The latest version of this documentation is available on GitHub.
Libraries installed with vcpkg can always be built from source. However, that can duplicate work and waste time when working across multiple projects.
Binary caching is a vcpkg feature that saves copies of library binaries in a shared location that can be accessed by vcpkg for future installs. This means that, as a user, you should only need to build dependencies from source once. If vcpkg is asked to install the same library with the same build configuration in the future, it will just copy the built binaries from the cache and finish the operation in seconds.
Binary caching is especially effective when using Continuous Integration, since local developers can reuse the binaries produced during a CI run. It also greatly enhances the performance of "ephemeral" or "hosted" build agents, since all local changes are otherwise lost between runs. By using binary caching backed by a cloud service, such as GitHub, Azure, or many others, you can ensure your CI runs at maximum speed and only rebuilds your dependencies when they've changed.
Caches can be hosted in a variety of environments. The most basic examples are a folder on the local machine or a network file share. Caches can also be stored in any NuGet feed (such as GitHub or Azure DevOps Artifacts), Azure Blob Storage*, or Google Cloud Storage*.
* (experimental)
If your CI provider offers a native "caching" function, we recommend using both vcpkg binary caching and the native method for the most performant results.
In-tool help is available via vcpkg help binarycaching
.
Table of Contents
Binary caching is configured via a combination of defaults, the environment variable VCPKG_BINARY_SOURCES
(set to <source>;<source>;...
), and the command line option --binarysource=<source>
. Source options are evaluated in order of defaults, then environment, then command line. Binary caching can be completely disabled by passing --binarysource=clear
as the last command line option.
By default, zip-based archives will be cached at the first valid location of:
Windows
%VCPKG_DEFAULT_BINARY_CACHE%
%LOCALAPPDATA%\vcpkg\archives
%APPDATA%\vcpkg\archives
Non-Windows
$VCPKG_DEFAULT_BINARY_CACHE
$XDG_CACHE_HOME/vcpkg/archives
$HOME/.cache/vcpkg/archives
form | description |
---|---|
clear |
Removes all previous sources (including the default) |
default[,<rw>] |
Adds the default file-based location |
files,<absolute path>[,<rw>] |
Adds a custom file-based location |
nuget,<uri>[,<rw>] |
Adds a NuGet-based source; equivalent to the -Source parameter of the NuGet CLI |
nugetconfig,<path>[,<rw>] |
Adds a NuGet-config-file-based source; equivalent to the -Config parameter of the NuGet CLI. This config should specify defaultPushSource for uploads. |
x-azblob,<baseuri>,<sas>[,<rw>] |
Experimental: will change or be removed without warning Adds an Azure Blob Storage source. Uses Shared Access Signature validation. URL should include the container path. |
interactive |
Enables interactive credential management for NuGet (for debugging; requires --debug on the command line) |
The <rw>
optional parameter for certain sources controls whether they will be consulted for
downloading binaries (read
)(default), whether on-demand builds will be uploaded to that remote (write
), or both (readwrite
).
Additional configuration details for NuGet-based providers can be found below in NuGet Provider Configuration.
If your CI system of choice is not listed, we welcome PRs to add them!
To use vcpkg with GitHub Packages, we recommend using the NuGet
backend.
NOTE 2020-09-21: GitHub's hosted agents come with an older, pre-installed copy of vcpkg on the path that does not support the latest binary caching. This means that direct calls to
bootstrap-vcpkg
orvcpkg
without a path prefix may call an unintended vcpkg instance. We recommend taking the following two steps to avoid issues if you want to use your own copy of vcpkg:
- Run the equivalent of
rm -rf "$VCPKG_INSTALLATION_ROOT"
usingshell: 'bash'
- Always call
vcpkg
andbootstrap-vcpkg
with a path prefix, such as./vcpkg
,vcpkg/vcpkg
,.\bootstrap-vcpkg.bat
, etc
# actions.yaml
#
# In this example, vcpkg has been added as a submodule (`git submodule add https://github.com/Microsoft/vcpkg`).
env:
VCPKG_BINARY_SOURCES: 'clear;nuget,GitHub,readwrite'
matrix:
os: ['windows-2019', 'ubuntu-20.04']
include:
- os: 'windows-2019'
triplet: 'x86-windows'
mono: ''
- os: 'ubuntu-20.04'
triplet: 'x64-linux'
# To run `nuget.exe` on non-Windows platforms, we must use `mono`.
mono: 'mono'
steps:
# This step assumes `vcpkg` has been bootstrapped (run `./vcpkg/bootstrap-vcpkg`)
- name: 'Setup NuGet Credentials'
shell: 'bash'
# Replace <OWNER> with your organization name
run: >
${{ matrix.mono }} `./vcpkg/vcpkg fetch nuget | tail -n 1`
sources add
-source "https://nuget.pkg.github.com/<OWNER>/index.json"
-storepasswordincleartext
-name "GitHub"
-username "<OWNER>"
-password "${{ secrets.GITHUB_TOKEN }}"
# Omit this step if you're using manifests
- name: 'vcpkg package restore'
shell: 'bash'
run: >
./vcpkg/vcpkg install sqlite3 cpprestsdk --triplet ${{ matrix.triplet }}
If you're using manifests, you can omit the vcpkg package restore
step: it will be run automatically as part of your build.
More information about GitHub Packages' NuGet support is available on GitHub Docs.
To use vcpkg with Azure DevOps Artifacts, we recommend using the NuGet
backend.
First, you need to ensure Artifacts has been enabled on your DevOps instance; this can be done by an Administrator through Project Settings > General > Overview > Azure DevOps Services > Artifacts
.
Next, you will need to create a feed for your project; see the Azure DevOps Artifacts Documentation for more information. Your feed URL will be an https://
link ending with /nuget/v3/index.json
.
# azure-pipelines.yaml
variables:
- name: VCPKG_BINARY_SOURCES
value: 'clear;nuget,<FEED_URL>,readwrite'
If you are using custom agents with a non-Windows OS, you will need to install Mono to run nuget.exe
(apt install mono-complete
, brew install mono
, etc).
More information about Azure DevOps Artifacts' NuGet support is available in the Azure DevOps Artifacts Documentation.
Note: This is an experimental feature and may change or be removed at any time
Vcpkg supports interfacing with Azure Blob Storage via the x-azblob
source type.
x-azblob,<baseuri>,<sas>[,<rw>]
First, you need to create an Azure Storage Account as well as a container (Quick Start Documentation].
Next, you will need to create a Shared Access Signature, which can be done from the storage account under Settings -> Shared access signature. This SAS will need:
- Allowed services: Blob
- Allowed resource types: Object
- Allowed permissions: Read, Create (if using
write
orreadwrite
)
The blob endpoint plus the container must be passed as the <baseuri>
and the generated SAS without the ?
prefix must be passed as the <sas>
.
Example:
x-azblob,https://<storagename>.blob.core.windows.net/<containername>,sv=2019-12-12&ss=b&srt=o&sp=rcx&se=2020-12-31T06:20:36Z&st=2020-12-30T22:20:36Z&spr=https&sig=abcd,readwrite
Vcpkg will attempt to avoid revealing the SAS during normal operations, however:
- It will be printed in full if
--debug
is passed - It will be passed as a command line parameter to subprocesses, such as
curl.exe
Note: This is an experimental feature and may change or be removed at any time
Vcpkg supports interfacing with Google Cloud Storage (GCS) via the x-gcs
source type.
x-gcs,<prefix>[,<rw>]
First, you need to create an Google Cloud Platform Account as well as a storage bucket (GCS Quick Start].
As part of this quickstart you would have configured the gsutil
command-line tool to authenticate with Google Cloud.
Vcpkg will use this command-line tool, make sure it is in your search path for executables.
Example 1 (using a bucket without a common prefix for the objects):
x-gcs,gs://<bucket-name>/,readwrite
Example 2 (using a bucket and a prefix for the objects):
x-gcs,gs://<bucket-name>/my-vcpkg-cache/maybe/with/many/slashes/,readwrite
x-gcs,gs://<bucket-name>/my-vcpkg-cache/maybe/with`,commas/too!/,readwrite
Commas (,
) are valid as part of a object prefix in GCS, just remember to escape them in the vcpkg configuration, as
shown in the previous example. Note that GCS does not have folders (some of the GCS tools simulate folders), it is not
necessary to create or otherwise manipulate the prefix used by your vcpkg cache.
Many NuGet servers require additional credentials to access. The most flexible way to supply credentials is via the nugetconfig
provider with a custom nuget.config
file. See https://docs.microsoft.com/en-us/nuget/consume-packages/consuming-packages-authenticated-feeds for more information on authenticating via nuget.config
.
However, it is still possible to authenticate against many servers using NuGet's built-in credential providers or via customizing your environment's default nuget.config
. The default config can be extended via nuget client calls such as
nuget sources add -Name MyRemote -Source https://... -Username $user -Password $pass
and then passed to vcpkg via --binarysource=nuget,MyRemote,readwrite
. You can get a path to the precise copy of NuGet used by vcpkg by running vcpkg fetch nuget
, which will report something like:
$ vcpkg fetch nuget
/vcpkg/downloads/tools/nuget-5.5.1-linux/nuget.exe
Non-Windows users will need to call this through mono via mono /path/to/nuget.exe sources add ...
.
# On Linux or OSX
$ mono `vcpkg fetch nuget | tail -n1` sources add \
-name ADO \
-Source https://pkgs.dev.azure.com/$ORG/_packaging/$FEEDNAME/nuget/v3/index.json \
-Username $USERNAME \
-Password $PAT
$ export VCPKG_BINARY_SOURCES="nuget,ADO,readwrite"
# On Windows Powershell
PS> & $(vcpkg fetch nuget | select -last 1) sources add `
-name ADO `
-Source https://pkgs.dev.azure.com/$ORG/_packaging/$FEEDNAME/nuget/v3/index.json `
-Username $USERNAME `
-Password $PAT
PS> $env:VCPKG_BINARY_SOURCES="nuget,ADO,readwrite"
We recommend using a Personal Access Token (PAT) as the password for maximum security. You can generate a PAT in User Settings -> Personal Access Tokens or https://dev.azure.com/$ORG/_usersSettings/tokens
.
The nuget
and nugetconfig
source providers additionally respect certain environment variables while generating nuget packages. The metadata.repository
field of any packages will be generated as:
<repository type="git" url="${VCPKG_NUGET_REPOSITORY}"/>
or
<repository type="git"
url="${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}.git"
branch="${GITHUB_REF}"
commit="${GITHUB_SHA}"/>
if the appropriate environment variables are defined and non-empty. This is specifically used to associate packages in GitHub Packages with the building project and not intended to associate with the original package sources.
NuGet's cache is not used by default. To use it for every nuget-based source, set the environment variable VCPKG_USE_NUGET_CACHE
to true
(case-insensitive) or 1
.
Binary caching relies on hashing everything that contributes to a particular package build. This includes:
- Every file in the port directory
- The triplet file and name
- The C++ compiler executable
- The C compiler executable
- The set of features selected
- Every dependency's package hash (note: this is that package's input hash, not contents)
- All helper scripts referenced by
portfile.cmake
(heuristic) - The version of CMake used
- The contents of any environment variables listed in
VCPKG_ENV_PASSTHROUGH
- The hash of the toolchain file (builtin or
VCPKG_CHAINLOAD_TOOLCHAIN_FILE
)
Despite this extensive list, it is possible to defeat the cache and introduce nondeterminism. If you have additional details that you'd like to be tracked, the easiest resolution is to generate a triplet file with your additional information in a comment. That additional information will be included in the package's input set and ensure a unique universe of binaries.
The hashes used are stored in the package and in the current installed directory at /share/<port>/vcpkg_abi_info.txt
.
The original specification for binary caching is available here.