
_logger.info("Setting up Loss")
if args.dataset.lower() != "coco" and args.dataset.lower() != "nuswide":
criterion = torch.nn.CrossEntropyLoss().to(device)
else:
criterion = torch.nn.BCEWithLogitsLoss().to(device)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
model_name = model_args.model
if hasattr(model_args, "heuristic_pattern"):
model_name = model_name + "-" + model_args.heuristic_pattern
model_data_dict = {"Model": model_name,
"Ratio": model_args.keep_rate,
"Location": model_args.reduction_loc}
if args.dataset.lower() == "imagenet":
image_names = [os.path.basename(s[0]) for s in dataset_val.samples]
elif args.dataset.lower() == "nabirds":
image_names = [dataset_val.data.iloc[idx].img_id for idx in range(len(dataset_val))]
elif args.dataset.lower() == "coco":
image_names = [dataset_val.ids[idx] for idx in range(len(dataset_val))]
elif args.dataset.lower() == "nuswide":
image_names = [os.path.splitext(os.path.basename(x[0]))[0] for x in dataset_val.itemlist]
_logger.info("Ready for Inference")
if args.dataset.lower() == "coco" or args.dataset.lower() == "nuswide":
Sig = torch.nn.Sigmoid()
preds_regular = []
targets = []
with torch.no_grad():
end = time.time()
img_count = 0
for batch_idx, (input, target) in enumerate(data_loader_val):
target = target.to(device, non_blocking=True)
input = input.to(device, non_blocking=True)
# compute output
with amp_autocast():
output = model(input)
if args.viz_mode:
output, viz_data = output
viz_keys = list(viz_data.keys())
kept_tokens = True if "Kept_Tokens" in viz_keys else False
kept_tokens_abs = True if "Kept_Tokens_Abs" in viz_keys else False
assign_maps = True if "Assignment_Maps" in viz_keys else False
soft_assign_maps = False #soft_assign_maps = True if "Soft_Assignment_Maps" in viz_keys else False
center_feats = False # center_feats = True if "Center_Feats" in viz_keys else False
fusion_assign = False # fusion_assign = True if "Fusion_Assign" in viz_keys else False
if args.dataset.lower() != "coco" and args.dataset.lower() != "nuswide":
loss = criterion(output, target)
elif args.dataset.lower() == "coco":
target = target.max(dim=1)[0].float()
output = output.float()
loss = criterion(output, target)
elif args.dataset.lower() == "nuswide":
loss = criterion(output.float(), target.float())
batch_size = input.shape[0]
losses.update(loss.item(), input.size(0))
if args.dataset.lower() != "coco" and args.dataset.lower() != "nuswide":
# measure accuracy
acc1, acc5 = accuracy(output, target, topk=(1, 5))
_, pred = output.topk(5, 1, True, True)
top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0))
else:
# Measure mAP
pred = Sig(output)
preds_regular.append(pred.cpu().detach())
targets.append(target.cpu().detach())
for i in range(target.shape[0]):
image_name = image_names[img_count + i]
data_dict = {"Predictions": pred[i].cpu().numpy(),
"Target": target[i].cpu().numpy(),
"Loss": loss.item()}
if args.viz_mode:
for stage_idx, stage in enumerate(model.get_reduction_count()):
stage_name = "Stage-{}".format(stage)
data_dict[stage_name] = {}
if kept_tokens:
if stage_idx == 0:
data_dict[stage_name]["Kept_Token"] = viz_data["Kept_Tokens"][stage][i]
elif stage_idx != 0:
rel_idx = viz_data["Kept_Tokens"][stage][i]
if not "evit" in model_args.model:
rel_idx = rel_idx[rel_idx >= 0]
data_dict[stage_name]["Kept_Token"] = data_dict[prev_stage_name]["Kept_Token"][rel_idx]
if kept_tokens_abs:
data_dict[stage_name]["Kept_Token"] = viz_data["Kept_Tokens_Abs"][stage][i]
if assign_maps:
data_dict[stage_name]["Assignment_Maps"] = viz_data["Assignment_Maps"][stage][i]
if soft_assign_maps:
data_dict[stage_name]["Soft_Assignment_Maps"] = viz_data["Soft_Assignment_Maps"][stage][i]
if center_feats:
data_dict[stage_name]["Center_Feats"] = viz_data["Center_Feats"][stage][i]
if fusion_assign:
data_dict[stage_name]["Fusion_Assign"] = viz_data["Fusion_Assign"][stage][i]
prev_stage_name = stage_name
model_data_dict[image_name] = data_dict
img_count += target.shape[0]
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % 20 == 0:
if args.dataset.lower() != "coco" and args.dataset.lower() != "nuswide":
_logger.info(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
batch_idx, len(data_loader_val), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
else:
_logger.info(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '.format(
batch_idx, len(data_loader_val), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg))
if args.dataset.lower() == "coco" or args.dataset.lower() == "nuswide":
mAP_score = utils.mAP(torch.cat(targets).numpy(), torch.cat(preds_regular).numpy())
top1.update(mAP_score, 1)
top5.update(mAP_score, 1)
top1a, top5a = top1.avg, top5.avg
results = OrderedDict(
top1=round(top1a, 4), top1_err=round(100 - top1a, 4),
top5=round(top5a, 4), top5_err=round(100 - top5a, 4),
param_count=round(param_count / 1e6, 2),
img_size=args.input_size)
model_data_dict["Top1-Acc"] = round(top1a, 4)
model_data_dict["Top5-Acc"] = round(top5a, 4)
model_data_dict["Params"] = round(param_count / 1e6, 2)
_logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
return model_data_dict
def main(args, _logger):
viz_data = validate(args, _logger)
viz_data_file = os.path.join(args.output_dir, args.viz_output_name)
write_viz(viz_data_file, viz_data)
def write_viz(viz_file, viz_data):
with open(viz_file, "w") as write_file:
json.dump(viz_data, write_file, cls=NumpyArrayEncoder, indent=4)
if __name__ == '__main__':
from timm.utils import setup_default_logging
import logging
_logger = logging.getLogger('validate')
setup_default_logging()
args = parser.parse_args()
main(args, _logger)