Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

U-Net: Error when checking target: expected activation_1 to have 3 dimensions, but got array with shape (1, 224, 224, 21) #37

Open
pgadosey opened this issue Mar 1, 2019 · 1 comment

Comments

@pgadosey
Copy link

pgadosey commented Mar 1, 2019

Hi, I'm trying this out with the U-Net Architecture but i keep running into this error, I'm not sure what I might be doing wrong. This is what the definition of my model looks like:

`def get_unet(self):

	inputs = Input((self.img_rows, self.img_cols,3))
	#print(inputs.shape)
	conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
	conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
	pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
	conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
	conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
	pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
	conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
	conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
	pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
	conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
	conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
	drop4 = Dropout(0.5)(conv4)
	pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
	conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
	conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
	drop5 = Dropout(0.5)(conv5)

	up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
	merge6 = concatenate([drop4,up6], axis = 3)
	conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
	conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

	up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
	merge7 = concatenate([conv3,up7], axis = 3)
	conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
	conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

	up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
	merge8 = concatenate([conv2,up8], axis = 3)
	conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
	conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

	up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
	merge9 = concatenate([conv1,up9], axis = 3)
	conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
	conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
	conv9 = Conv2D(21, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
	conv9 = Conv2D(21, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
	print(conv9.shape)

	
	reshape = Reshape((21,self.img_rows * self.img_cols))(conv9)
	print(reshape.shape)

	permute = Permute((2,1))(reshape)
	print(permute.shape)

	activation = Activation('softmax')(permute)
	
	print(activation.shape)
	model = Model(input = inputs, output = activation)

	return model`
@Kkaboon
Copy link

Kkaboon commented Oct 30, 2020

have you solved the problem?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants