-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_coarse.py
executable file
·336 lines (267 loc) · 13.8 KB
/
train_coarse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import numpy as np
import subprocess
cmd = 'nvidia-smi -q -d Memory |grep -A4 GPU|grep Used'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode().split('\n')
os.environ['CUDA_VISIBLE_DEVICES']=str(np.argmin([int(x.split()[2]) for x in result[:-1]]))
os.system('echo $CUDA_VISIBLE_DEVICES')
import copy
import torch
import torchvision
import json
import wandb
import time
import random
from os import makedirs
import shutil, pathlib
from pathlib import Path
from PIL import Image
import torchvision.transforms.functional as tf
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import prefilter_voxel, render, render_with_consistency_loss
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.distributed_utils import init_distributed_mode, dist, cleanup
torch.set_num_threads(32)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
print("found tf board")
except ImportError:
TENSORBOARD_FOUND = False
print("not found tf board")
def saveRuntimeCode(dst: str) -> None:
additionalIgnorePatterns = ['.git', '.gitignore']
ignorePatterns = set()
ROOT = '.'
with open(os.path.join(ROOT, '.gitignore')) as gitIgnoreFile:
for line in gitIgnoreFile:
if not line.startswith('#'):
if line.endswith('\n'):
line = line[:-1]
if line.endswith('/'):
line = line[:-1]
ignorePatterns.add(line)
ignorePatterns = list(ignorePatterns)
for additionalPattern in additionalIgnorePatterns:
ignorePatterns.append(additionalPattern)
log_dir = pathlib.Path(__file__).parent.resolve()
shutil.copytree(log_dir, dst, ignore=shutil.ignore_patterns(*ignorePatterns))
print('Backup Finished!')
def training(dataset, opt, pipe, dataset_name, saving_iterations, debug_from, wandb=None, logger=None, ply_path=None, testing_freq=1000):
first_iter = 0
gaussians = GaussianModel(dataset.feat_dim, dataset.n_offsets, dataset.voxel_size, dataset.update_depth, dataset.update_init_factor, dataset.update_hierachy_factor, dataset.use_feat_bank, dataset.appearance_dim, dataset.ratio, dataset.add_opacity_dist, dataset.add_cov_dist, dataset.add_color_dist)
scene = Scene(dataset, gaussians, ply_path=ply_path, shuffle=False, block_id=dataset.block_id)
gaussians.training_setup(opt)
gaussians.train()
tb_writer = prepare_output_and_logger(dataset)
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
ema_loss_for_log = 0.0
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# Pick a view randomly
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
voxel_visible_mask = prefilter_voxel(viewpoint_cam, gaussians, pipe, background)
retain_grad = (iteration < opt.update_until and iteration >= 0)
render_pkg = render(viewpoint_cam, gaussians, pipe, background, visible_mask=voxel_visible_mask, retain_grad=retain_grad)
image, viewspace_point_tensor, visibility_filter, offset_selection_mask, radii, scaling, opacity = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["selection_mask"], render_pkg["radii"], render_pkg["scaling"], render_pkg["neural_opacity"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
ssim_loss = (1.0 - ssim(image, gt_image))
scaling_reg = scaling.prod(dim=1).mean()
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss + 0.01 * scaling_reg
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.99 * loss.item() + 0.01 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and validation
training_report(tb_writer, dataset_name, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), scene, render, (pipe, background), wandb, logger, testing_freq=testing_freq)
# Save
if (iteration in saving_iterations):
logger.info("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration, block_id=dataset.block_id)
# densification
if iteration < opt.update_until and iteration > opt.start_stat:
# add statis
gaussians.training_statis(viewspace_point_tensor, opacity, visibility_filter, offset_selection_mask, voxel_visible_mask)
# densification
if iteration > opt.update_from and iteration % opt.update_interval == 0:
gaussians.adjust_anchor(check_interval=opt.update_interval, success_threshold=opt.success_threshold, grad_threshold=opt.densify_grad_threshold, min_opacity=opt.min_opacity)
elif iteration == opt.update_until:
print("### Stop densification.")
gaussians.opacity_accum = None
gaussians.offset_gradient_accum = None
gaussians.offset_denom = None
torch.cuda.empty_cache()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, dataset_name, iteration, Ll1, loss, l1_loss, elapsed, scene : Scene, renderFunc, renderArgs, wandb=None, logger=None, testing_freq=1000):
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/iter_time', elapsed, iteration)
if wandb is not None:
wandb.log({"train_l1_loss":Ll1, 'train_total_loss':loss, })
if iteration % testing_freq == 0:
scene.gaussians.eval()
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, len(scene.getTrainCameras()), 8)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
if wandb is not None:
gt_image_list = []
render_image_list = []
errormap_list = []
for idx, viewpoint in enumerate(config['cameras']):
voxel_visible_mask = prefilter_voxel(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, visible_mask=voxel_visible_mask)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 30):
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/errormap".format(viewpoint.image_name), (gt_image[None]-image[None]).abs(), global_step=iteration)
if wandb:
render_image_list.append(image[None])
errormap_list.append((gt_image[None]-image[None]).abs())
if iteration == testing_freq:
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
if wandb:
gt_image_list.append(gt_image[None])
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssim_test += ssim(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
logger.info("\n[ITER {}] Evaluating {}: L1 {} PSNR {} SSIM {}".format(iteration, config['name'], l1_test, psnr_test, ssim_test))
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if wandb is not None:
wandb.log({f"{config['name']}_loss_viewpoint_l1_loss":l1_test, f"{config['name']}_PSNR":psnr_test})
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/'+'total_points', scene.gaussians.get_anchor.shape[0], iteration)
torch.cuda.empty_cache()
scene.gaussians.train()
def get_logger(path):
import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fileinfo = logging.FileHandler(os.path.join(path, "outputs.log"))
fileinfo.setLevel(logging.INFO)
controlshow = logging.StreamHandler()
controlshow.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s: %(message)s")
fileinfo.setFormatter(formatter)
controlshow.setFormatter(formatter)
logger.addHandler(fileinfo)
logger.addHandler(controlshow)
return logger
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument('--warmup', action='store_true', default=False)
parser.add_argument('--use_wandb', action='store_true', default=False)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
torch.cuda.reset_peak_memory_stats()
# enable logging
model_path = args.model_path
os.makedirs(model_path, exist_ok=True)
logger = get_logger(model_path)
logger.info(f'args: {args}')
try:
saveRuntimeCode(os.path.join(args.model_path, 'backup'))
except:
logger.info(f'save code failed~')
dataset = args.source_path.split('/')[-1]
exp_name = args.model_path.split('/')[-2]
if args.use_wandb:
wandb.login()
run = wandb.init(
# Set the project where this run will be logged
project=f"Momentum-GS-{dataset}",
name=exp_name,
# Track hyperparameters and run metadata
settings=wandb.Settings(start_method="fork"),
config=vars(args)
)
else:
wandb = None
logger.info("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
# training
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.save_iterations, args.debug_from, wandb, logger)
max_memory = torch.cuda.max_memory_allocated()
print(f"MAX VRAM={max_memory / (1024**2)} MB\n")
logger.info("\nTraining complete.")