-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
executable file
·595 lines (478 loc) · 26.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import copy
import torch
import torchvision
import json
import wandb
import time
import random
import numpy as np
from os import makedirs
import shutil, pathlib
from pathlib import Path
from PIL import Image
import torchvision.transforms.functional as tf
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import prefilter_voxel, render, render_with_consistency_loss
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.distributed_utils import init_distributed_mode, dist, cleanup
torch.set_num_threads(32)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
print("found tf board")
except ImportError:
TENSORBOARD_FOUND = False
print("not found tf board")
def saveRuntimeCode(dst: str) -> None:
additionalIgnorePatterns = ['.git', '.gitignore']
ignorePatterns = set()
ROOT = '.'
with open(os.path.join(ROOT, '.gitignore')) as gitIgnoreFile:
for line in gitIgnoreFile:
if not line.startswith('#'):
if line.endswith('\n'):
line = line[:-1]
if line.endswith('/'):
line = line[:-1]
ignorePatterns.add(line)
ignorePatterns = list(ignorePatterns)
for additionalPattern in additionalIgnorePatterns:
ignorePatterns.append(additionalPattern)
log_dir = pathlib.Path(__file__).parent.resolve()
shutil.copytree(log_dir, dst, ignore=shutil.ignore_patterns(*ignorePatterns))
print('Backup Finished!')
def set_require_grad(model, is_require_grad):
for param in model.parameters():
param.requires_grad = is_require_grad
def replace_model(model_a, model_b):
# replace model_a with model_b
with torch.no_grad():
for param_a, param_b in zip(model_a.parameters(), model_b.parameters()):
param_a.data = param_b.data
def momentum_update(block_mlp, main_mlp=None, m=0.9):
with torch.no_grad():
for block_param, main_param in zip(block_mlp.parameters(), main_mlp.parameters()):
main_param.data = m * main_param.data + (1 - m) * block_param.data
def sync_model_with_rank0(model):
with torch.no_grad():
for param in model.parameters():
dist.broadcast(param.data, 0)
def training(dataset, opt, pipe, dataset_name, saving_iterations, debug_from, wandb=None, logger=None, ply_path=None, testing_freq=1000):
first_iter = 0
num_blocks = dataset.block_num
num_gpus = dist.get_world_size()
assert num_blocks % num_gpus == 0, "Number of blocks must be divisible by number of GPUs"
num_blocks_per_gpu = num_blocks // num_gpus
multi_block_per_gpu = num_blocks_per_gpu > 1
rank = dist.get_rank()
device = torch.device("cuda", rank)
gaussians_list, scene_list, optimizer_state_list, block_id_list = [], [], [], []
block_psnr_list, block_ssim_list = [], []
block_psnr_momentum, block_ssim_momentum = [0 for _ in range(num_blocks_per_gpu)], [0 for _ in range(num_blocks_per_gpu)]
checkpoint_tmp_dir = dataset.checkpoint_tmp_dir
if not os.path.exists(checkpoint_tmp_dir):
os.makedirs(checkpoint_tmp_dir, exist_ok=True)
for block_id in range(rank * num_blocks_per_gpu, (rank + 1) * num_blocks_per_gpu):
print(f"### Start initializing Block {block_id} on rank {rank}")
gaussians = GaussianModel(dataset.feat_dim, dataset.n_offsets, dataset.voxel_size, dataset.update_depth, dataset.update_init_factor, dataset.update_hierachy_factor, dataset.use_feat_bank, dataset.appearance_dim, dataset.ratio, dataset.add_opacity_dist, dataset.add_cov_dist, dataset.add_color_dist)
scene = Scene(dataset, gaussians, ply_path=ply_path, shuffle=False, distributed=True, block_id=block_id)
# if not the first block, sync mlp data with previous block
if multi_block_per_gpu and rank == 0 and block_id != rank * num_blocks_per_gpu:
replace_model(gaussians.mlp_color, gaussians_list[0].mlp_color)
replace_model(gaussians.mlp_cov, gaussians_list[0].mlp_cov)
replace_model(gaussians.mlp_opacity, gaussians_list[0].mlp_opacity)
### sync mlp data with rank 0
sync_model_with_rank0(gaussians.mlp_color)
sync_model_with_rank0(gaussians.mlp_cov)
sync_model_with_rank0(gaussians.mlp_opacity)
gaussians.training_setup(opt)
gaussians.train()
gaussians_list.append(gaussians)
scene_list.append(scene)
block_id_list.append(block_id)
optimizer_state_list.append(gaussians.optimizer.state_dict())
block_psnr_list.append([])
block_ssim_list.append([])
if rank == 0:
tb_writer = prepare_output_and_logger(dataset)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
# Initialize Momentum Gaussian Decoder
momentum_mlp_color = copy.deepcopy(gaussians.mlp_color).to(device)
momentum_mlp_cov = copy.deepcopy(gaussians.mlp_cov).to(device)
momentum_mlp_opacity = copy.deepcopy(gaussians.mlp_opacity).to(device)
# No gradient required
set_require_grad(momentum_mlp_color, False)
set_require_grad(momentum_mlp_cov, False)
set_require_grad(momentum_mlp_opacity, False)
viewpoint_stack_list = [None for _ in range(num_blocks_per_gpu)]
last_gaussians = None
first_iter += 1
dist.barrier()
iteration = first_iter
while iteration <= opt.iterations:
end_iter = iteration + opt.block_training_interval
for idx in range(num_blocks_per_gpu):
# move gaussians to GPU
torch.cuda.empty_cache()
gaussians = gaussians_list[idx]
scene = scene_list[idx]
block_id = block_id_list[idx]
viewpoint_stack = viewpoint_stack_list[idx]
if multi_block_per_gpu and iteration != first_iter:
checkpoint = checkpoint_tmp_dir + "chkpnt_" + str(block_id) + ".pth"
model_params = torch.load(checkpoint)
gaussians.restore(model_params, opt)
gaussians.train()
torch.cuda.synchronize()
dist.barrier()
torch.cuda.empty_cache()
if end_iter == opt.iterations and idx != 0:
if multi_block_per_gpu:
replace_model(gaussians.mlp_color, last_gaussians.mlp_color)
replace_model(gaussians.mlp_cov, last_gaussians.mlp_cov)
replace_model(gaussians.mlp_opacity, last_gaussians.mlp_opacity)
gaussians.freezen_mlp()
for cur_iter in range(iteration, end_iter):
if not gaussians.freeze_all_mlp:
# replace old mlp with the current one
if multi_block_per_gpu and cur_iter == iteration and last_gaussians is not None:
replace_model(gaussians.mlp_color, last_gaussians.mlp_color)
replace_model(gaussians.mlp_cov, last_gaussians.mlp_cov)
replace_model(gaussians.mlp_opacity, last_gaussians.mlp_opacity)
torch.cuda.synchronize()
dist.barrier()
# update Momentum Gaussian Decoder
if rank == 0:
momentum_update(gaussians.mlp_color, momentum_mlp_color, opt.momentum_coefficient)
momentum_update(gaussians.mlp_cov, momentum_mlp_cov, opt.momentum_coefficient)
momentum_update(gaussians.mlp_opacity, momentum_mlp_opacity, opt.momentum_coefficient)
torch.cuda.synchronize()
dist.barrier()
# sync main mlp with rank0
sync_model_with_rank0(momentum_mlp_color)
sync_model_with_rank0(momentum_mlp_cov)
sync_model_with_rank0(momentum_mlp_opacity)
if rank == 0:
iter_start.record()
gaussians.update_learning_rate(cur_iter)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# Pick a view randomly
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (cur_iter - 1) == debug_from:
pipe.debug = True
voxel_visible_mask = prefilter_voxel(viewpoint_cam, gaussians, pipe, background)
retain_grad = (cur_iter < opt.update_until and cur_iter >= 0)
if gaussians.freeze_all_mlp:
render_pkg = render(viewpoint_cam, gaussians, pipe, background, visible_mask=voxel_visible_mask, retain_grad=retain_grad)
else:
render_pkg = render_with_consistency_loss(viewpoint_cam, gaussians, momentum_mlp_color, momentum_mlp_cov, momentum_mlp_opacity, pipe, background, visible_mask=voxel_visible_mask, retain_grad=retain_grad)
image, viewspace_point_tensor, visibility_filter, offset_selection_mask, radii, scaling, opacity = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["selection_mask"], render_pkg["radii"], render_pkg["scaling"], render_pkg["neural_opacity"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
ssim_loss = (1.0 - ssim(image, gt_image))
scaling_reg = scaling.prod(dim=1).mean()
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss + 0.01 * scaling_reg
if not gaussians.freeze_all_mlp:
# consistency loss
consistency_loss = render_pkg['consistency_loss']
# Reconstruction-guided block weighting
with torch.no_grad():
if cur_iter <= 1000:
recons_weight = torch.tensor(1.0)
else:
cur_recons_idx = len(block_psnr_list[idx]) - 1
cur_psnr = block_psnr_list[idx][cur_recons_idx]
cur_ssim = block_ssim_list[idx][cur_recons_idx]
momentum_psnr = block_psnr_momentum[idx] if block_psnr_momentum[idx] != 0 else cur_psnr
momentum_psnr = momentum_psnr * 0.9 + cur_psnr * 0.1
momentum_ssim = block_ssim_momentum[idx] if block_ssim_momentum[idx] != 0 else cur_ssim
momentum_ssim = momentum_ssim * 0.9 + cur_ssim * 0.1
block_psnr_momentum[idx] = momentum_psnr
block_ssim_momentum[idx] = momentum_ssim
max_psnr = momentum_psnr
max_ssim = momentum_ssim
for block_idx in range(num_blocks_per_gpu):
max_psnr = max(max_psnr, block_psnr_momentum[block_idx])
max_ssim = max(max_ssim, block_ssim_momentum[block_idx])
max_psnr_all = torch.zeros(num_gpus, device=device)
max_ssim_all = torch.zeros(num_gpus, device=device)
max_psnr_all[rank] = max_psnr
max_ssim_all[rank] = max_ssim
torch.cuda.synchronize()
dist.barrier()
dist.all_reduce(max_psnr_all)
dist.all_reduce(max_ssim_all)
cur_max_psnr = max_psnr_all.max()
cur_max_ssim = max_ssim_all.max()
recons_weight = torch.tensor(2.0) - torch.exp(-((cur_max_psnr - momentum_psnr)**2 + (cur_max_ssim * 10 - momentum_ssim * 10)**2) / (2 * opt.adaptive_sigma * opt.adaptive_sigma))
loss = (loss + consistency_loss * opt.consistency_loss_weight) * recons_weight
loss.backward()
if not gaussians.freeze_all_mlp:
torch.cuda.synchronize()
dist.barrier()
with torch.no_grad():
# all reduce mlp grad
for param in gaussians.mlp_opacity.parameters():
torch.distributed.all_reduce(param.grad)
torch.cuda.synchronize()
dist.barrier()
param.grad = param.grad / num_gpus
for param in gaussians.mlp_color.parameters():
torch.distributed.all_reduce(param.grad)
torch.cuda.synchronize()
dist.barrier()
param.grad = param.grad / num_gpus
for param in gaussians.mlp_cov.parameters():
torch.distributed.all_reduce(param.grad)
torch.cuda.synchronize()
dist.barrier()
param.grad = param.grad / num_gpus
if rank == 0:
iter_end.record()
with torch.no_grad():
# Progress bar
if rank == 0:
ema_loss_for_log = 0.99 * loss.item() + 0.01 * ema_loss_for_log
if cur_iter % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
if 10 % num_blocks_per_gpu == 0:
progress_bar.update(10 // num_blocks_per_gpu)
else:
if idx != 0:
progress_bar.update(10 // num_blocks_per_gpu)
else:
remain = 10 - (10 // num_blocks_per_gpu) * (num_blocks_per_gpu - 1)
progress_bar.update(remain)
if cur_iter == opt.iterations:
progress_bar.close()
# Log and validation
if rank == 0:
training_report(tb_writer, dataset_name, cur_iter, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), scene, block_id, render, (pipe, background), wandb, logger, testing_freq=testing_freq, block_psnr_list=block_psnr_list, block_ssim_list=block_ssim_list, block_idx=idx)
else:
training_report(None, dataset_name, cur_iter, Ll1, loss, l1_loss, None, scene, block_id, render, (pipe, background), testing_freq=testing_freq, block_psnr_list=block_psnr_list, block_ssim_list=block_ssim_list, block_idx=idx)
# Save
if (cur_iter in saving_iterations):
time.sleep(30 * rank)
if rank == 0:
logger.info("\n[ITER {}] Block_{} Saving Gaussians".format(cur_iter, block_id))
else:
print("\n[ITER {}] Block_{} Saving Gaussians".format(cur_iter, block_id))
scene.save(cur_iter, block_id=block_id)
# densification
if cur_iter < opt.update_until and cur_iter > opt.start_stat:
# add statis
gaussians.training_statis(viewspace_point_tensor, opacity, visibility_filter, offset_selection_mask, voxel_visible_mask)
# densification
if cur_iter > opt.update_from and cur_iter % opt.update_interval == 0:
gaussians.adjust_anchor(check_interval=opt.update_interval, success_threshold=opt.success_threshold, grad_threshold=opt.densify_grad_threshold, min_opacity=opt.min_opacity)
elif cur_iter == opt.update_until:
print("### Stop densification.")
gaussians.opacity_accum = None
gaussians.offset_gradient_accum = None
gaussians.offset_denom = None
torch.cuda.empty_cache()
# Optimizer step
if cur_iter < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
viewpoint_stack_list[idx] = viewpoint_stack
last_gaussians = gaussians
if multi_block_per_gpu:
gaussians.eval()
torch.save(gaussians.capture(), checkpoint_tmp_dir + "chkpnt_" + str(block_id) + ".pth")
del gaussians._anchor
del gaussians._anchor_feat
del gaussians._offset
del gaussians._scaling
del gaussians._rotation
del gaussians._opacity
del gaussians.max_radii2D
del gaussians.optimizer
del gaussians.opacity_accum
del gaussians.offset_gradient_accum
del gaussians.offset_denom
del gaussians.anchor_demon
del gaussians.spatial_lr_scale
torch.cuda.synchronize()
dist.barrier()
torch.cuda.empty_cache()
iteration += opt.block_training_interval
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, dataset_name, iteration, Ll1, loss, l1_loss, elapsed, scene : Scene, block_id, renderFunc, renderArgs, wandb=None, logger=None, testing_freq=1000, block_psnr_list=None, block_ssim_list=None, block_idx=None):
if rank == 0 and tb_writer:
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/iter_time', elapsed, iteration)
if rank == 0 and wandb is not None:
wandb.log({"train_l1_loss":Ll1, 'train_total_loss':loss, })
if iteration % testing_freq == 0:
scene.gaussians.eval()
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, len(scene.getTrainCameras()), 8)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
if rank == 0 and wandb is not None:
gt_image_list = []
render_image_list = []
errormap_list = []
for idx, viewpoint in enumerate(config['cameras']):
voxel_visible_mask = prefilter_voxel(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, visible_mask=voxel_visible_mask)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if rank == 0 and tb_writer and (idx < 30):
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/errormap".format(viewpoint.image_name), (gt_image[None]-image[None]).abs(), global_step=iteration)
if wandb:
render_image_list.append(image[None])
errormap_list.append((gt_image[None]-image[None]).abs())
if iteration == testing_freq:
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
if wandb:
gt_image_list.append(gt_image[None])
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssim_test += ssim(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
block_psnr_list[block_idx].append(psnr_test)
block_ssim_list[block_idx].append(ssim_test)
if rank == 0:
logger.info("\n[ITER {}] Evaluating Block{} {}: L1 {} PSNR {} SSIM {}".format(iteration, block_id, config['name'], l1_test, psnr_test, ssim_test))
else:
#TODO add other ranks to logger
print("\n[ITER {}] Evaluating Block{} {}: L1 {} PSNR {} SSIM {}".format(iteration, block_id, config['name'], l1_test, psnr_test, ssim_test))
if rank == 0 and tb_writer:
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if rank == 0 and wandb is not None:
wandb.log({f"{config['name']}_loss_viewpoint_l1_loss":l1_test, f"{config['name']}_PSNR":psnr_test})
if rank == 0 and tb_writer:
tb_writer.add_scalar(f'{dataset_name}/'+'total_points', scene.gaussians.get_anchor.shape[0], iteration)
torch.cuda.empty_cache()
scene.gaussians.train()
def get_logger(path):
import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fileinfo = logging.FileHandler(os.path.join(path, "outputs.log"))
fileinfo.setLevel(logging.INFO)
controlshow = logging.StreamHandler()
controlshow.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s: %(message)s")
fileinfo.setFormatter(formatter)
controlshow.setFormatter(formatter)
logger.addHandler(fileinfo)
logger.addHandler(controlshow)
return logger
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument('--warmup', action='store_true', default=False)
parser.add_argument('--use_wandb', action='store_true', default=False)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument('--device', default='cuda', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--world-size', default=4, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
torch.cuda.reset_peak_memory_stats()
# Distributed training
init_distributed_mode(args=args)
rank = args.rank
device = torch.device(args.device)
dataset = args.source_path.split('/')[-1]
if rank == 0:
# enable logging
model_path = args.model_path
os.makedirs(model_path, exist_ok=True)
logger = get_logger(model_path)
logger.info(f'args: {args}')
try:
saveRuntimeCode(os.path.join(args.model_path, 'backup'))
except:
logger.info(f'save code failed~')
exp_name = args.model_path.split('/')[-2]
if args.use_wandb:
wandb.login()
run = wandb.init(
# Set the project where this run will be logged
project=f"Momentum-GS-{dataset}",
name=exp_name,
# Track hyperparameters and run metadata
settings=wandb.Settings(start_method="fork"),
config=vars(args)
)
else:
wandb = None
logger.info("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
# training
if rank == 0:
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.save_iterations, args.debug_from, wandb, logger)
else:
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.save_iterations, args.debug_from)
max_memory = torch.cuda.max_memory_allocated()
print(f"[rank {rank}] max vram={max_memory / (1024**2)} MB\n")
if rank == 0:
logger.info("\nTraining complete.")
cleanup()